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Abstract. Motivated by the refinements and reverses of the well-known Young inequality,
in this article, we derive some new improvements of Heinz mean inequalities for positive
invertible operators and the Hilbert-Schmidt norm.

1. Introduction

It is well-known that the Young inequality for scalars says that if a, b > 0 and v ∈ [0, 1],

then

a1−vbv ≤ (1 − v)a + vb (1.1)

with equality if and only if a = b. The inequality (1.1) is also called weighted arithmetic-

geometric mean inequality.

For 0 ≤ v ≤ 1 and two nonnegative real numbers a and b, the Heinz mean interpolates

between the arithmetic mean and geometric mean defined as

Hv(a, b) =
avb1−v + a1−vbv

2
.

It is easy to see that the Heinz mean is convex as a function of v on the interval [0, 1],

attains minimum at v = 1/2, and attains maximum at v = 0 and v = 1, it is obvious that

√
ab ≤ Hv(a, b) ≤ a + b

2
. (1.2)

Moreover, the function Hv(a, b) is symmetric about the point v = 1/2, that is, Hv(a, b) =

H1−v(a, b).

Kittaneh and Manasrah [5,6] improved Young inequality (1.1) and Heinz inequality (1.2),

and obtained the following inequalities:

r(
√

a −
√

b)2 ≤ (1 − v)a + vb − a1−vbv ≤ R(
√

a −
√

b)2, (1.3)

2r(
√

a −
√

b)2 ≤ a + b −
(

avb1−v + a1−vbv
)

≤ 2R(
√

a −
√

b)2, (1.4)
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2r(a − b)2 ≤ (a + b)2 −
(

avb1−v + a1−vbv
)2

≤ 2R(a − b)2, (1.5)

where a, b > 0, v ∈ [0, 1], r = min{v, 1 − v} and R = max{v, 1 − v}.

Recently, the inequality (1.1) and the first one in (1.3) was refined by Zhao and Wu in

the following forms, for the purpose of the study on operators inequalities.

Proposition 1.1. [10] Let a, b be two nonnegative real numbers and v ∈ (0, 1).

(I) If 0 < v ≤ 1
2 , then

r0(
4
√

ab −
√

a)2 + v(
√

a −
√

b)2 + a1−vbv ≤ (1 − v)a + vb, (1.6)

(II) if 1
2 < v < 1, then

r0(
4
√

ab −
√

b)2 + (1 − v)(
√

a −
√

b)2 + a1−vbv ≤ (1 − v)a + vb, (1.7)

where r = min{v, 1 − v} and r0 = min{2r, 1 − 2r}.

And they also presented the reverse forms of the inequality (1.1), which are more precise

than the second inequality in (1.3).

Proposition 1.2. [10] Let a, b be two nonnegative real numbers and v ∈ (0, 1).

(I) If 0 < v ≤ 1
2 , then

(1 − v)a + vb ≤ a1−vbv + (1 − v)(
√

a −
√

b)2 − r0(
4
√

ab −
√

b)2, (1.8)

(II) if 1
2 < v < 1, then

(1 − v)a + vb ≤ a1−vbv + v(
√

a −
√

b)2 − r0(
4
√

ab −
√

a)2, (1.9)

where r = min{v, 1 − v} and r0 = min{2r, 1 − 2r}.

Now we explain the notation and historical background of the operator inequalities related

to the previous classical inequalities.

Let (B(H), ‖·‖) be the C∗-algebra of all bounded linear operators on a complex separable

Hilbert space (H, 〈·, ·〉) and Bh(H) be the semi-space of all self-adjoint operators in B(H).

Moreover, a self-adjoint operator A ∈ Bh(H) is called strictly positive if 〈Ax, x〉 > 0 for

every x ∈ H \ {0} and the cone of all positive invertible operators is denoted by B
++(H),

I stands for the identity operator. In the case when dimH = n, we identify B(H) with the

full matrix algebra Mn of all n × n matrices with entries in the complex field.

As a matter of convenience, we use the following notation to define the weighted arith-

metic mean and geometric mean for operators:

A∇vB = (1 − v)A + vB, A#vB = A
1

2 (A−
1

2 BA−
1

2 )vA
1

2 ,

where A, B ∈ B
++(H) and 0 ≤ v ≤ 1. When v = 1

2 , we write A∇B and A#B for brevity,

respectively.

