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OSTROWSKI'S TYPE INEQUALITIES FOR FUNCTIONS WHOSE
FIRST DERIVATIVES IN ABSOLUTE VALUE ARE MN-CONVEX

M.W. ALOMARI' AND M.M. ALMAHAMEED!

ABSTRACT. For absolutely continuous functions whose first derivatives in absolute value
are M N-convex several inequalities of Ostrowski’s type are introduced. Other related
results by applying Holder integral inequality are also provided.

1. INTRODUCTION

1.1. MN-Convexity. Let I be a real interval. A function f: I — R is called convex iff
flla+ (A =t)p)<tf(a)+ 1 —=1)f(B), (1.1)

for all points «, 8 € I and all ¢t € [0,1]. If -f is convex then we say that f is concave.
Moreover, if f is both convex and concave, then f is said to be affine.

In general, it is not easy to check whether a given function is convex or not. Because
of that, there are several criteria were known in literature. The celebrated known criterion
is that of mid-convex (or Jensen convex) functions, which deal with the arithmetic mean.
They are precisely the functions f : I — R such that

NELPRCE)

This fact was discussed by Jensen in ([21], p. 10). Namely, he proved his famous criterion:

Theorem 1.1. Let f : I — R be a continuous function. Then f is convex iff f is mid-
convez.

Definition 1.1. A function M : (0, 00) — (0, 00) is called a Mean function if
(a) Symmetry: M (z,y) = M (y, x).
(b) Reflexivity: M (z,x) = x.
(¢) Monotonicity: min{z,y} < M (z,y) < max{x,y}.
(d) Homogeneity: M (Az, A\y) = AM (z,y), for any positive scalar A.
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The most famous and old known mathematical means are listed as follows:
(a) The arithmetic mean :

A=A(08)="T" aper.

(b) The geometric mean :

G::G(a,ﬂ):\/@> O‘aﬁeRJr'

(¢) The harmonic mean :

HZ:H(Q7B):1 10 (X,,BGR+—{O}-
aT3
(d) The power mean :
Mr(a?ﬁ):<a —;6)T, 7“21, aaﬁ€R+'

(f) The logarithmic mean :

__a—=p
~ In|al —In|B|’

(g) The generalized log-mean:

pptl — gptl 1w
| reRL a0

It is well known that L, is monotonic nondecreasing over p € R, with L_; := L and L := I.

LI:L(O[,,B) |a|7é|/8|’aaﬁ7£0’ aaﬁeRJr'

Ly =Ly (a,) =

In particular, we have the following inequality
H<G<L<I<A.

1.2. Ostrowski’s Inequality. In 1938, Ostrowski established his celebrated inequality for
differentiable mappings with bounded derivatives, which reads [18]:

Theorem 1.2. Let f : I C R — R be a differentiable mapping on I°, the interior of the
interval I, such that f' € Lla,b], where a,b € I with a < b. If |f'(z)] < M, then the
following inequality,

r — afb ’
<M (b-a) i+7( (6_2)2) (1.2)

bia/abf(u)du

holds for all x € [a,b]. The constant i is the best possible in the sense that it cannot be
replaced by a smaller constant.

o
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The proof of (1.2) can be done using Montgomery identity, which known as:

1 b b
f@ = [ f@d+ [ Koo (13)
where K (z,t) is the Peano kernel,
t—a
o b—a’ a S t S xz,
K(x’t)_{ b gt <,

for any z € [a, b].
An Ostrowski type inequality for convex functions was pointed out by Barnett et al. in
[8], as follows:

Theorem 1.3. Let f : [a,b] — R be an absolutely continuous function on |a,b] such that
|f'| is convex on [a,b]. Then for any x € |a,b] we have

b
‘f(x)_bia/a f(u)du

D=

x—a—+b ?
%+< = ) ] b—a)[f' (@) + 1) f' € Loc[a,bl;

1/q

IN

—T q+1 r—a q+1
(=) + (=) | e-a" @I+l O
frelplab,p>1,1+1=1

] [(b—a) ' (x) + [ 1]

[Nl
—~
)

+
=
=
—
~]
=)

a+b
)
b—a

[y

[\

b

The constant % in the first and second inequalities is sharp as is the first % in the final.

Another result concerning convexity was proved by Alomari in ([1], p. 79)

Theorem 1.4. Let f: 1 CR — R be a differentiable mapping on I° such that ' € Lla,b],
where a,b € I with a <b. If | f'| is convez on [a,b], then the following inequality holds:

b
|f(a:)—bia/a £ (u) du

< bga [(4(2:2)3—3@:2)2“) |1 (a)|
+<9<Z:Z>2_4<2:2>3_6<2:z) +2> \f’(b)]], (1.5)

for each x € [a,b]. The constant % is best possible in the sense that it cannot be replaced by

a smaller value.

