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PARAMETERIZED HERMITE-HADAMARD TYPE INEQUALITIES
FOR FRACTIONAL INTEGRALS

M. ADIL KHAN! AND T.U. KHAN!

ABSTRACT. The paper presents Hermite-Hadamard type inequalities, which involve Rie-
mann-Liouville fractional integrals and contain an arbitrary parameter from the interval
of definition of twice differentiable convex and concave functions.

1. INTRODUCTION

Fractional calculus is the notion of integrals and derivatives of arbitrary order, which is
the generalization of integer-order differentiation and n-fold integration. The beginning of
fractional calculus is considered to be the correspondence between L’Hospital and Leibniz
in 1695, where the idea for differentiation of non-integer orders was discussed [9]. This
correspondence gave birth to the idea of fractional calculus. Further contributions in this
area were made by Euler, Laplace, Fourier, Abel, Liouville, Riemann, Grunwald, Letnikov,
Hadamard, Weyl, Riesz, Marchaud, Kober and Caputo [2,9,20-22]. Fractional calculus
plays an important role in various fields such as Electricity, Biology, Economics, Signal and
Image Processing.

The following definition is well-known in the literature and is widely used:

Definition 1.1. A function ¢ : I — R, defined on the interval I in R, is said to be convex
on [ if

Clpmi+ (1 = p)12) < p¢(11) + (1 = p)((T2), (1.1)

for all 7,79 € I and 0 < p < 1. Also we say that ( is concave on I, if the inequality given
n (1.1) holds in the reverse direction.

Corresponding to the definition of convex functions the following double inequality has
played a very important role in various fields of science.
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Theorem 1.1. Let ¢ be a convex function. Then for 11,179 € I with 71 < T9, £ € [11,T2] we
have:

¢(252) < /mc(s)dggw. (1.2)

2 T2 — T1 2
T1

The order of inequality in (1.2) is reversed if ¢ is concave. This inequality is the widely
used Hermite-Hadamard inequality, which gives an estimate from both sides of the mean i.e.
from above and below of the mean value of a convex function and ensures the integrability
of any convex function too. For more information about the Hermite-Hadamard inequality,
the interested readers can see [1,4-8,12-15,23,24].

We recall the definition of Riemann-Liouville (R-L) fractional integrals which we will use
in further results:

Definition 1.2 ([9]). Let ¢ € L;[r, 2] with 71 > 0. The Riemann-Liouville (R-L) fractional
integral operators JerC and J;’,C of order n > 0 are defined by:

9
1
TC(©) =—/5 PTC(p)dp, with  £>m
I'(n)
and
1
J77 ——/p O (p)dp, with € < m.
I'(n) J

Here, I'(n) represents the Gamma function given by:
o0
I'(n) = /e_“u”_ldu.

0
Here J%.¢(€) = J°_¢(¢) = ((¢). When 1 = 1, the R-L fractional integrals reduce to
5 T2

Riemann integrals.

E. Set [10] firstly examined Ostrowski type inequalities involving R-L fractional integrals.
Also, Sarikaya et al. [12] studied the fractional form of the inequality (1.2). For other of-late
applications of fractional derivatives and fractional integrals, one can see [3,4,8,11,13-19].
The fractional form of Hermite-Hadamard inequality is given below. We will design new
bounds for the difference of rightmost terms in this inequality.

Theorem 1.2 ([12]). Let ¢ : [11,72] — R be a positive function with 0 < 7 < 1o and
¢ € Li[m,m). If ¢ is convex function on [r1,7s|, then the following inequality for R-L
fractional integrals holds:

C<7'1+7'2> < L(n+1)

((m) +¢(72)
2 2(’7’2—7’1)77 ’

2

T84 C(m) + T, C(m)] < (1.3)

Remark 1.1. By replacing n = 1 in (1.3), we get the inequality (1.2).
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The following result is due to Sarikaya et al. [12], which contains a differentiable convex
function. In this result the difference of rightmost terms in inequality (1.3) was bounded.

Theorem 1.3 ([12]). Let ¢ : I C R — R be a twice differentiable function on I° (the
interior of 1) such that 11,79 € I° with 71 < 9. If |{'| is convex function on [r1, 73], then
the following inequality for fractional integrals holds:

C(T)+C(T) P(n+1) (T _T) 1 / /
TSmO T >Hfﬁ<1—2—n> [¢(m) +¢'(72)].