The operator version of the Heinz mean, denoted by Hv(A, B), is defined as

Hv(A, B) =
A#vB + A#1−vB

2
,

for A, B ∈ B
++(H) and 0 ≤ v ≤ 1.
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It is easy to see that

A#B ≤ Hv(A, B) ≤ A∇B. (1.10)

The series of inequalities in (1.10) are the Heinz operator inequalities.

Kittaneh and Manasrah [6] obtained the following inequalities related to the inequalities

(1.4)

2r(A∇B − A#B) ≤ A∇B − Hv(A, B) ≤ 2R(A∇B − A#B) (1.11)

for positive definite matrices A and B and 0 ≤ v ≤ 1, where r = min{v, 1 − v} and

R = max{v, 1 − v}, which of course remain valid for Hilbert space operators by a standard

approximation argument.

The authors of [7] also obtain the same result of the first inequality in (1.11) for two

positive operators.

In [8], we derived a reverse ratio form of the first inequality of (1.11), for A, B ∈ B
++(H)

and v ∈ [0, 1
2) ∪ (1

2 , 1], then

A∇B ≤ K(
√

h, 2)R0Hv(A, B) + 2r(A∇B − A#B), (1.12)

and from the inequalities of Theorem 3.4 in Wu and Zhao [9], by putting C = A1/2, we

deduce that

K(
√

h, 2)r0Hv(A, B) + 2r(A∇B − A#B)

≤ A∇B

≤ K(
√

h, 2)−r0Hv(A, B) + 2R(A∇B − A#B),

(1.13)

where K(·, 2) is the Kantorovich constant, defined by K(t, 2) = (t + 1)2/4t (t > 0), R =

max{v, 1−v}, r = min{v, 1−v}, R0 = max{1−2r, 2r}, r0 = min{1−2r, 2r} and h = M/m.

Note that the inequalities (1.13) are an improvement of (1.11) with K(t, 2) ≥ 1 and the

inequality (1.12) can not be compared with the second inequality in (1.13).

By Proposition 1.1 and 1.2, Zhao and Wu [10] presented the improvements of the inequal-

ities (1.10) and (1.11) for two positive invertible operators.

Our main task in this article is to derive several new refinements and reverses of the

Heinz operator inequalities. This article is organized in the following way: in Section 2,

we establish the whole series of refinements and reverses of the Heinz inequalities via the

improved Young inequality which will help us in deriving Heinz operator inequalities. In

Section 3, we obtain related Heinz operator inequalities. In Section 4, the Hilbert-Schmidt

norm inequalities are presented.

Throughout the paper, R = max{v, 1 − v}, r = min{v, 1 − v}, R0 = max{1 − 2r, 2r},

r0 = min{1 − 2r, 2r}.

2. Refinements and reverses of the Heinz mean inequalities

In this section, we give refinements and reverses of the Heinz inequality (for more details,

the reader is referred to [8–10]).

Lemma 2.1. Let a, b be two nonnegative real numbers and v ∈ (0, 1). Then
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1

2
r0

[

(
4
√

ab −
√

a)2 + (
4
√

ab −
√

b)2
]

+ r(
√

a −
√

b)2 + Hv(a, b) ≤ a + b

2
. (2.1)

Proof. If 0 < v ≤ 1
2 , interchanging a and b in the inequality (1.6), then

r0(
4
√

ab −
√

b)2 + v(
√

a −
√

b)2 + avb1−v ≤ va + (1 − v)b, (2.2)

adding the inequalities (1.6) and (2.2) together, we obtain

r0

[

(
4
√

ab −
√

a)2 + (
4
√

ab −
√

b)2
]

+ 2v(
√

a −
√

b)2 + avb1−v + a1−vbv ≤ a + b.

If 1
2 < v < 1, by the inequality (1.7) with the similar method, we get

r0

[

(
4
√

ab −
√

a)2 + (
4
√

ab −
√

b)2
]

+ 2(1 − v)(
√

a −
√

b)2 + avb1−v + a1−vbv ≤ a + b.

So we conclude that for v ∈ (0, 1)

1

2
r0

[

(
4
√

ab −
√

a)2 + (
4
√

ab −
√

b)2
]

+ r(
√

a −
√

b)2 + Hv(a, b) ≤ a + b

2
.