For more result concerning Ostrowski’s inequality, see [2], [3]-[4], [7]- [16].
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For two given means M and N, Anderson et al. [5] studied M N —convexity of Maclaurin
series in terms of the coefficients. In fact, the authors investigated the mid-MN-convexity
of a continuous function according to a given mean between the endpoints of a definite
interval.

Definition 1.2. Let f : TAA — (O,AAOO) be continuous, where [ is a subinterval of

(0,AAcc). Let M and N be any two Mean functions as understood above. We say f is
MN-convex (concave) if

fM{(z,y)) < (Z)N(f(2), f(y)),
for all z,y € I and t € [0, 1].

Recently, some authors studied inequalities of Ostrowski’s inequality under various MN-
convexity assumption, a sample of these works can be found in [6],[15],[17],[19]-[23].

One of the most important applications of Ostrowski’s inequality is to provide several
bounds for mathematical means. So that, in this work, several inequalities of Ostrowski’s
type for absolutely continuous functions whose first derivatives in absolute value are M N-
convex are introduced. Other related results by applying Hélder integral inequality are also
provided.

2. PRELIMINARIES

Let 0 < a < b. Define the function M : [0,1] — [a,b] given by M (¢) = M (¢; a, b); where
by M (¢; a, b) we mean one of the following functions:

(a) A¢(a,b):= (1 —t)a+tb; The generalized Arithmetic Mean.
(b) Gy (a,b) = al~tth The generalized Geometric Mean.

(c¢) Hy(t;a,b) = m-q-g%t)b? The generalized Harmonic Mean.

Note that M\(O; a,b) =a and M (1;a,b) = b.
It is well-know that the above means are related with celebrated inequality

Ht(a,b)th(a,b)gAt(a,b), \V/te [0,1]

In viewing of the above notions of Mean we may generalize Definition 1.2 of MN-convexity
(concavity) excluding the continuity assumption, as follows:

Definition 2.1. Let f : [a,b] AA — (O,AAO@) be any function. Let M and N be any two

Mean functions. We say f is MN-convex (concave) if

F(M (t2,9)) < ()N (8 f(2), £(v)),
for all z,y € I and t € [0,1].
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Clearly, if one chooses t = 35 in the Definition 2.1, then we reduces to mid-MN-convexity

which is intended in Definition 1.2. Accordingly, we can state that:

(a) fis Ay Ap-convex iff (1.1) holds or equivalently by setting s = ta+ (1 — t) 5, we write

£ < =5 p @)+ 5

f(8), a<s<p.
(b) f is A;Gy-convex iff
flta+1-08) <[F@IIF @), o<t<l,
or equivalently, we write
F&) <IF @I [FB)F, a<s<p.
(¢) fis AyH-convex iff
f(a) £(B)

HA=net ) <y i-nrE  °='=h
or equivalently by setting s = (1 — t) a + 3, we write
e B=)f@) () heses

(B=s)f(a)+(s—a) f(B)
(d) fis GiAs-convex iff

F(aB') <tf@+(-0f(B), 0<t<l,
or equivalently by setting s = o317, we write
In(s) —In(B) In (o) — In (s)
T& = @y =m@ T @ -
(e) fis G4Gy-convex iff
f(aB) <@ IF@), <<,

or equivalently, we write

B) In(a)—In(s)

In(s)—In(
f(s) < [f (a)]ln(a)—ln(,@) [f (ﬂ)]ln(a)—ln(ﬁ) , a<s< /3
(f) fis G H-convex iff

f (@) f(B)

1—
M) < @ a-ngar 0=t
or equivalently by setting s = a! ¢3!, we write
o < (@) £ (8) i (@) I (5)] eses

(@) —1n (s)] £ (@) + [ (5) — In (3)] 7 (B)
(g) fis HyAs-convex iff

of
f<(1—t)—a+tﬁ>§tf(a)+(1_t)f(ﬁ)’ 0<t<1,

(2.1)

(2.2)

(2.4)

(2.5)

(2.6)
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or equivalently by setting s = (175‘75{“5, we write

P < 2 @+ 2200, as<s<h (2.7

(h) fis HGi-convex iff

o ¢ 1—t
Ha=ags) <U@rrer.  o<i<t

or equivalently, we write

F(8) < @) fF@IF,  a<s<p (28)
(i) fis H Hy-convex iff
ap f(a) £ (B)
(Thews) STovseraim OStst
or equivalently, we write

S (8- ) f(a) F(8)
I < o) Fla) ra(r-w7m) “=°=F (29)

Remark 2.1. Theorem 2.4 and Corollary 2.5 in [5] are still hold for the previous MN-
convexities.
3. WHEN |f’| 15 AN-CONVEX