In [7], Yu ming chu et al. have discovered an integral identity involving R-L fractional
integrals, which is given below:

Lemma 1.1. Let ¢ : I C [0,00) — R be a twice differentiable function on I°, such that
T, 7o € I° with 7y < 9. If (" € Ly[ry, 1], then for n >0, 0 € [11, ] the following identity
holds:
C’(a) ((9 — 7’1)77-1-1 — (1o — 9)77+1) +(m+1)¢(r2) (2 — )"+ (n+ 1) (11)(0 — 71)"
(n+ 1)(7'2 — 1)

1

n+2 1
e [ 0= s 1= o
0

T(n+1) 0—m)

(12 —71)

IO+ 7 ¢(6)| =

(7'2 - Q)TH-? /1 +1\ A1
(1 —p" ) "(pr2+ (1 = p)f)dp.
0

(n+1)(r2 —71)
(1.4)

Here, in the current paper, we deduce some parameterized inequalities of Hermite-Hada-
mard type via R-L fractional integrals (see Theorems 2.1,2.2,2.3,2.5,2.4). The novelty of
these results is that they contain an arbitrary parameter 6 from the interval of definition
of twice differentiable convex or concave functions. Further more when the parameter 0 is
replaced by the midpoint of the interval we get different bounds for the trapezoidal formula.

2. MAIN RESULTS

Before giving our main results we introduce some notations for the sake of simplifications.
Let ¢ : I C [0,00) — R be a twice differentiable function on I° and 71,79 € I° with 7 < 7.
If ¢" € Ly[r1, 7] (|¢"| is integrable on |11, 72]), then for all § € [r1, 73] and n > 0, we define
L by:

LC((g? 7,71, TZ)
C00) (0 = 7)™ — (1 = 0)"™1) + (5 VC(ra) m2 = 6)7 -+ (4 DC(r)(0 — 1)
(n+1)(r2 — 1)

TLC(0) + TC(0)]

Tin+1)
(r2 — 1)



PARAMETERIZED HERMITE-HADAMARD TYPE INEQUALITIES FOR FRACTIONAL INTEGRALS 29

For 0 = THQ'Q, we have

L¢ (7—1 +72,77,71,7-2) — (72 _Tl)n_l ¢(m1) + ((m2)

2 2 2

T e ()~ e (5]

and by putting n = 1 in this, we get

T2

LC (7—1 + 7—271’7_177_2) _ C(Tl) + C(7—2) _ 1 /C(G)d@,

2 2 T2 — T1
T1

which is the difference between the two right most terms in (1.2) or the celebrated trape-
zoidal formula term.
Now we find out our first parameterized bound.

Theorem 2.1. Let all the requisites of Lemma 1.1 hold. Additionally, if |C"| is convex
function on 11,72, then we have:
[ L¢(0,m,71,72)]
_ 6= (I )] + O] + (2 = )™ [¢"(72)] + 1" O)]
- 2(ro — 11)(n+3) '

(2.1)

Proof. Using Lemma 1.1, well known triangle inequality and convexity of |¢”|, we have

(6 — 7p)"t2

ot D7) (1= p™ )¢ (o1 + (1= p)0)|dp

—_—

|LC(97 n,71, 7—2)| S

(13 — O)1+2
(n+1)(r2 —7)

(1= p™ )" (pr2 + (1 = p)B)|dp

(9 — 7'1)77+2
T+ (2 — 1)

(1= 0") [l ()| + (1 = p)I¢"(0)]]

(’7’2 — 9)""’2
(n+1)(r2 —71)

0
_ _Tl 77+2 |:( 1+ ) ’CH )’ + ( (77+4)(77+ 1) ) ‘C”(‘g)‘:|
|
)

(1= p7) [l ()l + (1 = p)IC"(O)]) d

(77+1 )2 — 1) L\2(n+3) 2(n+3)(n +2)
5 — 0)1+2 n+1 y m+4)(n+1) "
e |z rm) e+ (o vay) @]

(0 = 7)™ [|¢"(7)] + ZIC"(O)]] + (ra = )72 [¢"(m2)] + 51" (0) ]
2(re — 11)(n +3) '
The proof is completed. O]
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Corollary 2.1. Under the hypothesis of Theorem 2.1, we get

_ n+1 |1 "
‘Lc (m,m,ﬁ) < (TQ n) " ()| +1¢" ()|
2 201 +2)

; (2.2)

Proof. If we put 0 = 71‘2”2 in inequality (2.1) and use the convexity of |¢”|, we get the
desired inequality. O

The associated versions for powers of the second derivative absolute values of the function
are included in the following theorems.

