Abstract. In this paper, by the use of Zhuang’s inequalities, we establish some reverse inequalities for the celebrated refinement of the Cauchy-Bunyakovsky-Schwarz inequality that was obtained by Callebaut in 1965. A numerical comparison is also provided.

1. Introduction

The following inequality

\[x^{1-\nu} y^\nu \leq (1 - \nu) x + \nu y \] \hspace{1cm} (1.1)

is well known in literature as either weighted Arithmetic mean-Geometric mean inequality or as Young’s inequality.

In 1991, Y.-D. Zhuang [14] established the following inequality for \(0 < m \leq x \leq M, 0 < k \leq y \leq K,\) and \(\nu \in [0,1]\)

\[\nu x + (1 - \nu) y \leq \max \left\{ \frac{\nu M + (1 - \nu) k}{M^\nu k^{1-\nu}}, \frac{\nu m + (1 - \nu) K}{m^\nu K^{1-\nu}} \right\} x^\nu y^{1-\nu} \] \hspace{1cm} (1.2)

or

\[x + y \leq \max \left\{ \frac{M + k}{M^\nu k^{1-\nu}}, \frac{m + K}{m^\nu K^{1-\nu}} \right\} x^\nu y^{1-\nu}. \] \hspace{1cm} (1.3)

The sign of equality in (1.2) and (1.3) holds if and only if either \((x, y) = (m, K)\) or \((x, y) = (M, k)\).

Moreover, if \(m \geq K\), then

\[\frac{\nu m + (1 - \nu) K}{m^\nu K^{1-\nu}} x^\nu y^{1-\nu} \leq \nu x + (1 - \nu) y \leq \frac{\nu M + (1 - \nu) k}{M^\nu k^{1-\nu}} x^\nu y^{1-\nu}. \] \hspace{1cm} (1.4)

The sign of inequality on the right-hand side of (1.4) holds if and only if \((x, y) = (M, k)\) and the sign of equality on the left-hand side of (1.4) holds if and only if \((x, y) = (m, K)\).

The sign of inequality in (1.4) is reversed if \(k \geq M\).

Key words and phrases. Young inequality, Hölder’s inequality, Schwarz’s inequality, Callebaut inequality, Discrete inequalities.

2010 Mathematics Subject Classification. 26D15, 26D10.

Received: 07.08.2017

Accepted: 18.12.2017.
Now, if we take \(y = 1 \), then we have from the above inequalities for \(x \in [m, M] \subset (0, \infty) \) and \(\nu \in [0, 1] \) that
\[
\nu x + 1 - \nu \leq \max \left\{ \frac{\nu M + 1 - \nu}{M^\nu}, \frac{\nu m + 1 - \nu}{m^\nu} \right\} x^\nu \tag{1.5}
\]
and
\[
x + 1 \leq \max \left\{ \frac{M + 1}{M^\nu}, \frac{m + 1}{m^\nu} \right\} x^\nu. \tag{1.6}
\]
If \(m \geq 1 \), then we have
\[
\frac{\nu m + 1 - \nu}{m^\nu} x^\nu \leq \nu x + 1 - \nu \leq \frac{\nu M + 1 - \nu}{M^\nu} x^\nu \tag{1.7}
\]
for \(x \in [m, M] \) and \(\nu \in (0, 1) \).
If \(M \leq 1 \), then we have
\[
\frac{\nu M + 1 - \nu}{M^\nu} x^\nu \leq \nu x + 1 - \nu \leq \frac{\nu m + 1 - \nu}{m^\nu} x^\nu, \tag{1.8}
\]
for \(x \in [m, M] \) and \(\nu \in (0, 1) \).