In this section, inequalities of Ostrowski’s type for absolutely continuous functions whose
first derivatives in absolute value are AN-convex are proved, where A := A;(a,b) and
N := At(a, b), Gt(a, b), Ht(a, b)

3.1. When |f’| is AG-convex.

Theorem 3.1. Let I be a real interval, a,b € R (a < b) with a,b in I° (the interior of I).
Let f : I — R be an absolutely continuous function on I. If |f'| is AG-convex, then

|f<:c>— e

—a
a

SZLJL('<)‘>701‘§I|f"b>|>2 (=) (i) -0-0] @

L b=a) (f @)+ ())
(In]f" (®)] = |f" (a)))*
for all a < x <b. In particular, for x = aTb we have

=z (i@l o).

ety

where L (-,-) is the Logarithmic mean.
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Proof. Rewrite (1.3) and then taking the absolute value in, by employing the triangle in-
equality, since |f'| is AG-convex (i.e., (2.2) holds) we have

b b
|f<x>—bfa/a Fedu =) ["K (@.s) 1 (s)ds

_2|f'<>|ba|f'<b>| © [(,_ath FON o,

~ (In[f (b)) = In|f a)\)Q{ ) < > 0 )}
L b=a) (f @]+ 11" )]
(In|f" ()] — In|f" (a)])*

the last equality follows from integration by parts and basic simplification, and this proves
the desired result in (3.1). O

Theorem 3.2. Let I be a real interval, a,b € R (a < b) with a,b in I° (the interior of I).
Let f : I — R be an absolutely continuous function on I. If |f'|* (p > 1) is AG-conver,
then

1 [(z—a)tt? —xq“% 1
<)t [< "+ (b =) ]-Lpuf'(a)\p,rf'(b)!”), (32)

foralla <z <bandp > 1 with % + % = 1. In particular, for x = “TH’ we have

() o

where L (-,-) is the Logarithmic mean.

< (b-a)
2(qg+ 1)

v (If (@), £ ®)P),
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Proof. since |f'|P is AG-convex by employing the Holder integral inequality on the right-
hand side of the second inequality in the proof of Theorem 3.1, we get

‘f@»—bia[fﬂwdu
(/ab|1rc(gc,s)|qu>é (/ab\f'(s)\pds>%

= </j o [0 S)q‘“)q (/ab 1 @5 s <b>u”'ﬁds>p

L [ (2 — a)?H —xq“é
—(b—a)u [( ) + (b ) ] -LP ‘f ’p ‘f )‘p),

IN

IN

q+1
which proves the desired result. O

Remark 3.1. As p — 1 and ¢ — oo in (3.2), we have

. [(x — )T 4 (b x)q+11 J ) 4 (b — x)q+1] 7

< lim sup [(m

q— q+ 1 q—00 a<z<b q+ 1
1
h—a)tl]a
= lim % =(b—a), (3.3)
q—00 q

and so that (3.2) becomes

b
Wuwwiaéf@mSgb—

for all a <z <b.

L(|f" @], [f ®)),

3.2. When |f’| is AH-convex.

Theorem 3.3. Let I be a real interval, a,b € R (a < b) with a,b in I° (the interior of I).
Let f: 1 — R be an absolutely continuous function on I. If |f'| is AH-convez, then

‘ () b—a/f
Lf" (@)[ 1 (b)]
1O = 1f (a)]

(b-a) n [ — )W @IHTOD g7 (@1 oy 1O
+|f/(b)|—|f/(a)| 1 [(b ) | (a)] | ()] ”, (3.4)

A@a+b—2z)+ (b—a)ln[(x—a)|f (a)|+ (b—2z)|f )]




OSTROWSKTI'S INEQUALITY VIA VARIOUS TYPE OF CONVEXITIES 61

for all a < x <b. In particular, if x = “TH’ then we have

‘f ) [

O (a)l

A (b — a (F@IHZGD | g1 (N [F@L {170
_ a7 @1 0 {1n<f/(a);|f/(b)|)+1 (b= @)l @O |1 (g) 1F ()] }} ‘

[f1 () = 11" (a)]

Proof. As in the proof of Theorem 3.1, taking into account that | f’| is AH-convex (i.e., (2.3)
holds), we have

b
|f(:c)—bia/a £ () du

b
</|K$S|‘f/5|d8

(b— )| (@) |F ()
/'K“ b—s T 6ol

=1 @Ol [ e e a e
b—s
HI@I O s e

17 (@) 1 (b |_{(a+b 296) (b—a)lnz—a)|f ()| + (b—2) [ (B)]]
[f1 @) = 11" (a)]
L= a)lf (@[ —a)|f (@) + = a) [/ (®)In[(b—a) |f (O]
(1 ()] = 1£" (a)])? ’

which proves the required result in (3.4). O

Theorem 3.4. Let I be a real interval, a,b € R (a < b) with a,b in I° (the interior of I).