The proof is completed. �

Lemma 2.2. Let a, b be two nonnegative real numbers and v ∈ (0, 1). Then

a + b

2
≤ Hv(a, b) + R(

√
a −

√
b)2 − 1

2
r0

[

(
4
√

ab −
√

a)2 + (
4
√

ab −
√

b)2
]

. (2.3)

Proof. By the inequalities (1.8) and (1.9), the proof is similar to that of Lemma 2.1, so we

omit it. �

Remark 2.1. The inequalities in Lemma 2.1 and Lemma 2.2 improve the inequalities (1.4).

Lemma 2.3. Let a, b be two nonnegative real numbers and v ∈ (0, 1). Then

r0

[

(
√

ab − a)2 + (
√

ab − b)2
]

+ 2r(a − b)2 + 4Hv(a, b)2 ≤ (a + b)2. (2.4)

Proof. If 0 < v ≤ 1
2 , by virtue of replacing a by a2 and b by b2 in (1.6), respectively, then

we have

(a + b)2 − 4Hv(a, b)2

= (a + b)2 −
(

a1−vbv + avb1−v
)2

= a2 + b2 − (a1−vbv)2 − (avb1−v)2

= (1 − v) a2 + vb2 − (a1−vbv)2 + va2 + (1 − v) b2 − (avb1−v)2

≥ r0(
√

ab − a)2 + v(a − b)2 + r0(
√

ab − b)2 + v(a − b)2

= r0

[

(
√

ab − a)2 + (
√

ab − b)2
]

+ 2v(a − b)2,

hence

r0

[

(
√

ab − a)2 + (
√

ab − b)2
]

+ 2v(a − b)2 + 4Hv(a, b)2 ≤ (a + b)2.

If 1
2 < v < 1, by the inequality (1.7) with the similar method, we get

r0

[

(
√

ab − a)2 + (
√

ab − b)2
]

+ 2(1 − v)(a − b)2 + 4Hv(a, b)2 ≤ (a + b)2.
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So we obtain the desired result based on the above discussion. �

Lemma 2.4. Let a, b be two nonnegative real numbers and v ∈ (0, 1). Then

(a + b)2 ≤ 4Hv(a, b)2 + 2R(a − b)2 − r0

[

(
√

ab − a)2 + (
√

ab − b)2
]

. (2.5)

Proof. If 0 < v ≤ 1
2 , replacing a by a2 and b by b2 in (1.8), respectively, then we have

(a + b)2 − 4Hv(a, b)2

= (1 − v) a2 + vb2 − (a1−vbv)2 + va2 + (1 − v) b2 − (avb1−v)2

≤ (1 − v)(a − b)2 − r0(
√

ab − b)2 + (1 − v)(a − b)2 − r0(
√

ab − a)2

= 2(1 − v)(a − b)2 − r0

[

(
√

ab − a)2 + (
√

ab − b)2
]

,

hence

(a + b)2 ≤ 4Hv(a, b)2 + 2(1 − v)(a − b)2 − r0

[

(
√

ab − a)2 + (
√

ab − b)2
]

.

If 1
2 < v < 1, by the inequality (1.9) with the similar method, we get

(a + b)2 ≤ 4Hv(a, b)2 + 2v(a − b)2 − r0

[

(
√

ab − a)2 + (
√

ab − b)2
]

.

So we conclude the desired result. �

Remark 2.2. The inequalities in Lemma 2.3 and Lemma 2.4 improve the inequalities (1.5).

3. Refinements and reverses of the Heinz mean operator inequalities

In this section, we present the operator version for the refinements and reverses of the

Heinz inequalities in section 2. The techniques are based on the monotonicity property of

operator functions described in the following lemma (for more details, see [1, 3]).

Lemma 3.1. Let X ∈ B(H) be self-adjoint operator and if f and g are both continuous

functions with f(t) ≥ g(t) for t ∈ Sp(X) (the spectrum of X), then f(X) ≥ g(X) with

equality if and only if f(t) = g(t) for all t ∈ Sp(X).

Theorem 3.1. Let A, B ∈ B
++(H) and v ∈ (0, 1). Then

r0

(

A∇B + A#B − 2H 1

4

(A, B)
)

+ 2r(A∇B − A#B) + Hv(A, B) ≤ A∇B. (3.1)

Equality holds if and only if A = B or equivalently A−
1

2 BA−
1

2 = I.