The inequalities (1.5), (1.7) and (1.8) can be put together as
\[
\begin{cases}
\frac{\nu M + 1 - \nu}{M^\nu} & \text{if } M < 1, \\
\nu m + 1 - \nu & \text{if } m \leq 1 \leq M, \\
\frac{\nu M + 1 - \nu}{M^\nu} & \text{if } 1 < m,
\end{cases}
\]
\[
1 \leq \frac{\nu x + 1 - \nu}{x^\nu}, \tag{1.9}
\]
for \(x \in [m, M] \subset (0, \infty) \) and \(\nu \in [0, 1] \).

The inequality
\[
1 \leq \frac{\nu x + 1 - \nu}{x^\nu}
\]
is the AG-inequality for \(y = 1 \).

We notice that the inequality (1.9) has been also obtained in [5] by a direct approach in studying the margins of the function \(g(x) := \frac{\nu x + 1 - \nu}{x^\nu} \) with \(x \in [m, M] \subset (0, \infty) \) and \(\nu \in [0, 1] \).

For other similar results, see [1] and [3]-[13].

The following refinement of the Cauchy-Bunyakovsky-Schwarz inequality was obtained by Callebaut [2] in 1965:
\[
\left(\sum_{i=1}^{n} p_i a_i b_i \right)^2 \leq \sum_{i=1}^{n} p_i a_i^{2(1-\nu)} b_i^{2\nu} \sum_{i=1}^{n} p_i a_i^{2\nu} b_i^{2(1-\nu)} \leq \sum_{i=1}^{n} p_i a_i^2 \sum_{i=1}^{n} p_i b_i^2. \tag{1.10}
\]

In this paper, by the use of Zhuang’s inequalities (1.2) and (1.3) we establish some upper bounds for the quotient
\[
\frac{\sum_{i \in I} p_i a_i^2}{\sum_{i \in I} p_i a_i^{2(1-\nu)} b_i^{2\nu}} \frac{\sum_{i \in I} p_i a_i^{2\nu} b_i^{2(1-\nu)}}{\sum_{i \in I} p_i a_i^{2(1-\nu)} b_i^{2\nu}} \sum_{i \in I} p_i a_i^2 \sum_{i \in I} p_i b_i^2
\]
under suitable conditions for the sequences \(a_k, b_k > 0 \) and \(p_k \geq 0, k \in \mathbb{N} \).
These results can be applied for operator inequalities as in [1], [5]-[7] and [9].

2. DISCRETE INEQUALITIES

We start with the following result:

Theorem 2.1. Let $a_k, b_k > 0, k \in \mathbb{N}$ and I, J be finite sets of indices such that

$$m \leq \frac{b_i}{a_i} \leq M \quad \text{and} \quad k \leq \frac{b_j}{a_j} \leq K$$

(2.1)

for some constants $0 < m < M, 0 < k < K$, for any $i \in I$ and $j \in J$. If $p_i \geq 0$ for $i \in I$, $q_j \geq 0$ for $j \in J$ and $\nu \in [0, 1]$, then we have the inequality

$$\nu \sum_{i \in I} p_i b_i^2 \sum_{j \in J} q_j a_j^2 + (1 - \nu) \sum_{i \in I} p_i a_i^2 \sum_{j \in J} q_j b_j^2$$

$$\leq \max \left\{ \frac{\nu M^2 + (1 - \nu) k^2}{M^{2\nu} k^{2(1 - \nu)}}, \frac{\nu m^2 + (1 - \nu) K^2}{m^{2\nu} K^{2(1 - \nu)}} \right\}$$

$$\times \sum_{i \in I} p_i a_i^{2(1 - \nu)} b_i^{2\nu} \sum_{j \in J} q_j a_j^{2\nu} b_j^{2(1 - \nu)}$$

and the inequality

$$\sum_{i \in I} p_i b_i^2 \sum_{j \in J} q_j a_j^2 + \sum_{i \in I} p_i a_i^2 \sum_{j \in J} q_j b_j^2$$

$$\leq \max \left\{ \frac{M^2 + k^2}{M^{2\nu} k^{2(1 - \nu)}}, \frac{m^2 + K^2}{m^{2\nu} K^{2(1 - \nu)}} \right\} \sum_{i \in I} p_i a_i^{2(1 - \nu)} b_i^{2\nu} \sum_{j \in J} q_j a_j^{2\nu} b_j^{2(1 - \nu)}.$$

