Turkish J. Ineq., 1 (1) (2017), Pages 10 —14 .

Turkish Journal of
INEQUALITIES

Available online at www.tjinequality.com

SOME FUNCTIONAL INEQUALITIES FOR EXTENDED
HYPERGEOMETRIC FUNCTION

L. YIN! AND L. G. HUANG!

ABSTRACT. In this paper, we obtain some functional inequalities for extended hypergeo-
metric function by using classical analysis and inequalities theory.

1. INTRODUCTION
For given complex numbers a, b and ¢ with ¢ # 0, —1, =2, ..., the Gaussian hypergeometric
function (GHF) is the analytic continuation to the slit place C\ [1,00) of the series
[e.9]
o) — oy = N (@) (b,n) 2"
F(a,b;c;2) = oF1(a,b;c;2) = ,;)WH’
Here (a,0) =1 for a # 0, and (a, n) is the shifted factorial function or the Appell symbol

(a,n) =ala+1)(a+2)---(a+n—1)

|z| < 1.

for n € Z4, see [1]. The integral representation of the hypergeometric function is given as
follows

MO e e
g e o

Re(c) > Re(a) > 0,|arg(l — z) < 7|.

By using the following integral representation of Euler’s beta function

F(a,b;c;2) =

1
B(z,y) :/0 t* 11 —t)y"dt, Re(x),Re(y) >0

and series expansion of (1 — zt)~% GHF can be expressed in terms of beta function as

follows
F(a,b;c;x) = %%(a,n)B(b—i—n,c—b)%, (1.2)

Re(c) > Re(b) > 0, |z| < 1.
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In 1997, Chaudhry et.al [4] introduced the following extended beta function (EBF)
By(z,y), defined as below

1
By(z,y) = /O 711 — £y TP/ (00 gy, (1.3)

Re(p), Re(x),Re(y) > 0.

Clearly for p = 0, this function coincides with the classical beta function. For the more
integral representation of this extended beta function B,(x,y) and properties, see [4,6].
On the basis of EBF, Chaudhry et.al [5] extended the GHF in 2004. We call it here
Extended Gauss hypergeometric function (EGHF), and by using (1.2) and (1.3) defined as
below
ING) > z"
_— B,(b —b)— 1.4
P(b)P(C— b) ngo(a”n) p( +n’c )n' ( )
n
B,(b+n,c—0b)a"
=2 (an) Blb,c—b) nl’

n=0

Fp(a,b; ;) =

p >0, Re(c) > Re(b) >0, |z| < 1.

For p = 0, EGHF coincides with GHF. By using (1.3), EGHF can written in the integral
representation form as follows

1 L c—b—1_—p/(t(1—-1) jfi (xt)"
Fp(a, b, C; ,I) = m /O t (1 — t) e p nzo(a, 'I’L)Tdt (15)
The above formula can be rewritten in the form as
1 1
Fyabiciz) = ——— [ " 11— )07 (1 — at) e P/ 0D gy 1.
p(a> ,C,.’E) B(b,c—b)/(] ( ) ( x ) € ) ( 6)

p >0, Re(c) > Re(b) > 0, |z| < 1.

For the more properties, transformation formulas in terms of other special functions and
integral representation of EGHF see [5].
Setting x = 1, we get the summation formula for EGHF as follows

By(b,c —a—b)
B(b,c—b)

which coincides with the Gauss’s summation formula for p = 0.

Fy(a,b;c;1) =

p>0, Re(c—a-—b)>0, (1.7)

2. LEMMAS

Lemma 2.1. [2, Lemma 1] Consider the power series f(x) = Y. apa™ and g(z) = Y bya”,
n>0 n>0
where a, € R and b, > 0 for all n € N\{0}, and suppose that both converge on (—r,r),r >
0. If the sequence {z—"} - is increasing(decreasing), then the function x +— % 18 increas-
mJn

ing(decreasing) too on (0,7).
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Lemma 2.2 ([3, Lemma 3, p246]). Let us consider the function f : (a,00) — R, where
a > 0. If the function g, defined by g(z) = L(f(x) — 1), is increasing on (a,c0), then for

the function h, defined by h(zx) = f(x?), we have the following Grinbaum type inequality
1 h(2) > hla) + h(y), (2.1)

where x,y > a and 2> = x> + y2. If the function g is decreasing, then the inequality (2.1)
is reversed.

