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ON NEW SIMPSON TYPE INEQUALITIES FOR THE p-QUASI

CONVEX FUNCTIONS

MAHIR KADAKAL1, İMDAT İŞCAN1, AND HURIYE KADAKAL2

Abstract. In this paper, we establish some new Simpson type inequalities for the class
of functions whose derivatives in absolute values at certain powers are p-quasi-convex
functions.

1. Introduction

A function f : I ⊆ R → R is said to be convex if the inequality

f (tx + (1 − t)y) ≤ tf (x) + (1 − t) f (y)

is valid for all x, y ∈ I and t ∈ [0, 1]. If this inequality reverses, then f is said to be concave

on interval I 6= ∅. This definition is well known in the literature.

It is well known that theory of convex sets and convex functions play an important role

in mathematics and the other pure and applied sciences. In recent years, the concept of

convexity has been extended and generalized in various directions using novel and innovative

techniques. For some inequalities, generalizations and applications concerning convexity see

[1, 2, 4–6,18,21].

In [10], the author gave definition harmonically convex and concave functions as follow:

Definition 1.1. Let I ⊂ R\ {0} be a real interval. A function f : I → R is said to be

harmonically convex, if

f

(

xy

tx + (1 − t)y

)

≤ tf (y) + (1 − t)f(x)

for all x, y ∈ I and t ∈ [0, 1]. If this inequality is reversed, then f is said to be harmon-

ically concave. The following result of the Hermite-Hadamard type inequality holds for

harmonically convex functions.
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Definition 1.2. A function f : [a, b] → R is said quasi-convex on [a, b] if

f (tx + (1 − t)y) ≤ sup {f (x) , f(y)}

for any x, y ∈ [a, b] and t ∈ [0, 1].

Definition 1.3. Let I ⊂ (0, ∞) be a real interval and p ∈ R\ {0}. A function f : I → R is

said to be a p-convex function, if

f
(

[txp + (1 − t) yp]
1

p

)

≤ tf (x) + (1 − t) f (y)

for all x, y ∈ I and t ∈ [0, 1] . If this inequality is reversed, then f is said to be p-concave.

Hermite-Hadamard inequality for the p-convex function is following:

Theorem 1.1. Let f : I ⊂ (0, ∞) → R be a p-convex function, p ∈ R\ {0}, and a, b ∈ I

with a < b. If f ∈ L [a, b] then we have

f

(

[

ap + bp

2

]
1

p

)

≤
p

bp − ap

∫ b

a

f (x)

x1−p
dx ≤

f (a) + f (b)

2
.

These inequalities are sharp [5,8].

Definition 1.4. A function f : I ⊆ R+ → R0 is said to be a harmonically quasi-convex

function on I if

f

(

(

λ

x
+

1 − λ

y

)

−1
)

≤ sup {f (x) , f(y)}

holds for all x, y ∈ I and λ ∈ [0, 1].

Definition 1.5. Let I ⊂ (0, ∞) be a real interval and p ∈ R\ {0}. A function f : I → R is

said to be p-quasi-convex, if

f
(

[txp + (1 − t) yp]
1

p

)

≤ max {f (x) , f(y)}

for all x, y ∈ I and t ∈ [0, 1]. If this inequality is reversed, then f is said to be p-quasi-

concave [17].

It can be easily seen that for p = 1 and p = −1, p-quasi convexity reduces to ordi-

nary quasi convexity and harmonically quasi convexity of functions defined on I ⊂ (0, ∞),

respectively. Moreover every p-convex function is a p-quasi-convex function.

Many papers have been written by a number of mathematicians concerning inequalities

for different classes of harmonically convex, harmonically quasi-convex, p-convex and p-

quasi-convex functions see for instance the recent papers [3, 7–12, 14, 17, 19, 20, 22–24] and

the references within these papers.

The following integral inequality, named Simpson’s integral inequality, is one of the best

known results in the literature.

Theorem 1.2. (Simpson’s Integral Inequality). Let f : I = [a, b] ⊂ R −→ R be a four time

continuously differentiable on I
◦

, where I
◦

is the interior of I and
∥

∥

∥f (4)
∥

∥

∥

∞

< ∞. Then
∣

∣

∣

∣

∣

1

3

[

f (a) + f(b)

2
+ 2f

(

a + b

2

)]

−
1

b − a

∫ b

a

f(x)dx

∣

∣

∣

∣

∣

≤
1

2880

∥

∥

∥f (4)
∥

∥

∥

∞

(b − a)4
.
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There are substantial literature on Simpson type integral inequalities. Here we mention

the result of [11,13,16] and the corresponding references cited therein.