(2.3)

Proof. If we write the inequality (1.2) for $x = \left(\frac{b_i}{a_i} \right)^2$ and $y = \left(\frac{b_j}{a_j} \right)^2$, then we get

$$\nu \left(\frac{b_i}{a_i} \right)^2 + (1 - \nu) \left(\frac{b_j}{a_j} \right)^2$$

$$\leq \max \left\{ \frac{\nu M^2 + (1 - \nu) k^2}{M^{2\nu} k^{2(1 - \nu)}}, \frac{\nu m^2 + (1 - \nu) K^2}{m^{2\nu} K^{2(1 - \nu)}} \right\} \left(\frac{b_i}{a_i} \right)^{2(1 - \nu)} \left(\frac{b_j}{a_j} \right)^{2\nu}$$

(2.4)

for any $i \in I$ and $j \in J$.

By multiplying (2.4) with $a_i^2 a_j^2 \geq 0$ we get

$$\nu b_i^2 a_j^2 + (1 - \nu) a_i^2 b_j^2$$

$$\leq \max \left\{ \frac{\nu M^2 + (1 - \nu) k^2}{M^{2\nu} k^{2(1 - \nu)}}, \frac{\nu m^2 + (1 - \nu) K^2}{m^{2\nu} K^{2(1 - \nu)}} \right\} a_i^{2(1 - \nu)} b_i^{2\nu} a_j^{2\nu} b_j^{2(1 - \nu)}$$

(2.5)

for any $i \in I$ and $j \in J$.

Multiply the inequality (2.5) by $q_j \geq 0$ and sum over $j \in J$ to get

$$\nu b_i^2 \sum_{j \in J} q_j a_j^2 + (1 - \nu) a_i^2 \sum_{j \in J} q_j b_j^2$$

$$\leq \max \left\{ \frac{\nu M^2 + (1 - \nu) k^2}{M^{2\nu} k^{2(1 - \nu)}}, \frac{\nu m^2 + (1 - \nu) K^2}{m^{2\nu} K^{2(1 - \nu)}} \right\} a_i^{2(1 - \nu)} b_i^{2\nu} \sum_{j \in J} q_j a_j^{2\nu} b_j^{2(1 - \nu)}$$

(2.6)
for any $i \in I$. If we multiply (2.6) by $p_i \geq 0$ and sum over $i \in I$, we get the desired inequality (2.2).

By the inequality (1.3) for $x = \left(\frac{b_i}{a_i}\right)^2$ and $y = \left(\frac{b_j}{a_j}\right)^2$ we have

$$\left(\frac{b_i}{a_i}\right)^2 + \left(\frac{b_j}{a_j}\right)^2 \leq \max \left\{ \frac{M^2 + k^2}{M^{2\nu}k^{2(1-\nu)}}, \frac{m^2 + K^2}{m^{2\nu}K^{2(1-\nu)}} \right\} \left(\frac{b_i}{a_i}\right)^{2\nu} \left(\frac{b_j}{a_j}\right)^{2(1-\nu)} \tag{2.7}$$

for any $i \in I$ and $j \in J$. On making use of a similar argument as above, we deduce (2.3). \hfill \square