Let f : I — R be an absolutely continuous function on I. If |f'|" (p > 1) is AH-convex,
then

T (h— )0t ;
q+1

<(b—a) 7 |f (@) |f ) [@ - L7 (If @1 OF). (35)

foralla <z <bandp>1 with % + % = 1. In particular, if x = “T*b then we have

‘ (a+b) —a/f

(b—a)
1
2(q+1)a

<

1 @1 ®)]-L77 (11 @, | ®)[)
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Proof. As in the proof of Theorem 3.2, and since |f/| is AH-convex we have

b
yﬂm—biaéfuom

</ab]K(uU,s)]qu>é </ab‘f’(s)|pds>%

L (i i) ([ =@l @P L P\
Smm<L(S s+ [ 0 >d><ﬂ<wwﬂﬂmW+@—@wwwd>

<w—wﬁ*+w—xﬂ“]?lmu%MW—mV%@WF
g+ THOEACE

IN

= (b—a)75 |f (@] |f )] l

—(b—a)77 |f (a)]|F (b)

| [(m _ a)q+1 + (b o x)qul

1 ] LS @1 O,

and this ends the proof. O

Remark 3.2. As p — 1 and ¢ — oo in (3.5), then by (3.3), we have

1 b
105 [ Ten] <09l @l o] (Sl o).

for all a <z <b.

4. WHEN |f| 18 GN-CONVEX

In this section, inequalities of Ostrowski’s type for absolutely continuous functions whose
first derivatives in absolute value are GN-convex are proved, where G := Gy(a,b) and
N := At(a, b), Gt(a, b), Ht(a, b)

4.1. When |f’| is GA-convex.

Theorem 4.1. Let I be a real interval, a,b € R (a < b) with a,b in I° (the interior of I).
Let f: 1 — R be an absolutely continuous function on I. If |f'| is GA-convex, then

b
%wwwialfme
1

(@40 2% —2(-) (a+b—x)] 1F O] = |f @) @1

oo\

L@l (8)]
+ [a2 | (@) + 07| (b)ﬂ In (3) +2r(a+b—z)hn <bf’(a)|g;|f/(b)| ) } ’
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for all a < x <b. In particular, if we choose x = “TH’, then

b
& (57) - 5= [ 7 )as

1 /
sm{m—w —4 (= a)] (1 B)] - | @)

@ |
o2 ath 27 ®)]
+a2|f'(a)\+52\f'(b)\1n(§)+(a+2) I %) TZO]
bl (@) (%b)

Proof. As in the proof of Theorem 3.1, taking into account that |f'| is GA-convex (i.e., (2.4)
holds), we have

/\K e 1 @]+ e e -1 0] s

(b) — In (b) — In (a)
= In (b) 1n() : In(s) —ln(a) |,
_b—a/a (s —a) [m'\f (@Hm'\f (b)\]ds

b n — 1mi(s n(s)—1mila
e L 09 [ O @l

:m{{l(auﬂ)?_zﬂ)_(b_a)(aer_x}’f/ ) = If (@)])

119 a0 91 g1 b 2l (@] g F(B)]
3 [ 1 @I+ 821 O] 10 (2) + 2 @b = 2) 0 Gy ) (-
the last equality follows from integration by parts and basic simplification, and this proves
the desired result in (4.1). O

Theorem 4.2. Let I be a real interval, a,b € R (a < b) with a,b in I° (the interior of I).
Let f : I — R be an absolutely continuous function on I. If |f'|* (p > 1) is GA-conver,

then
b
Wuwwiaéf@mS

x—aqH _xq+1%
Sbial( )qiib ) 1 (42)

[wuwmv—auwwvnn@)—w—amu%wW—uwww>p

X

Inb—Ina
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foralla <z <bandp > 1 with % + % = 1. In particular, if we choose x = “TH’, then

() = [ s

TGP —alf @) (8) - - a) (7 OF - 17 @]

. b-a)
Inb—1Ina

Q=

2(g+1)

Proof. As in the proof of Theorem 3.2 and since |f’|P is (p > 1) is GA-convex, then we have

|f<:c>— ia/bf(u)du
(ﬁ’ﬁ'xS’”“> (/‘u" \pmﬁ

< </j(s—a)qu+/xb<b—s>qu>%
X(Lbk%%__%% V“@V+%§%EE§%-v%wﬂdg%

1 l(m—a)q“ = )q+1f

" b_a qg+1
Gl ®)F —alf (@F)n (L) = b —a) (1F @)F - If (@P)]
8 nb—Ina ’
which proves the required result. ]

Remark 4.1. As p — 1 and ¢ — oo in (4.2), then by (3.3) we have

1 b
%mww_alfst
FMf@H—Mf&Mﬂn@)—w—wﬂﬂwﬂ—v%wD
<

Inb—Ina

for all a <z <b.