3. MAIN RESULTS

Theorem 3.1. Let a,b,c € R,p > 0 such that ¢ > b > 0,a > b > 0 and consider the
function H : (0,1) — (0,00), defined by H(x) = % Then the function H(x) is
decreasing and

Fy(a,b;c;x) B(b,c —a—b)B(b,a — b)
Fp(a,b;a;2) — B(b,c — b)2exp(—2p)ky(2p)
holds true for each other x € (0,1) where k,(z) is the modified Bessel function.

> (3.1)

Proof. Applying the definition of extended hypergeometric function, we get

1N e
Fp(a, b’ c; CC) B B(b,c—b) nEZ:O ((Z, n)Bp(b +n,c b) -

Bpla.baiz) 1 S5 (4 n)By(b+n,a — b)Z:
X !

H(z) =

B,a-b) =

So the monotonicity of the function H(z) depends on the monotonicity of the sequence
{wn }n>0, defined by
~ B(b,a—0)By(b+n,c—b)
- B(b,c—b)By(b+n,a—b)’
Setting x = b+n+1,21 =b+n,y = ¢c—b,y1 = a— b in Theorem 2.1 of [7], we easily obtain
B(b+n+1,¢c—0) - Bp(b+n,c—0)
Bp(b+n+1,a—b) ~ Bp(b+n,a—0b)

Wn

So, we have
Wnp1  Bpb+n+1,c—b) By(b+n,a—b)
wn  Bp(b+n+1,a—0b)Bp(b+n,c—b)

<1
in view of Lemma 2.1, the function H is decreasing for all x € (0,1). Therefore, we have
H(xz) > H(1). Using (1.7) and the formula (8.5)

2exp(—2p)
Fy(a,b;a;1) = mkb(%)

in reference [5], we complete the proof. O

Using completely similar method to Theorem 3.1, we easily obtain the following Theorem
3.2.
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Theorem 3.2. Let a,b,c € R,p > 0 such that ¢ > b > 0 and consider the function

I:(0,1) (0,00), defined by I(z) = %. Then the function I(x) is decreasing and
Fy(a,b;c;x) - 2B(b,c —a — b)B(b,a + b)

Fy(a,bya+b;x) = B(b, ¢ — b)y/mpb=1/2 exp(—=2p)W_y /2. 1,/2(2p)

holds true for each other x € (0,1) where W, . is the Whittaker function[4].

(3.2)

Theorem 3.3. For ¢ > b >0 and 2> = 2% + 42, then the following inequality holds:

By(b,c—b)

B(b,c —b) + Fy(a,byc;2%) > Fyla,b;c;2%) + Fyla, b c;y?). (3.3)

Proof. Suppose

fla) = B(b,c —b)

=——"F/(a,b;c;x).
Bp(b,C—b) p(a7 70,.%')

Applying Lemma 2.2, we only need prove that the function % is strictly increasing on
(0,00). The differentiation formula

d (f(z)— 1> > B, (b,c —b) (n — 1)z 2
—_— _—_—m pr— 0
dx < T Z (a,n) B(b,c —b) n! ~
n=2
implies that the function % is increasing on z € (0,1). We complete the proof. ]

Theorem 3.4. For ¢ > b > 0 and z € (0,1) fized, then the function p — F,(a,b;c;x) is
strictly completely monotonic on p € [0,00).

Proof. Since

o)~ (i)

__p
we obtain that the function e -9 is completely monotonic on p € (0,00). This implies
that the function p — F,(a, b; ¢; z) is completely monotonic on p € (0, 00). O
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