Corollary 2.1. Let $a_k, b_k > 0, k \in \mathbb{N}$ and I be a finite set of indices such that

$$m \leq \frac{b_i}{a_i} \leq M \tag{2.8}$$

for some constants $0 < m < M$ and any $i \in I$. If $p_i \geq 0$ for $i \in I$ and $\nu \in [0,1]$, then we have the inequality

$$\frac{\sum_{i \in I} p_i b_i^2}{\sum_{i \in I} p_i a_i^2} \sum_{i \in I} p_i a_i^2 \leq \max \left\{ \frac{\nu M^2 + (1 - \nu) m^2}{M^{2\nu}m^{2(1-\nu)}}, \frac{\nu m^2 + (1 - \nu) M^2}{m^{2\nu}M^{2(1-\nu)}} \right\} \tag{2.9}$$

and the inequality

$$\frac{\sum_{i \in I} p_i b_i^2}{\sum_{i \in I} p_i a_i^2} \sum_{i \in I} p_i a_i^2 \leq \frac{M^2 + m^2}{2} \max \left\{ \frac{1}{M^{2\nu}m^{2(1-\nu)}}, \frac{1}{m^{2\nu}M^{2(1-\nu)}} \right\} \tag{2.10}$$

The inequalities (2.9) and (2.10) therefore provide multiplicative reverses of the second Callebaut inequality (1.10).

The following result also holds:

Theorem 2.2. Let $a_k, b_k > 0, k \in \mathbb{N}$ and I be a finite set of indices such that

$$a \leq a_i \leq A, b \leq b_i \leq B \tag{2.11}$$

for some constants $0 < a < A, 0 < b < B$ and any $i \in I$. If $w_i \geq 0$ for $i \in I$ with $\sum_{i \in I} w_i = 1$ and $\nu \in [0,1]$, then we have the inequality

$$\frac{\left(\sum_{i \in I} w_i a_i^2\right)^{1-\nu} \left(\sum_{i \in I} w_i b_i^2\right)^{\nu}}{\sum_{j \in I} w_j a_j^{2\nu} b_j^{2(1-\nu)}} \leq \max \left\{ \frac{\nu A^2B^2 + (1 - \nu) a^2b^2}{A^{2\nu}a^{2(1-\nu)}B^{2\nu}b^{2(1-\nu)}}, \frac{\nu a^2b^2 + (1 - \nu) A^2B^2}{A^{2(1-\nu)}a^{2\nu}B^{2(1-\nu)}b^{2\nu}} \right\} \tag{2.12}$$
and the inequality
\[
\frac{\left(\sum_{i \in I} w_i a_i^2\right)^\nu \left(\sum_{i \in I} w_i b_i^2\right)^{1-\nu}}{\sum_{j \in I} w_j a_j^{2\nu} b_j^{1-\nu}} \leq \frac{A^2 B^2 + a^2 b^2}{2} \times \max \left\{ \frac{1}{A^{2\nu} a^{2(1-\nu)} B^{2\nu} b^{2(1-\nu)}}, \frac{1}{A^{2(1-\nu)} a^{2\nu} B^{2(1-\nu)} b^{2\nu}} \right\}.
\]
(2.13)

Proof. Let \(x = \frac{a^2}{\sum_{i \in I} w_i a_i^2} \) and \(y = \frac{b^2}{\sum_{i \in I} w_i b_i^2} \) for \(j \in I \), then we get
\[
a^2 \leq x \leq \frac{A^2}{a^2}, \quad j \in I
\]
and
\[
b^2 \leq y \leq \frac{B^2}{b^2}, \quad j \in I.
\]

If we write the inequality (1.2) for \(x \) and \(y \) as above, then we get
\[
\nu \frac{a_j^2}{\sum_{i \in I} w_i a_i^2} + (1 - \nu) \frac{b_j^2}{\sum_{i \in I} w_i b_i^2} \leq \max \left\{ \frac{\nu A^2 + (1 - \nu) \frac{b_j^2}{b^2}}{\left(\frac{A^2}{a^2}\right)^\nu \left(\frac{b^2}{b^2}\right)^{1-\nu}}, \frac{\nu a^2 + (1 - \nu) \frac{b_j^2}{a^2}}{\left(\frac{a^2}{a^2}\right)^\nu \left(\frac{b^2}{b^2}\right)^{1-\nu}} \right\}
\times \frac{a_j^{2\nu}}{\left(\sum_{i \in I} w_i a_i^2\right)^\nu} \left(\sum_{i \in I} w_i b_i^2\right)^{1-\nu}
\]
for any \(j \in I \).