4.2. When |f’| is GG-convex.
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Theorem 4.3. Let I be a real interval, a,b € R (a < b) with a,b in I° (the interior of I).
Let f : I — R be an absolutely continuous function on I. If |f'| is GG-conver, then

‘f(zc)—bia/abﬂs)ds

2;[:2 In (Q) T (b — CL) In (%) , E(b) 12(2) 12(1):12(2)
(e () @) m ) O
“In (%) a?ln (g) /
B YO ORI CE)] M.
b21In (3) b21n (3)
’ o | 170l
n(2)" +m () () + o () |

foralla <z <b.

Proof. As in the proof of Theorem 4.2, and since |f’| is GG-convex (i.e., (2.5) holds), we
have

b
‘f(x)—bl [ 1 wau

b
< [ 1K @9l )] ds

In(s)—In(a)

/ |K (gj’ S ‘f H ln(llzg llnEZ) Hf H In(b)—In(a) dS

In(b)—In(s) In(s)—In(a)
b . / sS—a Hf } In(b)—In(a) Hf } In(b)—In(a) ds
b n n(s n(s nla
n ﬁ/ -9 [|f @] Ho= L&i )] R ds
2 b b
| () oo (5 V] (17 o)) B
b)? /(0)] 9 f<
() v () () o (e
QQID(g aln a ‘ /()|
+ - 7 f a
L7 ()]
[ (2) +m () (2 )“n(u/(a)\)_
[ 2 21 (b 1
N b In () b In () o)
b b Lf7 ()] ’
i (8 () () +m (1)
where the last equality holds using integration by parts, and this ends the proof. O

Theorem 4.4. Let I be a real interval, a,b € R (a < b) with a,b in I° (the interior of I).
Let f : I — R be an absolutely continuous function on I. If |f'|V (p > 1) is GG-conver,
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1 (x—a)qﬂ%-(b—x)q“r o1f O —alf (a) ln(g) :
= b—a l q+1 8 { ln( )—i—pln(||}]:((2))||) S

foralla <x <bandp>1 with % + % = 1. In particular for x = “T*'b we have

()]’

<

b
& (57) - 5= [ 7 s)as

@_@é_[wu%MW—ﬂf<n>n
2(q+1)% ln( )—i—pln(‘]{,b )

Proof. As in the proof of Theorem 4.2 talking into account that |f'|” (p > 1) is GG-convex,

then
b
‘f(w)—bia/a f(u)du

b (b ,
< ([iara) ([ ere)
1
1 x 7y b ) 0y q
< — _
S — /a(s a) s+/m( s)?ds
) 1
n In(s In(s)—In(a P
([ 1 @B [ R )

1 [@—a e[GO OF—alf @
Cb—a q+1 %

which proves the required result. ]

Remark 4.2. As p — 1 and ¢ — oo in (4.4), then by (3.3) we have

P@ﬂ—g%EZjﬂﬁ 5| <

for all a <z <b.

4.3. When |f’| is GH-convex.
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Theorem 4.5. Let I be a real interval, a,b € R (a < b) with a,b in I° (the interior of I).
Let f : I — R be an absolutely continuous function on I. If |f'| is GH-convex, then

1 b
P@%w_aéf@ws
FHO] 1 (a)]

/ !/ 7 7 7 | 7
SMMMf@wﬂa_amanhfwuw )
b—a F @)= 1f (a)]

<{@—a)|Bi V%mm@>>_i<m<mm +M’|m%>]
{( )[E (‘fl(b)‘_‘f'(a)! b lf ()] — |

2 |Bi U“wm@>>_i<w HM@+M'\m%>H
o )lE<wwn—wmﬂ E 7O~ /@) ’

for all a < x < b, where

[e.9]
et
—x
s the Exzponential Integral function.

Proof. Repeating the proof of Theorem 4.3 and using the fact the |f’| is GH-convex (i.e.,
(2.6) holds), so that we have

yﬂm—bfaéﬂwwm

b
</|K§C8|‘f’8‘d8

25) v%ﬂw<m (b) —In (a)] .
/WK [ B W@ W]+ ()= W @70
_u'|u'|m@)/‘ s—a .
- b—a o @) =] (@] + [ (s) = (@)][f ®)
@1 @) () o b s
" b—a Zé[mww—m@nv%@w+wW@—hu@Hﬂwﬂ*

The last two integrations cannot be evaluated directly by using usual methods. So that, we
use estimation; since

[ momorenEe m@re®
z ds
<@ | EO RO O Ee @O
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and
b b—s
/a: [In (b) — I (s)] [f" (a)] + [In(s) = In (a)] [f* (b)\ds

<(b—ux) /b ds
- v [n(b) =In(s)][f (a)] + [In(s) = In(a)] |f" (b)]
Now, using Maple Software in evaluating the right hand sides of (4.6) and (4.7), we get that

(4.7)

z ds
/a [ (b) —In(s)]|f" ()| + [In(s) —In(a)] [ (b)]
L' )] |1/ ()]
al7O=TF @] . I @[] ®)]

O~ 17(@)
XF%'f“W“?