Proof. By Lemma 2.1, if 0 < v ≤ 1
2 , then for any b > 0 we have

r0

[

b + 1

2
+

√
b − 2H 1

4

(1, b)

]

+ 2v

(

b + 1

2
−

√
b

)

+ Hv(1, b) ≤ 1 + b

2
.

Making use of Lemma 3.1, for a positive invertible operator T and v ∈ (0, 1), it follows that

r0

[

T + I

2
+ T

1

2 − 2H 1

4

(I, T )

]

+ 2v

(

T + I

2
− T

1

2

)

+ Hv(I, T ) ≤ I + T

2
.
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Substituting A−
1

2 BA−
1

2 for T in the above inequality, we obtain

r0

[

A−
1

2 BA−
1

2 + I

2
+
(

A−
1

2 BA−
1

2

)
1

2 − 2H 1

4

(

I, A−
1

2 BA−
1

2

)

]

+ 2v

(

A−
1

2 BA−
1

2 + I

2
−
(

A−
1

2 BA−
1

2

)
1

2

)

+ Hv

(

I, A−
1

2 BA−
1

2

)

≤ I + A−
1

2 BA−
1

2

2
.

(3.2)

Applying the ∗-conjugation • 7→ A1/2 • A1/2 to (3.2) (see [4, Theorem 7.7.2])

r0

(

A∇B + A#B − 2H 1

4

(A, B)
)

+ 2v(A∇B − A#B) + Hv(A, B) ≤ A∇B.

If 1
2 < v < 1, then for any b > 0 we have

r0

[

b + 1

2
+

√
b − 2H 1

4

(1, b)

]

+ 2(1 − v)

(

b + 1

2
−

√
b

)

+ Hv(1, b) ≤ 1 + b

2
.

By the similar process of the case 0 < v ≤ 1
2 , we can deduce

r0

(

A∇B + A#B − 2H 1

4

(A, B)
)

+ 2(1 − v)(A∇B − A#B) + Hv(A, B) ≤ A∇B.

So we conclude that the inequality (3.1) holds for v ∈ (0, 1). �

Theorem 3.2. Let A, B ∈ B
++(H) and v ∈ (0, 1). Then

A∇B ≤ Hv(A, B) + 2R(A∇B − A#B) − r0

(

A∇B + A#B − 2H 1

4

(A, B)
)

. (3.3)

Equality holds if and only if A = B or equivalently B−
1

2 AB−
1

2 = I.

Proof. If 0 < v ≤ 1
2 , by Lemma 2.2, then for any a > 0 we have

a + 1

2
≤ Hv(a, 1) + 2(1 − v)

(

a + 1

2
−

√
a

)

− r0

[

a + 1

2
+

√
a − 2H 1

4

(a, 1)

]

.

Making use of Lemma 3.1, for a positive invertible operator R and v ∈ (0, 1), it follows that

R + I

2
≤ Hv(R, I) + 2(1 − v)

(

R + I

2
− R

1

2

)

− r0

[

R + I

2
+ R

1

2 − 2H 1

4

(R, I)

]

.

Substituting B−
1

2 AB−
1

2 for R in the above inequality, we have

I + B−
1

2 AB−
1

2

2

≤ Hv

(

B−
1

2 AB−
1

2 , I
)

+ 2(1 − v)

[

B−
1

2 AB−
1

2 + I

2
−
(

B−
1

2 AB−
1

2

)
1

2

]

− r0

[

B−
1

2 AB−
1

2 + I

2
+
(

B−
1

2 AB−
1

2

)
1

2 − 2H 1

4

(

B−
1

2 AB−
1

2 , I
)

]

.

(3.4)

Applying the ∗-conjugation • 7→ B1/2 • B1/2 to (3.4) and since A#vB = B#1−vA for

0 < v < 1, we get the following order relation

A∇B ≤ Hv(A, B) + 2(1 − v)(A∇B − A#B) − r0

(

A∇B + A#B − 2H 1

4

(A, B)
)

.
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If 1
2 < v < 1, by Lemma 2.2, then for any a > 0 we have

a + 1

2
≤ Hv(a, 1) + 2v

(

a + 1

2
−

√
a

)

− r0

[

a + 1

2
+

√
a − 2H 1

4

(a, 1)

]

.