Since
\[
\frac{\nu A^2 + (1 - \nu) \frac{b_j^2}{b^2}}{\left(\frac{A^2}{a^2}\right)^\nu \left(\frac{b^2}{b^2}\right)^{1-\nu}} = \frac{\nu A^2 B^2 + (1 - \nu) a^2 b^2}{A^{2\nu} a^{2(1-\nu)} B^{2\nu} b^{2(1-\nu)}}
\]
and
\[
\frac{\nu a^2 + (1 - \nu) \frac{b_j^2}{a^2}}{\left(\frac{a^2}{a^2}\right)^\nu \left(\frac{b^2}{b^2}\right)^{1-\nu}} = \frac{\nu a^2 b^2 + (1 - \nu) A^2 B^2}{A^{2(1-\nu)} a^{2\nu} B^{2(1-\nu)} b^{2\nu}},
\]
then by (2.14) we have
\[
\nu \frac{a_j^2}{\sum_{i \in I} w_i a_i^2} + (1 - \nu) \frac{b_j^2}{\sum_{i \in I} w_i b_i^2} \leq \max \left\{ \frac{\nu A^2 B^2 + (1 - \nu) a^2 b^2}{A^{2\nu} a^{2(1-\nu)} B^{2\nu} b^{2(1-\nu)}}, \frac{\nu a^2 b^2 + (1 - \nu) A^2 B^2}{A^{2(1-\nu)} a^{2\nu} B^{2(1-\nu)} b^{2\nu}} \right\}
\times \frac{a_j^{2\nu}}{\left(\sum_{i \in I} w_i a_i^2\right)^\nu} \left(\sum_{i \in I} w_i b_i^2\right)^{1-\nu}
\]
for any \(j \in I \).
If we multiply (2.15) by w_j and sum, then we get
\[
\sum_{j \in I} \frac{w_j a_j^2}{\sum_{i \in I} w_i a_i^2} + (1 - \nu) \sum_{j \in I} \frac{w_j b_j^2}{\sum_{i \in I} w_i b_i^2}
\leq \max \left\{ \frac{\nu A^2 B^2 + (1 - \nu) a^2 b^2}{A^{2 \nu} a^{2(1 - \nu)} B^{2 \nu} b^{2(1 - \nu)}}, \frac{\nu a^2 b^2 + (1 - \nu) A^2 B^2}{A^{2(1 - \nu)} a^{2 \nu} B^{2(1 - \nu)} b^{2 \nu}} \right\}
\times \frac{\sum_{j \in I} w_j a_j^{2\nu} b_j^{2(1 - \nu)}}{(\sum_{i \in I} w_i a_i^2) \nu (\sum_{i \in I} w_i b_i^2) \nu}
\]
that is equivalent to (2.12).

