Turkish Journal of INEQUALITIES

Available online at www.tjinequality.com

SOME FUNCTIONAL INEQUALITIES FOR EXTENDED HYPERGEOMETRIC FUNCTION

L. YIN¹ AND L. G. HUANG¹

ABSTRACT. In this paper, we obtain some functional inequalities for extended hypergeometric function by using classical analysis and inequalities theory.

1. Introduction

For given complex numbers a, b and c with $c \neq 0, -1, -2, ...$, the Gaussian hypergeometric function (GHF) is the analytic continuation to the slit place $\mathbb{C} \setminus [1, \infty)$ of the series

$$F(a,b;c;z) = {}_{2}F_{1}(a,b;c;z) = \sum_{n=0}^{\infty} \frac{(a,n)(b,n)}{(c,n)} \frac{z^{n}}{n!}, \qquad |z| < 1.$$

Here (a,0)=1 for $a\neq 0$, and (a,n) is the shifted factorial function or the Appell symbol

$$(a,n) = a(a+1)(a+2)\cdots(a+n-1)$$

for $n \in \mathbb{Z}_+$, see [1]. The integral representation of the hypergeometric function is given as follows

$$F(a,b;c;z) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_0^1 t^{b-1} (1-t)^{c-b-1} (1-zt)^{-a} dt,$$

$$\operatorname{Re}(c) > \operatorname{Re}(a) > 0, |\arg(1-z) < \pi|.$$
(1.1)

By using the following integral representation of Euler's beta function

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$$
, $Re(x), Re(y) > 0$

and series expansion of $(1-zt)^{-a}$, GHF can be expressed in terms of beta function as follows

$$F(a, b; c; x) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c - b)} \sum_{n=0}^{\infty} (a, n)B(b + n, c - b) \frac{x^n}{n!},$$

$$Re(c) > Re(b) > 0, |x| < 1.$$
(1.2)

Key words and phrases. Extended hypergeometric function, monotonicity, inequality. 2010 Mathematics Subject Classification. 33C05, 26D15.

Received: 05.08.2017

Accepted: 18.12.2017.

In 1997, Chaudhry et.al [4] introduced the following extended beta function (EBF) $B_p(x,y)$, defined as below

$$B_p(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} e^{-p/(t(1-t))} dt,$$
(1.3)

Clearly for p = 0, this function coincides with the classical beta function. For the more integral representation of this extended beta function $B_p(x, y)$ and properties, see [4, 6].

On the basis of EBF, Chaudhry et.al [5] extended the GHF in 2004. We call it here Extended Gauss hypergeometric function (EGHF), and by using (1.2) and (1.3) defined as below

$$F_{p}(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \sum_{n=0}^{\infty} (a,n)B_{p}(b+n,c-b) \frac{x^{n}}{n!}$$

$$= \sum_{n=0}^{n} (a,n) \frac{B_{p}(b+n,c-b)}{B(b,c-b)} \frac{x^{n}}{n!},$$
(1.4)

$$p \ge 0$$
, $Re(c) > Re(b) > 0$, $|x| < 1$.

For p = 0, EGHF coincides with GHF. By using (1.3), EGHF can written in the integral representation form as follows

$$F_p(a,b;c;x) = \frac{1}{B(b,c-b)} \int_0^1 t^{b-1} (1-t)^{c-b-1} e^{-p/(t(1-t))} \sum_{n=0}^\infty (a,n) \frac{(xt)^n}{n!} dt.$$
 (1.5)

The above formula can be rewritten in the form as

$$F_p(a,b;c;x) = \frac{1}{B(b,c-b)} \int_0^1 t^{b-1} (1-t)^{c-b-1} (1-xt)^{-a} e^{-p/(t(1-t))} dt, \tag{1.6}$$

$$p \ge 0$$
, $Re(c) > Re(b) > 0$, $|x| < 1$.

For the more properties, transformation formulas in terms of other special functions and integral representation of EGHF see [5].