Theorem 2.2. Let all the requisites of Lemma 1.1 hold. Additionally, if |¢"|° is convex
function on [r1, 73] for s > 1 and r=' + s~! =1, then we have the following inequality:

1

|Lc(0,m,m, 7)< (%)S(UHJ)‘{;_Tl)[(g_ﬁ)m(|<”(71)|3+|<”(9)|s)5
+(r2 = 02 (I () + "0 7 ], (2.3)
where
L(1+ )T (7)

T DT+ L)

Proof. Using Lemma 1.1, triangle and Holder inequalities, we have

(6 — 7p)"t2
(n+1)(r2 —71)

\Le(0,m,71,72)| < (1= p"™H)¢"(pr1 + (1= p)0)|dp

(12 — )72
(n+1)(r2 —71)

O\H o _

(1= p" " (pr2 + (1= p)0)|dp
_ )

1 T

77 1 "( or _ s
(n+1 Ty — 1) (0/ " ) (O/IC (pr1+ (1 —p)d)| dp)
(12 — O)7+2 1 :
e {fe-sref (oo

‘ s

77+2

S

Using the convexity of |[¢"]*, we get

1

1
J1¢"en+ =)o) Fdp < [(p1¢"(m) I +(1=p) [C"O) ) dp

0 0
<" (r)I* + [€"(O)I°
5 :
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Similarly
1

1
J1¢"en+@=po) dp < [(p1¢"m) 1 +(=p) ["O) ) dp
0
|

A

0

@)l + KO

also
i 1 T(L+ ) ()
1
/(1—p"+1)rdp = —1/um_1(1—u)rdu: tl = M.
) n+1) (n+DTA+7+ )
Combining all the above inequalities, we have the conclusion (2.3). ]

Corollary 2.2. Under the hypothesis of Theorem 2.2, we have
1 1
T1 + T2 1\s M~ Ty — 1\
L < (=
’ 4( 2 ”7’71’72)’— (2) 2(77+1)( 2 )
o L
% [<|<I/(Tl)|s+ CI/ <7—1;_7-2) )
(et e (2]

n—“)mlmwﬁn+K%wn
2 2(n+1) '

Proof. In inequality (2.3), if we take § = ”Tm, we get the first bound in (2.4). The second
bound in (2.4) can be obtained by using the convexity of [¢”|® and the fact that:

1 p p
Z Ty + yy)” Z +>
v=1 v=1 v=1

for 0 <w <1and x;,y; >0, where i = 1,2, ... O

-

< M-+ ( (2.4)

A more general parameterized bound can be prolonged in the following Theorem.

Theorem 2.3. Let all the requisites of Lemma 1.1 hold. Additionally, if |¢"|° is convex
function on [Ty, 19| for s > 1, then we have the following inequality:

!Lc(é’,n,ﬁ,w)!

1

77+2)s %
<n+1 n+1 ., s m+EYHM+D) | s
>~ (77+2)(72 _7'1) [(0_71)U+2 (mK (7'1)| + WK (9)| )

n+1 I s n+4)n+1) s ‘
+(1p — )72 <m’§ (m2)] +WK (0)] ) ] (2.5)
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Proof. Using Lemma 1.1 and Power mean-inequality, we have

| Le(0,m, 71, 72)|

1
_7'1 77+2 77""1 //
77+1 e 0/(1 ) [¢ (o1 + (1= p)0)dp
1
7.2_ n+2
o rnm ] () o+ (= ol
0

1

_ 1
—T1 77+2 i 77""1 ) / n+1 " s !
< 77+1 p— / )dp /(1—,0 )IC (pm1+ (1= p)0)|°dp

0 0
1 1= 1
Ty — 77+2 B
T (/ dﬂ) (/ (1) <o (1= 90 dp)
0 0

@ =

1
s

(2.6)

since |¢"]* is convex function on [r1, 73], so we have

1

1
Ja=om DI (pri+ (1= p0)dp < [[p(1 = I (I + (L= p)1 = 7 O] dp
0 0

n+1

2(n+3)

(n+4)n+1)
2(n+3)(n+2)

" (r)I” + c"@)r, (27

similarly we can write

1

1
J@=om DI ma+ (W= p)0)dp < [ [pL= gD (R + (L= )L = 7S O)] do
0 0

. n+l

2(n+3)

(n+4)(n+1)

e+ R+ o)

@) (28

Also we have

Now using (2.7) and (2.8) in (2.6), we get (2.5). O
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Corollary 2.3. Under the hypothesis of Theorem 2.3, we have

T+ T2
’LC ( 9 77777-177-2)’

1

(ﬂﬁ)%(u)”“ .
+1 2 n+1 " s m+4)n+1) ,(11+T7 s
ST Kz(nw)‘C o+ o g e (75 )‘)

2(n+3) 2(n+3)(n+2) 2

()" () ~GEse) ) e e

Proof. In inequality (2.5), if we take § = %, we get the first bound in (2.9). The second
bound in (2.9) can be obtained by using the fact that:

(Gt + A e (2R )

p 1 1
Z($u+yu)w < Zx?j‘{'zy?j )
v=1 v=1 v=1
for 0 <w <1 and z;,y; > 0, where i = 1,2, ... and then convexity of |(”|. O

Remark 2.1. By putting s = 1 in (2.9), we get the inequality (2.2).