)_M<w<mm>+mmmmaﬂ,

|f7 )] = |f' (a)] L/ @) =1 (a)|
and
b ds
[ mo o @ m e R @O
[/ ()] EMG

al'@=1 @] . pl(@)]=]®)]

FOI-1F @)
N (@) \ (17 @ (§)+ 1 )1 (%)
[E<W®Wﬂﬂ@0 E( FOI— 1 (@) ﬂ'

Substituting the above two integrals in (4.6) and (4.7) and combining the result with the

main inequality we get the desired result in (4.5). O

The bound in (4.5) is complicated and not applicable, so that let us give the following
refinement of the inequality (4.5).

Corollary 4.1. Let I be a real interval, a,b € R (a < b) with a,b in I° (the interior of I).
Let f: 1 — R be an absolutely continuous function on I. If |f'| is GH-convez, then

Puwwfaffw@

<uwwuﬂan@)_V_a+(w_a+%2

- b—a 4 2

- max {Kl,KQ}, (48)

for all a <z <b. In particular if v = “TH’, then we have

()| ng
v a+b —biaﬂfﬂﬁd8é|f(ﬂviw“ (2)

- max {Kl, K2}7

where

1
K“}i%hm@—m@mwwwum@—mwmrw&’
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and

1
Ky = sup

mgsgb{ [In (b) = In ()] [* (@)| + [In (s) — In (a)} [ /" (b)] } '

Proof. From the proof of Theorem 4.5, we have

[ somorer e ser e
1 x
‘ai‘;‘zm{ M7 @]+ ()—ln(a)]lf’(b)l}/a (s —a)ds

(3: —a) 1
sup

2 a<s<a { [In.(b) —In ()] /" (a)] + [In (s) = In (a)] [ (b)] } ’

and
b b—s
/:v [In (b) —In (s)] [/ (a)[ + [In (s) — In(a)] | /" (b)]

1 z
- s A RO E e, o

1
= sup

2 a<s<h { [In (b) = In ()] [* (@)| + [In (s) — In (@)} [/* (b)] } '

Therefore, we have

ds

. @ISOl Ine) .
/ & [ B —tn ()] 1" @]+ I ()~ @] 17 )]
[f" (@)] £ (b)]In (& a 2
IO s 2] et
where K and K5 are defined above. O

A refinement of Theorem 4.4 is given as:

Theorem 4.6. Let I be a real interval, a,b € R (a < b) with a,b in I° (the interior of I).
Let f : I — R be an absolutely continuous function on I. If |f'|’ (p > 1) is GH-convex,
then

fa) -y [ iy

nb—1Ina\d z —a)?t! — p)att i
< (B2 max{lr @] oy - | ST )

forallagxgbandp>lwz’th%—i—%:l.
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Proof. As in the proof of Theorem 4.4 (and as in Theorem 4.5), we have

\f(x)—bia/abf(u)du

< (/a”,m,s),quf </ab\f’(s)\pd8>%

"(a)||f n (2 x
< S @11 @) () </ (S_a)qu+/b

b—a x

(b—s)? ds) !

B =

b ds
) </ [ (b) —n ()] |/ (@)’ + [In (s) — In (a)] |/ <b>rp>
"(a)||f! n (Lt x 7
. £ (@] £ (®)]n (2) </ (S_a)qm/b(b_s)qu)
1

b—a

X sup

a<s<b { [In (b) = In ()] [f* (a)|” + [In (s) = n (a)] [ (b) !p}

q+1 + (b _ x)q-i-l
q+1

<) i @1 O)]n (2) [(m 4

_1 1 1
X [In(b) —In(a)] » max{m, m}

— (b—a)"7 [In (b) — In (@)]7 max {|f' (@), | (B)]} -

(. —a)T™ + (b —2)T™ .
g+1 ’

which proves the required result. ]

5. WHEN |f’| 15 HN-CONVEX

In this section, inequalities of Ostrowski’s type for absolutely continuous functions whose
first derivatives in absolute value are HN-convex are proved, where H := H(a,b) and

N:= Ai(a,b), Gi(a,b), He(a,b).
5.1. When |f’| is HA-convex.