Setting x = 1, we get the summation formula for EGHF as follows

$$F_p(a, b; c; 1) = \frac{B_p(b, c - a - b)}{B(b, c - b)}, \quad p \ge 0, \quad \text{Re}(c - a - b) > 0,$$
 (1.7)

which coincides with the Gauss's summation formula for p = 0.

2. Lemmas

Lemma 2.1. [2, Lemma 1] Consider the power series $f(x) = \sum_{n \geq 0} a_n x^n$ and $g(x) = \sum_{n \geq 0} b_n x^n$, where $a_n \in \mathbf{R}$ and $b_n > 0$ for all $n \in \mathbf{N} \setminus \{0\}$, and suppose that both converge on (-r, r), r > 0. If the sequence $\left\{\frac{a_n}{b_n}\right\}_{n \geq 0}$ is increasing (decreasing), then the function $x \mapsto \frac{f(x)}{g(x)}$ is increasing (decreasing) too on (0, r).

Lemma 2.2 ([3, Lemma 3, p246]). Let us consider the function $f:(a,\infty)\to \mathbb{R}$, where $a\geq 0$. If the function g, defined by $g(x)=\frac{1}{x}(f(x)-1)$, is increasing on (a,∞) , then for the function h, defined by $h(x)=f(x^2)$, we have the following Grünbaum type inequality

$$1 + h(z) \ge h(x) + h(y),$$
 (2.1)

where $x, y \ge a$ and $z^2 = x^2 + y^2$. If the function g is decreasing, then the inequality (2.1) is reversed.

3. Main results

Theorem 3.1. Let $a,b,c \in \mathbf{R}, p \geq 0$ such that c > b > 0, a > b > 0 and consider the function $H:(0,1)\mapsto (0,\infty)$, defined by $H(x)=\frac{F_p(a,b;c;x)}{F_p(a,b;a;x)}$. Then the function H(x) is decreasing and

$$\frac{F_p(a,b;c;x)}{F_p(a,b;a;x)} \ge \frac{B(b,c-a-b)B(b,a-b)}{B(b,c-b)2\exp(-2p)k_b(2p)}$$
(3.1)

holds true for each other $x \in (0,1)$ where $k_n(z)$ is the modified Bessel function.

Proof. Applying the definition of extended hypergeometric function, we get

$$H(x) = \frac{F_p(a,b;c;x)}{F_p(a,b;a;x)} = \frac{\frac{1}{B(b,c-b)} \sum_{n=0}^{\infty} (a,n) B_p(b+n,c-b) \frac{x^n}{n!}}{\frac{1}{B(b,a-b)} \sum_{n=0}^{\infty} (a,n) B_p(b+n,a-b) \frac{x^n}{n!}}.$$

So the monotonicity of the function H(x) depends on the monotonicity of the sequence $\{\omega_n\}_{n\geq 0}$, defined by

$$\omega_n = \frac{B(b, a-b)}{B(b, c-b)} \frac{B_p(b+n, c-b)}{B_p(b+n, a-b)}.$$

Setting x = b + n + 1, $x_1 = b + n$, y = c - b, $y_1 = a - b$ in Theorem 2.1 of [7], we easily obtain

$$\frac{B_{p}(b+n+1,c-b)}{B_{p}(b+n+1,a-b)} \le \frac{B_{p}(b+n,c-b)}{B_{p}(b+n,a-b)}.$$

So, we have

$$\frac{\omega_{n+1}}{\omega_n} = \frac{B_{\rm p}(b+n+1,c-b)}{B_{\rm p}(b+n+1,a-b)} \frac{B_{\rm p}(b+n,a-b)}{B_{\rm p}(b+n,c-b)} \le 1.$$

in view of Lemma 2.1, the function H is decreasing for all $x \in (0,1)$. Therefore, we have $H(x) \ge H(1)$. Using (1.7) and the formula (8.5)

$$F_p(a, b; a; 1) = \frac{2 \exp(-2p)}{B(b, a - b)} k_b(2p)$$

in reference [5], we complete the proof.

Using completely similar method to Theorem 3.1, we easily obtain the following Theorem 3.2.