Instead of convexity, using concavity property of the function we get two different in-
equalities, which are given below.

Theorem 2.4. Let all the requisites of Lemma 1.1 hold.. Additionally, If |"|* is concave
on 11, 2] for each s > 1, then the following inequality holds:

(9 — 7’1)”+2

¢ ((n+2%27jrrg;+4)9) ‘ + (1o — 6)112

(n+2)(r2 —71)

CH ((77+2;7(—127j:g)7+4)9) ‘

|Le(0,m,m1,m2)| <
(2.10)

for each 0 in [Ty, To).

Proof. By power mean inequality, we have

pIS" () + (L= I (m)l?
[¢"(pr1 + (1 = p)72)I*, ( by concavity of [¢"]")

(pI¢" (r)| + (1 = p)I¢" (72)])°

<
<

and therefore

I¢"(pr1 4+ (1 = p)m2)| = pl¢" (1) + (1 = p)[¢" (12)],
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this shows that |¢”] is also concave. Now using Lemma 1.1, triangular inequality and then
Jensen integral inequality in turn, we have

1
LeOnm,m) < O [ (=) 1 ort = o) | a
¢\, 1,71, T2 _(77+1 72—7'10 P71 P
1
7’2— 77+2 / n+1 "
1—-p)0)|d
TESC ) 1< (pm2 - (1= )6) | dp

0
1

0

1) (e — 1

T (41 (e —11) [ = prydp
0

1
(rs — 0P ( | p"hd ) ¢" Of(l = p" ) (pr2 + (1 = p)0)dp
* fo-

1) (e — 1

(1D =m) g J(L = prth)dp
0

+2)71+(n+4)6 +2)2+(n+4)0

_ (0 — o (U ) + (e — 02 ¢ (Rt

(n+2)(r2 —71)

]

Corollary 2.4. Under the hypothesis of Theorem 2.4, we have the following:

‘Lc (71+72,77a71’72)‘5 (72_71)"“ 1 //((377+8)71+(77+4)72)‘
2 2 2(n+2) 4(n +3)
e ((377 +8) 2+ (n +4)7—1)’
4(n+3)
< (7’2—7'1)77+1 1 /I(Tl—FTQ)’. (2.11)
2 n+2 2

Proof. By choosing 6 = % in the inequality (2.10), we get the first bound in (2.11). The
second bound in (2.11) is obtained by using the concavity of |¢”|. O

If we use the property of concavity of |¢”|* in another way, we get an another general
result, which is given below.

Theorem 2.5. Let all the requisites of Lemma 1.1 hold. Additionally, if |("|* is concave
function on [r1, 2] for s > 1 such that r—*+s~1 = 1. Then we have the following inequality:

L0 =TT ((HTH)} + (rp — G2 ¢ (HTTQ)
[Lc(0,m, 71, 72)| < M+ CESNCE—

(2.12)

where M = PO+T ()

CTE) I (RE———
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Proof. Applying Lemma 1.1, triangle and Hoélder inequalities, we have

(6 — 7p)"t2
m+1)(r2 — 7

1
[Le(0.m.m )] < | / (1= )6 (om1 + (1= p)0) dp

7.2 _ n+2

m+1)(r—71

- ) 1 T
< (n(il ;Wjﬁ (/ ”“ dp) (/IC”(M +(1 —P)9)|Sdﬂ)
0 0
I ! !
N s v

0

1
[0 I k(1= )
1
0

0 |=

» =

Since, |¢"|® is concave on |11, 7], we can use the Jensen’s inequality to get:

¢ (/(m +(1- p)H)dp)

0

" <9+7—1) B
2
9—|—’7’2 s

"

(557)

S

1
[1¢em+a=po1de <
0

)

Similarly,

1
J1¢"on+ =)o) 1 dp <
0

Also
1 , 1 o (1 + ) ()
/ (1 — p”“) dp = /(1 — u) "yt Ydu = Uass = M.
J R (4 DT 47+ )
putting the last three inequalities in the above inequality, we get the required inequality in
(2.12). O

Corollary 2.5. Let all the requisites of Theorem 2.5 hold. Then we have:

1
’Lg (Tl +TQ,77,T1,72)’ < M (ry — 1)} [ " <371:_72)’ + ¢ <Tl 2372)’]

2 21+2(n + 1)
1
< M (M)"H " (mﬂ (2.13)
n+1\ 2 2
where
L(1+ 7))

- (n+DTA+7+ 47)

Proof. By choosing 6 = % in the inequality (2.12), we get the first bound in (2.13). The
second bound in (2.13) is obtained using concavity of |¢”]. O
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