Throughout this paper we will use the following notations:

Let 0 < a < b and p ∈ R\ {0}.

Ap = Ap (a, b) =
ap + bp

2
, A1 = A = A (a, b) =

a + b

2

Mp = Mp (a, b) = Ap

1

p =

[

ap + bp

2

]
1

p

,

It (x, Ap; u, v) =

∣

∣

∣t − 1
3

∣

∣

∣

u

[(1 − t) xp + tAp]v−
v

p

,

Cx,Mp
(f) = max

{∣

∣f ′ (x)
∣

∣ ,
∣

∣f ′ (Mp)
∣

∣

}

where t ∈ [0, 1], x ∈ [a, b] and u, v ≥ 0.

2. Main Results

In this section, we will use the following Lemma to obtain our main the results [15]:

Lemma 2.1. Let f : I ⊂ (0, ∞) −→ R be a differentiable mapping on I
◦

(interior of I) and

a, b ∈ I
◦

with a < b and p ∈ R\ {0}. If f ′ ∈ L [a, b], then the following equality holds:

1

6
[ f (a) + 4f (Mp) + f (b)] −

p

bp − ap

∫ b

a

f (x)

x1−p
dx

=
bp − ap

4p





∫ 1

0

t − 1
3

[(1 − t) ap + tAp]1−
1

p

f ′

(

[(1 − t) ap + tAp]
1

p

)

dt

+

∫ 1

0

t − 2
3

[(1 − t) Ap + tbp]1−
1

p

f ′

(

[(1 − t) Ap + tbp]
1

p

)

dt



 .

Theorem 2.1. Let f : I ⊂ (0, ∞) −→ R be a differentiable mapping on I
◦

(interior of I)

and a, b ∈ I
◦

with a < b and p ∈ R\ {0}. If f ′ ∈ L [a, b] and |f ′|q is p-quasi-convex on I for

q ≥ 1, then the following inequality holds:
∣

∣

∣

∣

∣

1

6
[f (a) + 4f (Mp) + f (b)] −

p

bp − ap

∫ b

a

f (x)

x1−p
dx

∣

∣

∣

∣

∣

≤
bp − ap

4p

[

Ca,Mp
(f) Dp (a, b) + Cb,Mp

(f) Ep (a, b)
]

where

Dp (a, b) =

∫ 1

0
It (a, Ap; 1, 1) dt, Ep (a, b) =

∫ 1

0
I1−t (b, Ap; 1, 1) dt.
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Proof. Using Lemma 2.1 and the Power mean inequality, we have
∣

∣

∣

∣

∣

1

6
[f (a) + 4f (Mp) + f (b)] −

p

bp − ap

∫ b

a

f (x)

x1−p
dx

∣

∣

∣

∣

∣

≤
bp − ap

4p





∫ 1

0

∣

∣

∣t − 1
3

∣

∣

∣

[(1 − t) ap + tAp]1−
1

p

∣

∣

∣

∣

∣

∣

f ′





[

(1 − t) ap + t

(

A
1

p

p

)p]
1

p





∣

∣

∣

∣

∣

∣

dt





+
bp − ap

4p





∫ 1

0

∣

∣

∣t − 2
3

∣

∣

∣

[(1 − t) Ap + tbp]1−
1

p

∣

∣

∣

∣

∣

∣

f ′





[

(1 − t)

(

A
1

p

p

)p

+ tbp

]
1

p





∣

∣

∣

∣

∣

∣

dt





=
bp − ap

4p

[∫ 1

0
It (a, Ap; 1, 1)

∣

∣

∣

∣

f ′

(

[

(1 − t) ap + tMp
p

] 1

p

)∣

∣

∣

∣

dt

]

+
bp − ap

4p

[∫ 1

0
I1−t (b, Ap; 1, 1)

∣

∣

∣

∣

f ′

(

[

(1 − t) Mp
p + tbp

]
1

p

)∣

∣

∣

∣

dt

]

≤
bp − ap

4p

[∫ 1

0
It (a, Ap; 1, 1) dt

]1−
1

q

×

[∫ 1

0
It (a, Ap; 1, 1)

∣

∣

∣

∣

f ′

(

[

(1 − t) ap + tMp
p

] 1

p

)∣

∣

∣

∣

q

dt

]

1

q

+
bp − ap

4p

[∫ 1

0
I1−t (b, Ap; 1, 1) dt

]1−
1

q

×

[∫ 1

0
I1−t (b, Ap; 1, 1)

∣

∣

∣

∣

f ′

(

[

(1 − t) Mp
p + tbp

] 1

p

)∣

∣

∣

∣

q

dt

]

1

q

≤
bp − ap

4p

[

Ca,Mp
(f) Dp (a, b) + Cb,Mp

(f) Ep (a, b)
]

.