Theorem 3.2. Let $a,b,c \in \mathbf{R}, p \geq 0$ such that c > b > 0 and consider the function $I:(0,1)\mapsto (0,\infty),$ defined by $I(x)=\frac{F_p(a,b;c;x)}{F_p(a,b;a+b;x)}.$ Then the function I(x) is decreasing and

$$\frac{F_p(a,b;c;x)}{F_p(a,b;a+b;x)} \ge \frac{2^b B(b,c-a-b) B(b,a+b)}{B(b,c-b) \sqrt{\pi} p^{(b-1)/2} \exp(-2p) W_{-b/2,b/2}(2p)}$$
(3.2)

holds true for each other $x \in (0,1)$ where $W_{\mu,\kappa}$ is the Whittaker function[4].

Theorem 3.3. For c > b > 0 and $z^2 = x^2 + y^2$, then the following inequality holds:

$$\frac{B_p(b,c-b)}{B(b,c-b)} + F_p(a,b;c;z^2) \ge F_p(a,b;c;x^2) + F_p(a,b;c;y^2).$$
(3.3)

Proof. Suppose

$$f(x) = \frac{B(b, c-b)}{B_p(b, c-b)} F_p(a, b; c; x).$$

Applying Lemma 2.2, we only need prove that the function $\frac{f(x)-1}{x}$ is strictly increasing on $(0,\infty)$. The differentiation formula

$$\frac{d}{dx} \left(\frac{f(x) - 1}{x} \right) = \sum_{n=2}^{\infty} (a, n) \frac{B_{p}(b, c - b)}{B(b, c - b)} \frac{(n - 1)x^{n-2}}{n!} > 0$$

implies that the function $\frac{f(x)-1}{x}$ is increasing on $x \in (0,1)$. We complete the proof.

Theorem 3.4. For c > b > 0 and $x \in (0,1)$ fixed, then the function $p \mapsto F_p(a,b;c;x)$ is strictly completely monotonic on $p \in [0,\infty)$.

Proof. Since

$$(-1)^n \frac{d^n}{dp^n} \left(exp\left(-\frac{p}{t(1-t)} \right) \right) = \left(\frac{1}{t(1-t)} \right)^n exp\left(-\frac{p}{t(1-t)} \right) > 0,$$

we obtain that the function $e^{-\frac{p}{t(1-t)}}$ is completely monotonic on $p \in (0,\infty)$. This implies that the function $p \mapsto F_p(a,b;c;x)$ is completely monotonic on $p \in (0,\infty)$.

References

- [1] M. Abramowitz, I. Stegun, Handbook of mathematical functions with formulas, graphs and mathematical tables, National Bureau of Standards, Dover, New York, 1965.
- [2] Á. Baricz, Landen type inequalities for special functions, Proc. Amer. Math. Soc., 142(9) (2014) 3059-3066, http://arxiv.org/abs/1301.5255.
- [3] Á. Baricz, B.A. Bhayo, T.K. Pogány, Convexity properties of generalized trigonometric and hyperbolic functions, J. Math. Anal. Appl., 417 (2014), 244-259.
- [4] M.A. Chaudhry, A. Qadir, M. Rafique, S.M. Zubair, Extension of Euler's beta function, J. Comput. Appl. Math., 78 (1997), 19-32.
- [5] M.A. Chaudhry, A. Qadir, H.M. Srivastava, R.B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput., 159 (2004), 589-602.
- [6] A.R. Miller, Reduction of a generalized incomplete gamma function, related Kampedé Fériet functions, and incomplete Weber integrals, Rocky Mountain J. Math., 30 (2000), 703-714.
- [7] S. R. Mondal, Inequalities of extended beta and extended hypergeometric functions, J. Inequal. Appl., 2017 (2017)(1):10. http://arxiv.org/abs/1611.08423

¹DEPARTMENT OF MATHEMATICS, BINZHOU UNIVERSITY,

BINZHOU CITY, SHANDONG PROVINCE, 256603, CHINA *E-mail address*: yinli_79@163.com; yinli7979@163.com

 $E\text{-}mail\ address{:}\ \mathtt{liguoh1230sina.com}$