By the inequality (1.3) we also have
\[
\sum_{i \in I} w_i a_i^2 + \sum_{i \in I} w_i b_i^2 \leq \max \left\{ \frac{A^2}{\alpha^2} + \frac{\nu^2}{\beta^2}, \frac{A^2}{\alpha^2} \nu \left(\frac{\nu^2}{\beta^2} \right)^{1 - \nu}, \frac{A^2}{\alpha^2} \nu \left(\frac{\nu^2}{\beta^2} \right)^{1 - \nu} \right\}
\times \frac{a_j^{2\nu} b_j^{2(1 - \nu)}}{(\sum_{i \in I} w_i a_i^2) \nu (\sum_{i \in I} w_i b_i^2) \nu}
\]
for any $j \in I$ and since
\[
\max \left\{ \frac{A^2}{\alpha^2} + \frac{\nu^2}{\beta^2}, \frac{A^2}{\alpha^2} \nu \left(\frac{\nu^2}{\beta^2} \right)^{1 - \nu}, \frac{A^2}{\alpha^2} \nu \left(\frac{\nu^2}{\beta^2} \right)^{1 - \nu} \right\}
= \left(A^2 B^2 + a^2 b^2 \right)
\times \max \left\{ \frac{1}{A^{2 \nu} a^{2(1 - \nu)} B^{2 \nu} b^{2(1 - \nu)}}, \frac{1}{A^{2(1 - \nu)} a^{2 \nu} B^{2(1 - \nu)} b^{2 \nu}} \right\},
\]
then by (2.16) we get
\[
\sum_{j \in I} \frac{w_j a_j^2}{\sum_{i \in I} w_i a_i^2} + \sum_{j \in I} \frac{w_j b_j^2}{\sum_{i \in I} w_i b_i^2} \leq \left(A^2 B^2 + a^2 b^2 \right)
\times \max \left\{ \frac{1}{A^{2 \nu} a^{2(1 - \nu)} B^{2 \nu} b^{2(1 - \nu)}}, \frac{1}{A^{2(1 - \nu)} a^{2 \nu} B^{2(1 - \nu)} b^{2 \nu}} \right\}
\times \frac{a_j^{2\nu} b_j^{2(1 - \nu)}}{(\sum_{i \in I} w_i a_i^2) \nu (\sum_{i \in I} w_i b_i^2) \nu}
\]
for any $j \in I$.

If we multiply (2.17) by w_j and sum, then we get the desired result (2.13).
Remark 2.1. With the assumptions of Theorem 2.2 we have the Callebaut reverse inequalities
\[
\sum_{i \in I} w_i a_i^2 \sum_{i \in I} w_i b_i^2 \\
\sum_{j \in I} w_j a_j^{2(1-\nu)} \sum_{j \in I} w_j a_j^{2(1-\nu)} b_j^{2\nu}
\leq \max \left\{ \frac{\nu A^2 B^2 + (1-\nu) a^2 b^2}{A^{4\nu} a^{4(1-\nu)} B^{4\nu} b^{4(1-\nu)}}, \frac{\nu a^2 b^2 + (1-\nu) A^2 B^2}{A^{4(1-\nu)} a^{4\nu} B^{4(1-\nu)} b^{4\nu}} \right\}
\]
(2.18)

and
\[
\sum_{i \in I} w_i a_i^2 \sum_{i \in I} w_i b_i^2 \\
\sum_{j \in I} w_j a_j^{2(1-\nu)} \sum_{j \in I} w_j a_j^{2(1-\nu)} b_j^{2\nu}
\leq \frac{A^2 B^2 + a^2 b^2}{2} \times \max \left\{ \frac{1}{A^{4\nu} a^{4(1-\nu)} B^{4\nu} b^{4(1-\nu)}}, \frac{1}{A^{4(1-\nu)} a^{4\nu} B^{4(1-\nu)} b^{4\nu}} \right\}.
\]
(2.19)

Indeed, by the inequality (2.12) for \(1-\nu\) instead of \(\nu\) we have
\[
\left(\sum_{i \in I} w_i a_i^2\right)^{1-\nu} \left(\sum_{i \in I} w_i b_i^2\right)^{\nu}
\sum_{j \in I} w_j a_j^{2(1-\nu)} b_j^{2\nu}
\leq \max \left\{ \frac{(1-\nu) A^2 B^2 + \nu a^2 b^2}{A^2 b^2 a^2(1-\nu) b^{2(1-\nu)}}, \frac{(1-\nu) a^2 b^2 + \nu A^2 B^2}{A^2 a^2(1-\nu) B^{2(1-\nu)} b^2} \right\}.
\]
(2.20)

If we multiply (2.12) with (2.20) we obtain (2.18).

The inequality (2.19) follows in a similar way by (2.13) and the details are omitted.