This completes the proof of theorem. �

Corollary 2.1. Under conditions of Theorem 2.1,

i. If we take p = 1, then we obtain the following inequality for quasi-convex function:
∣

∣

∣

∣

∣

1

6

[

f (a) + 4f

(

a + b

2

)

+ f (b)

]

−
1

b − a

∫ b

a
f(x)dx

∣

∣

∣

∣

∣

≤
5

36
(b − a) A (Ca,M1

(f) , Cb,M1
(f)) .

ii. If we take p = −1, then we obtain the following inequality for harmonically quasi-convex

function:
∣

∣

∣

∣

∣

1

6

[

f (a) + 4f

(

2ab

a + b

)

+ f (b)

]

−
ab

b − a

∫ b

a

f (x)

x2 dx

∣

∣

∣

∣

∣

≤
b − a

4ab

[

Ca,M−1
(f) D−1 (a, b) + Cb,M−1

(f) E−1 (a, b)
]

.

Theorem 2.2. Let f : I ⊂ (0, ∞) −→ R be a differentiable mapping on I
◦

(interior of I)

and a, b ∈ I
◦

with a < b and p ∈ R\ {0}. If f ′ ∈ L [a, b] and |f ′|q is p-quasi-convex on I for
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q > 1, 1
r

+ 1
q

= 1, then

∣

∣

∣

∣

∣

1

6
[f (a) + 4f (Mp) + f (b)] −

p

bp − ap

∫ b

a

f (x)

x1−p
dx

∣

∣

∣

∣

∣

≤
bp − ap

4p

[

N
1

r

p,r(a, b)Ca,Mp
(f) + O

1

r

p,r(a, b)Cb,Mp
(f)

]

where

Np,r (a, b) =

∫ 1

0
It (a, Ap; r, r) dt, Op,r (a, b) =

∫ 1

0
I1−t (b, Ap; r, r) dt.

Proof. From Lemma 2.1, Hölder’s integral inequality and the p-quasi-convexity of
∣

∣

∣f
′

∣

∣

∣

q
on

[a, b], we have,
∣

∣

∣

∣

∣

1

6
[f (a) + 4f (Mp) + f (b)] −

p

bp − ap

∫ b

a

f (x)

x1−p
dx

∣

∣

∣

∣

∣

≤
bp − ap

4p

(∫ 1

0
It (a, Ap; r, r) dt

)

1

r

(∫ 1

0

∣

∣

∣f ′((1 − t) ap + tAp)
1

p

∣

∣

∣

q

dt

)

1

q

+
bp − ap

4p

(∫ 1

0
It (b, Ap; r, r) dt

)

1

r

(∫ 1

0

∣

∣

∣f ′((1 − t) Ap + tbp)
1

p

∣

∣

∣

q

dt

)

1

q

≤
bp − ap

4p

[

N
1

r

p,r(a, b)Ca,Mp
(f) + O

1

r

p,r(a, b)Cb,Mp
(f)

]

.

This completes the proof of theorem. �

Corollary 2.2. Under conditions of Theorem 2.2,

i. If we take p = 1, then we obtain the following inequality for quasi-convex function:
∣

∣

∣

∣

∣

1

6

[

f (a) + 4f

(

a + b

2

)

+ f (b)

]

−
1

b − a

∫ b

a
f (x) dx

∣

∣

∣

∣

∣

≤
b − a

6

[

1 + 2r+1

3 (r + 1)

] 1

r

A (Ca,M1
(f) , Cb,M1

(f)) .

ii. If we take p = −1, then we obtain the following inequality for harmonically quasi-convex

function:
∣

∣

∣

∣

∣

1

6

[

f (a) + 4f

(

2ab

a + b

)

+ f (b)

]

−
ab

b − a

∫ b

a

f (x)

x2 dx

∣

∣

∣

∣

∣

≤
b − a

4ab

[

N
1

r

−1,r (a, b) Ca,M−1
(f) + O

1

r

−1 (a, b) Cb,M−1,r
(f)

]

.