Theorem 5.1. Let I be a real interval, a,b € R (a < b) with a,b in I° (the interior of I).
Let f: 1 — R be an absolutely continuous function on I. If |f'| is H A-convez, then

‘f(zc)—bia/:f(sms

b-|f' (@] —a-[f O] |b-a a+b\?
= (b—a)’ l i +(x_ 2 )

ab a®b®
+ b—a) lln (anrb) —(a+b—2x)

(5.1)

[ @] = [ (@],
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for all a < x <b. In particular if v = “TH’, then we have

b
%wwwialfme

b-|f'(a)] —a-|f () ab 20+
= 4(b—a) * (b—a)2 ln<(a—|—b)a+b

) 17 ) - 17 @]

Proof. As in the proof of Theorem 3.1, taking into account that | f’| is H A-convex (i.e., (2.7)
holds), we have

b
‘f(:c)—bia/a £ (w) du

b
g/IK@wa@H@
/WK [ “Hfmn+““‘Quwm@@

CL) s(b—a)
el
+b—a [ !+j$:3waﬂds
\

_b-lff @] —a-|f'(b)

a+b
(b—a)® l ( 2 )
ab anrb
_w_afbn<mw>+“+b‘%ﬂHf@ﬂ—ﬁ%@m

which proves the required result. ]

Theorem 5.2. Let I be a real interval, a,b € R (a < b) with a,b in I° (the interior of I).

Let f : I — R be an absolutely continuous function on I. If |f'|° (p > 1) is HA-conver,
then

b
P@%wialf@Ms

¢ L[ reoar)

(b—a g+1 (5.2)

« {b[(m—a)+ln< )] 7' )]p+alln (i-i) —(b—x)] \f’(b)\p}%,

forallagxgbandp>lwz’th%—i—%:l.



72 M.W. ALOMARI AND M.M. ALMAHAMEED

Proof. As in the proof of Theorem 3.2, taking into account that | f’|” is H A-convex, we have

b
‘f(x)—bia/a £ (w) du

< (/abuax,s)rquf </ab\f’(s)\”d8>%

< bia </j(s_a)qu+/xb(b_s)qd8>q
X<LT%%}%U“®F+5%5%uwmﬂd%%

1 [(CE _ a)qul + (b _ x)q+1‘| %
_ E
b v
(%)—«b—@]v%wv},

(b—a q+1
and this proves the required result in (5.2). O

x{b[(m—a)—i—ln( )]\f a)l”+a|ln

Remark 5.1. As p — 1 and ¢ — oo in (5.2), then by (3.3) we have

b
P@%wialfwws

gbia{b[(:c—a)+ln< )}yf )\+alln<i—z>—b—x]]f y}

forall a <z <b.

5.2. When |f’| is HG-convex.

Theorem 5.3. Let I be a real interval, a,b € R (a < b) with a,b in I° (the interior of I).
Let f : I — R be an absolutely continuous function on I. If |f'| is HG-convex, then

%u%wfaff@@

5 , (5.3)

1 o 2
Sm.maX{Kg,Kél} [b4a+<x_a+b)

ngmax{yf'(b)y,\f'( )| 7647 | (b)| 5501 Zi}

and

K4=max{‘fl(a)’7‘f'( ’x(b a) ‘f ‘x(b_i;}

foralla <z <b.
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Proof. From (5.1), since |f'| is HG-convex (i.e., (2.8) holds), we have

b
|f(a:)—bia/a £ () du

b
< [ 1K @ s)l1s(s) ds

/ |K (z,s)] |f ‘s(b a) |f |s(b a) ds
b—a/ S_a|f S(b a)|f

1 b ,

t= [ 0-9)lf @

The above two integrals can be evaluated in terms of Integral Exponential function, but the

s(b a) dS

resulting bound is useless. Therefore, let us write
[ =alr @

) x
< sup {|f’( G0 |f' (b }/ (s —a)ds

a<s<z

_ )2 b(z—a a(b—z
_ = max{\f'<b>|,\f/<a>|ﬁ|f/<b>\z5b5}

2
and
b
/ (b_s)’ ‘s(b a) ’f ’s(b a)ds
a(b—s) b
< sup { e |/ (b s(b—a)}/ (b—s)ds
a<s<z
a(b—x)
( ) {’ ‘ ‘f ’x(b a) ’f ’x(b a)}
Hence
Fla) - — /bf(u)du < b max (K Ky |20 4 (m— “+b>2
b—al, “b—a 3 4 2 ’
and this ends the proof. O

Theorem 5.4. Let I be a real interval, a,b € R (a < b) with a,b in I° (the interior of I).
Let f : I — R be an absolutely continuous function on I. If |f'|’ (p > 1) is HG-convex,
then

b
|f<w>—bfa/a f(s)ds

L [ (g — @) _xq+1§
s<b—a>_2+5l( e N (VA O] BC)

forallagxgbandp>lwz’th%—i—%:l.
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Proof. As in the proof of Theorem 5.2, taking into account that |f’|” is HG-convex, we have

b
‘f(w)—bfa/afm)du

b % ’ %
- </a |K(g:,8)|qd5> (/a ]f/(S)\pds>
bia (/a (S—Cb)qd”/gg (b_s)qd5>
. </b (@) | (o) ds) ;
1 [(x—a)‘ﬁl +(b—a)

< 3
(b—a) q+1

and this ends the proof. O

<

]q -max {|f' ()], 11" ®)|} (b a)7 .