By the similar process of the case 0 < v ≤ 1
2 , we can deduce

A∇B ≤ Hv(A, B) + 2v(A∇B − A#B) − r0

(

A∇B + A#B − 2H 1

4

(A, B)
)

.

So we conclude that the inequality (3.3) holds for v ∈ (0, 1).

�

Remark 3.1. Combining (3.1) and (3.3) with (1.11), we obtain

A#B ≤ Hv(A, B)

≤ 2r(A∇B − A#B) + Hv(A, B)

≤ r0

(

A∇B + A#B − 2H 1

4

(A, B)
)

+ 2r(A∇B − A#B) + Hv(A, B)

≤ A∇B

≤ Hv(A, B) + 2R(A∇B − A#B) − r0

(

A∇B + A#B − 2H 1

4

(A, B)
)

≤ Hv(A, B) + 2R(A∇B − A#B)

≤ A∇B + 2R(A∇B − A#B).

The inequalities (3.1) and (3.3) improve the inequalities (1.11). But neither the bounds of

A∇B in (3.1) and (3.3) nor the corresponding bounds in (1.13) are uniformly better than

the other.

Theorem 3.3. Let A, B ∈ B
++(H) and v ∈ (0, 1). Then

2r2(A∇B − A#B) + Hv(A, B) + r0

(

A∇B + A#B − 2H 1

4

(A, B)
)

≤ [1 − 2v(1 − v)] A∇B + 2v(1 − v)A#B

≤ A∇B.

(3.5)

Equality holds if and only if A = B or equivalently A−
1

2 BA−
1

2 = I.

Proof. By the inequalities (18) and (19) in [10], replacing a2 and b2 by a and b, respectively,

in each inequality, we obtain

r0

(√
ab + a − 2a

3

4 b
1

4

)

+ 2v2
(

a + b

2
−

√
ab

)

+ a1−vbv

≤ (1 − v)2a + v2b + 2v(1 − v)
√

ab,

(3.6)

r0

(√
ab + b − 2b

3

4 a
1

4

)

+ 2(1 − v)2
(

a + b

2
−

√
ab

)

+ a1−vbv

≤ (1 − v)2a + v2b + 2v(1 − v)
√

ab.

(3.7)
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Replacing a by b and b by a in (3.6) and (3.7), then combining (3.6) and (3.7) we have

r0

(√
ab +

a + b

2
− 2H 1

4
(a,b)

)

+ 2v2
(

a + b

2
−

√
ab

)

+ Hv(a, b)

≤
[

(1 − v)2 + v2
] a + b

2
+ 2v(1 − v)

√
ab,

r0

(√
ab +

a + b

2
− 2H 1

4
(a,b)

)

+ 2(1 − v)2
(

a + b

2
−

√
ab

)

+ Hv(a, b)

≤
[

(1 − v)2 + v2
] a + b

2
+ 2v(1 − v)

√
ab.

The rest of the proof is similar to that of Theorem 3.1, so we omit it. �

Theorem 3.4. Let A, B ∈ B
++(H) and v ∈ (0, 1). Then

2R2(A∇B − A#B) + Hv(A, B) − r0

(

A∇B + A#B − 2H 1

4

(A, B)
)

≥ [1 − 2v(1 − v)] A∇B + 2v(1 − v)A#B

≥ A#B.

(3.8)

Equality holds if and only if A = B or equivalently A−
1

2 BA−
1

2 = I.

Proof. By the inequality (20) and (21) in [10], the proof of the inequality (3.8) can be

completed by an argument similar to that used in the proof of Theorem 3.3. �

Remark 3.2. Combining (3.5) with (3.8), we obtain

A#B ≤ Hv(A, B)

≤ 2r2(A∇B − A#B) + Hv(A, B)

≤ 2r2(A∇B − A#B) + Hv(A, B) + r0

(

A∇B + A#B − 2H 1

4

(A, B)
)

≤ [1 − 2v(1 − v)] A∇B + 2v(1 − v)A#B

≤ 2R2(A∇B − A#B) + Hv(A, B) − r0

(

A∇B + A#B − 2H 1

4

(A, B)
)

≤ 2R2(A∇B − A#B) + Hv(A, B)

≤ 2R2(A∇B − A#B) + A∇B,

which is an improvement of A#B ≤ Hv(A, B) ≤ A∇B.