Theorem 2.3. Let f : I ⊂ (0, ∞) −→ R be a differentiable mapping on I
◦

(interior of I)

and a, b ∈ I
◦

with a < b and p ∈ R\ {0}. If f
′

∈ L [a, b] and
∣

∣

∣f
′

∣

∣

∣

q
is p-quasi-convex on I for
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q > 1, 1
r

+ 1
q

= 1, then

∣

∣

∣

∣

∣

1

6
[f (a) + 4f (Mp) + f (b)] −

p

bp − ap

∫ b

a

f (x)

x1−p
dx

∣

∣

∣

∣

∣

≤
bp − ap

12p

[

1 + 2r+1

3(r + 1)

] 1

r
[

Ca,Mp
(f) Q

1

q

p,q (a, b) + Cb,Mp
(f) S

1

q

p,q (a, b)

]

where

Qp,q (a, b) =

∫ 1

0
It (a, Ap; 0, q) dt, Sp,q (a, b) =

∫ 1

0
I1−t (b, Ap; 0, q) dt.

Proof. From Lemma 2.1, Hölder’s integral inequality and the p-quasi-convexity of |f ′|q on

[a, b], we obtain,

∣

∣

∣

∣

∣

1

6
[f (a) + 4f (Mp) + f (b)] −

p

bp − ap

∫ b

a

f (x)

x1−p
dx

∣

∣

∣

∣

∣

≤
bp − ap

4p

∫ 1

0

∣

∣

∣

∣

t −
1

3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

[(1 − t) ap + tAp]1−
1

p

f ′

(

(1 − t) ap + t

(

A
1

p

p

)p)
1

p

∣

∣

∣

∣

∣

∣

dt

+
bp − ap

4p

∫ 1

0

∣

∣

∣

∣

t −
2

3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

[(1 − t) Ap + tbp]1−
1

p

f ′

(

(1 − t)

(

A
1

p

p

)p

+ tbp

)

1

p

∣

∣

∣

∣

∣

∣

dt

≤
bp − ap

4p

(
∫ 1

0

∣

∣

∣

∣

t −
1

3

∣

∣

∣

∣

r

dt

)

1

r

(
∫ 1

0
It (a, Ap; 0, q)

∣

∣

∣

∣

f ′

(

(1 − t) ap + tMp
p

) 1

p

∣

∣

∣

∣

q

dt

)

1

q

+
bp − ap

4p

(∫ 1

0

∣

∣

∣

∣

t −
2

3

∣

∣

∣

∣

r

dt

)

1

r

×

(∫ 1

0
I1−t (b, Ap; 0, q)

∣

∣

∣

∣

f ′

(

(1 − t) Mp
p + tbp

) 1

p

∣

∣

∣

∣

q

dt

)

1

q

≤
bp − ap

12p

[

1 + 2r+1

3(r + 1)

] 1

r
[

Ca,Mp
(f) Q

1

q

p,q (a, b) + Cb,Mp
(f) S

1

q

p,q (a, b)

]

.

This completes the proof of theorem. �

Corollary 2.3. Under conditions of Theorem 2.3,

i. If we take p = 1, then we obtain the following inequality for quasi-convex function:
∣

∣

∣

∣

∣

1

6

[

f (a) + 4f

(

a + b

2

)

+ f (b)

]

−
1

b − a

∫ b

a

f (x) dx

∣

∣

∣

∣

∣

≤
b − a

6

[

1 + 2r+1

3 (r + 1)

] 1

r

A (Ca,M1
(f) , Cb,M1

(f)) .
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ii. If we take p = −1, then we obtain the following inequality for harmonically quasi-convex

function:
∣

∣

∣

∣

∣

1

6

[

f (a) + 4f

(

2ab

a + b

)

+ f (b)

]

−
ab

b − a

∫ b

a

f (x)

x2 dx

∣

∣

∣

∣

∣

≤
b − a

12ab

[

1 + 2r+1

3 (r + 1)

] 1

r
[

Ca,M−1
(f) Q

1

q

−1,q (a, b) + Cb,M−1
(f) S

1

q

−1,q (a, b)

]

.
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