5.3. When |f’| is HH-convex.

Theorem 5.5. Let I be a real interval, a,b € R (a < b) with a,b in I° (the interior of I).
Let f : I — R be an absolutely continuous function on I. If |f'| is HH -convez, then

b
@ -5 [ fs)as (55)

a® + b — 22° (a+2)[f (0)] +b(b—2)|f (a)]
[alf (B)] = b|f (a)] [a|f (B)] = b|f (a)])?
ab[|f" (b) = |f' (a)]] y {ln < [b(b—a)l|f (amblf’(a)l )
[al f ®)] = b1 f" (@) [a|f' ()] (b—2) +b|f (a)| (z — a)]PF" @)

+ln ( a (b~ a) | ) ) H
b@—a)lf @] +a®-a) @) ]

< |f' @) [f ()] [2 +(b—a)

+(b—a)

for all a < x <b. In particular ifx:“Ter, then we have
a+b 1 b
|f< ) - | T
(b—a)’ aBa+b)[f (0)|+b(b—a)|f (a)

+(b—a)

= TalF o) - o7 @ 2[alf (0)] = b1f" (a)])?

ab[|f"(b)] = |f" (a)]] { < [2b | f/ (G)Hb\f'(aﬂ )
b—a In :
+( )[a|f/(b)|—b|f’(a)|]3 X [a|f (b)| +b|f (o) @)

+1n< 201" )" )}
b|f (@) +alf (B)] O [
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Proof. As in the proof of Theorem 3.1, taking into account that |f’| is H H-convex (i.e.,
(2.9) holds), we have

b
Puﬂ—biaZ}HMdu

b
< | K (@,s) [ £ (s)] ds

b sbealf@UF®l
< [ K e S T T 2l s
T 00—

b—a b(s—a)l|f' (a)| +a(b—s)|f (b)
Lo sealf@IFO
et A eV T,
I @ 4+ 12 - 207 et ) | )]+ bl )| (o)
=17 @llf b'[ ar@ =@l T T e bl @l

ab [l )] —|f" (a)|] { < b(b—a)|f (a)”blf’(aﬂ )
b—a In /
+( )[a‘f/(b)‘_b’f/(a)‘]?) X [a|f’(b)|(b—x)+b|f/(a)|(x—a)]b|f(a)|

In ( a(b—a) s B ) H
b(z—a)|f () +ab—az)|f OV ]]

which proves the required result. ]

A simplified refinement of (5.5) is given as follows:

Corollary 5.1. Under the assumptions of Theorem 5.5, we have

bia/abf(u)du a+<x_a—2{—b>21’ (5.6)

foralla <z <b.

f ) =

< max {|f (a)|,|f ()|} - lb;

Proof. As in the proof of Theorem 5.5, we have

b
< [ ol )]s

" s(b—a)|f (a)||f (b x,s)|ds
Sa;‘éb{b<s—a>|ff<>l+a |f’ }/|K .
:max{‘fl(a)|7\fl(b)|}'[; +(x_a_2{—b)]’

which proves the required result. ]
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Theorem 5.6. Let I be a real interval, a,b € R (a < b) with a,b in I° (the interior of I).
Let f: I — R be an absolutely continuous function on I. If |f'|’ (p > 1) is HH-convex,

then
1 b
= a/a f(s)ds

gw—a>5vx_

flx) -

AR _ p)at! :
A i) ]-max{\f’(a)\,\f%b)!} (5.7)

q+1
forallagxgbandp>lwz’th%—i—%:l.

Proof. As in the proof of Theorem 5.4, and since |f’|P is H H-convex, we have

1 b
f@) =5 [ £ du
b % b %
(/a |K(:c,s)|qd5> (/a ‘f/(s)|pd5>
. b .
bi@(/@ (s—a)qu—i-/gc(b—s)qu)
</ —a)lf @F1F B dsf
bs—a fr@P +a—s)|f ®)F

s(b—a)[f (a)] /" (b)| } [(90—a)q+1+(b—:6)q+1
b(s —a)[f'(a)] +a(b—s)[f (0] q+1

IN

IN

<(b-a)7s sup {

a<s<b

1 [ (2 — q+1 g+177%g
S N

and this ends the proof. O
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