The inequalities from (2.19) and (2.20) can be however improved as follows:

Theorem 2.3. Let \(a_k, b_k > 0, k \in \mathbb{N}\) and \(I\) a finite set of indices such that the inequality (2.11) is valid for some constants \(0 < a < A, 0 < b < B\) for any \(i \in I\). If \(w_i \geq 0\) for \(i \in I\) with \(\sum_{i \in I} w_i = 1\) and \(\nu \in [0, 1]\), then we have the inequalities
\[
\sum_{i \in I} w_i a_i^2 \sum_{i \in I} w_i b_i^2 \\
\sum_{j \in I} w_j a_j^{2(1-\nu)} \sum_{j \in I} w_j a_j^{2(1-\nu)} b_j^{2\nu}
\leq \max \left\{ \frac{\nu A^2 B^2 + (1-\nu) a^2 b^2}{A^{2\nu} B^{2\nu} a^{2(1-\nu)} b^{2(1-\nu)}}, \frac{\nu a^2 b^2 + (1-\nu) A^2 B^2}{a^{2\nu} b^{2\nu} A^{2(1-\nu)} B^{2(1-\nu)}} \right\}
\]
(2.21)

and
\[
\sum_{i \in I} w_i a_i^2 \sum_{i \in I} w_i b_i^2 \\
\sum_{j \in I} w_j a_j^{2(1-\nu)} \sum_{j \in I} w_j a_j^{2(1-\nu)} b_j^{2\nu}
\leq \frac{A^2 B^2 + a^2 b^2}{2} \times \max \left\{ \frac{1}{A^{2\nu} B^{2\nu} a^{2(1-\nu)} b^{2(1-\nu)}}, \frac{1}{a^{2\nu} b^{2\nu} A^{2(1-\nu)} B^{2(1-\nu)}} \right\}.
\]
(2.22)
Proof. Let \(x = a_i^2 b_j^2 \) and \(y = a_j^2 b_i^2 \) for \(i, j \in I \). Then by the condition (2.11) we have
\[
a^2 b^2 \leq x \leq A^2 B^2 \text{ and } a^2 b^2 \leq y \leq A^2 B^2.
\]
By the inequalities (1.2) and (1.3) we have
\[
\nu a_i b_j^2 + (1 - \nu) a_j^2 b_i^2 \leq \max \left\{ \frac{\nu A^2 B^2 + (1 - \nu) a^2 b^2}{(A^2 B^2)^\nu (a^2 b^2)^{1-\nu}}, \frac{\nu a^2 b^2 + (1 - \nu) A^2 B^2}{(a^2 b^2)^\nu (A^2 B^2)^{1-\nu}} \right\} \times (a_i^2 b_j^2)^\nu (a_j^2 b_i^2)^{1-\nu} \times a_i^2 b_i^2 \leq \left(A^2 B^2 + a^2 b^2 \right)
\]
and
\[
a_j^2 b_j^2 + a_i^2 b_i^2 \leq \left(A^2 B^2 + a^2 b^2 \right)
\]
for \(i, j \in I \).

If we multiply (2.23) and (2.24) by \(w_i w_j \) and sum over \(i, j \in I \) we get the desired inequalities (2.21) and (2.22).

\[\square\]

3. A Numerical Comparison

We consider the Kantorovich’s ratio defined by
\[
K(h) := \frac{(h + 1)^2}{4h}, \quad h > 0.
\]
The function \(K \) is decreasing on \((0, 1)\) and increasing on \([1, \infty)\), \(K(h) \geq 1 \) for any \(h > 0 \) and \(K(h) = K \left(\frac{1}{h} \right) \) for any \(h > 0 \).

The following multiplicative reverse of Young inequality in terms of Kantorovich’s ratio holds
\[
(1 - \nu) a + \nu b \leq K^R \left(\frac{a}{b} \right) a^{1-\nu} b^\nu,
\]
where \(a, b > 0, \nu \in [0, 1] \) and \(R = \max \{1-\nu, \nu\} \).

This inequality was obtained by Liao et al. [11].

In [8] the first author obtained the following reverse of Callebaut inequality
\[
\frac{\sum_{i \in I} p_i b_i^2}{\sum_{i \in I} p_i a_i^2} \leq K^\text{max\{\nu, 1-\nu\}} \left(\frac{M}{m} \right)^2
\]
where \(a_k, b_k > 0, k \in \mathbb{N} \) and \(I \) a finite set of indices such that the condition (2.8) is valid for some constants \(0 < m < M \) and any \(i \in I, w_i \geq 0 \) for \(i \in I \) with \(\sum_{i \in I} w_i = 1 \) and \(\nu \in [0, 1] \).
From (2.9), (2.10) and (3.3) we have the following upper bounds for the quotient

\[
\frac{\sum_{i \in I} p_i b_i^2}{\sum_{i \in I} p_i a_i^2} \leq B_1 (m, M, \nu), \ B_2 (m, M, \nu), \ B_3 (m, M, \nu)
\]

where

\[
B_1 (m, M, \nu) := \max \left\{ \frac{\nu M^2 + (1 - \nu) m^2}{M^{2\nu} m^{2(1 - \nu)}}, \frac{\nu m^2 + (1 - \nu) M^2}{m^{2\nu} M^{2(1 - \nu)}} \right\},
\]

\[
B_2 (m, M, \nu) := \frac{M^2 + m^2}{2} \max \left\{ \frac{1}{M^{2\nu} m^{2(1 - \nu)}}, \frac{1}{m^{2\nu} M^{2(1 - \nu)}} \right\},
\]

and

\[
B_3 (m, M, \nu) := K^{\max\{\nu,1-\nu\}} \left(\frac{M}{m} \right)^2.
\]

Here \(0 < m \leq M < \infty\) and \(\nu \in [0,1]\).

For \(m = 1\), we consider the differences

\[
D_1 (M, \nu) : = B_1 (1, M, \nu) - B_2 (1, M, \nu),
\]

\[
D_2 (M, \nu) : = B_3 (1, M, \nu) - B_1 (1, M, \nu),
\]

\[
D_3 (M, \nu) : = B_3 (1, M, \nu) - B_2 (1, M, \nu)
\]

for \(M \geq 1\) and \(\nu \in [0,1]\).

The plots of the differences \(D_1 (M, \nu), \ D_2 (M, \nu)\) and \(D_3 (M, \nu)\) in the box \([1, 3] \times [0, 1]\) are depicted in Figures 1, 2 and 3 below. They show that in (3.4) the bound \(B_1\) is better than \(B_3\) that is better than \(B_2\).

Problem 1. Is the following inequality

\[
B_1 (m, M, \nu) \leq B_3 (m, M, \nu) \leq B_2 (m, M, \nu)
\]

valid for any \(0 < m \leq M < \infty\) and \(\nu \in [0,1]\)?
Figure 1. Plot of $D_1(M, \nu)$ in $[1, 3] \times [0, 1]$

Figure 2. Plot of $D_2(M, \nu)$ on $[1, 3] \times [0, 1]$

Figure 3. Plot of $D_3(M, \nu)$ on $[1, 3] \times [0, 1]$
Acknowledgements. The authors would like to thank the anonymous referees for their valuable suggestions that have been implemented in the final version of the paper.

References

1Mathematics, School of Engineering & Science
Victoria University,
PO Box 14428, Melbourne City, MC 8001, Australia
E-mail address: Sever.Dragomir@vu.edu.au
E-mail address: Alasdair.McAndrew@vu.edu.au
URL: http://rgmia.org/dragomir

2School of Computer Science & Applied Mathematics
University of the Witwatersrand,
Private Bag 3, Johannesburg 2050, South Africa