4. Matrix version of the Heinz norm inequality

In this section, we will discuss the improved Heinz inequality for the Hilbert-Schmidt

norm.

Let Mn(C) denote the algebra of all n × n complex matrices. The Hilbert-Schmidt norm

of A = [aij ] ∈ Mn(C) is defined by ‖A‖2
F =

(

n
∑

i,j=1
|aij |2

)1/2

=

(

n
∑

i=1
s2

i (A)

)1/2

(see [4, p.341-

342]), where si(A), i = 1, 2, · · · , n denote the singular values of A. It is well-known that

each unitarily invariant norm is a symmetric guage function of singular values [1, p.91], so

the Hilbert-Schmidt norm is unitarily invariant in the sense that ‖UAV ‖2
F = ‖A‖2

F for all
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unitary matrices U, V ∈ Mn(C). The Schur product of two matrices A, B ∈ Mn(C) is the

entrywise product and denoted by A ◦ B.

Based on the refined Heinz inequality (2.3) in [5] and the reverse Heinz inequality (2.4)

in [6], Kittaneh and Manasrah have showed that if A, B, X ∈ Mn(C) with A and B positive

semidefinite matrices and v ∈ [0, 1], then

‖AX + XB‖2
F ≥

∥

∥

∥A1−vXBv + AvXB1−v
∥

∥

∥

2

F
+ 2r ‖AX − XB‖2

F , (4.1)

‖AX + XB‖2
F ≤

∥

∥

∥A1−vXBv + AvXB1−v
∥

∥

∥

2

F
+ 2R ‖AX − XB‖2

F . (4.2)

Now, we derive the following two theorems which improve the inequalities (4.1) and (4.2).

Theorem 4.1. Let A, B, X ∈ Mn(C) such that A and B are positive semidefinite and

0 < v < 1. Then

2r ‖AX − XB‖2
F + r0

(

∥

∥

∥A
1

2 XB
1

2 − AX
∥

∥

∥

2

F
+
∥

∥

∥A
1

2 XB
1

2 − XB
∥

∥

∥

2

F

)

≤ ‖AX + XB‖2
F −

∥

∥

∥AvXB1−v + A1−vXBv
∥

∥

∥

2

F
.

(4.3)

Proof. Since A and B are positive semidefinite, it follows by the spectral theorem that there

exist unitary matrices U, V ∈ Mn(C) such that

A = UΛ1U∗, B = V Λ2V ∗,

where Λ1 = diag(µ1, µ2, · · · , µn), Λ2 = diag(ν1, ν2, · · · , νn), µi, νi ≥ 0, i = 1, 2, · · · , n.

Let Y = U∗XV = [yij ], then

AvXB1−v + A1−vXBv = U
(

Λv
1Y Λ1−v

2 + Λ1−v
1 Y Λv

2

)

V ∗

= U
[(

µ1−v
i νv

j + µv
i ν1−v

j

)

◦ Y
]

V ∗,

A
1

2 XB
1

2 − AX = U
[(

(µiνj)
1

2 − µi

)

◦ Y
]

V ∗,

A
1

2 XB
1

2 − XB = U
[(

(µiνj)
1

2 − νi

)

◦ Y
]

V ∗,

AX ± XB = U [(µi ± νj) ◦ Y ] V ∗.

Utilizing the inequality (2.4) and the unitary invariance of the Hilbert-Schmidt norm, if

0 < v ≤ 1
2 , we have

‖AX + XB‖2
F −

∥

∥

∥AvXB1−v + A1−vXBv
∥

∥

∥

2

F

=
n
∑

i,j=1

(µi + νj)2 |yij|2 −
n
∑

i,j=1

(

µ1−v
i νv

j + µv
i ν1−v

j

)2
|yij|2

=
n
∑

i,j=1

[

(µi + νj)
2 −

(

µ1−v
i νv

j + µv
i ν1−v

j

)2
]

|yij|2
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≥
n
∑

i,j=1

[

2v (µi − νj)
2 + r0

(

((µiνj)
1

2 − µi)
2 + ((µiνj)

1

2 − νi)
2
)]

|yij|2

= 2v
n
∑

i,j=1

(µi − νj)
2 |yij|2 + r0

n
∑

i,j=1

(

((µiνj)
1

2 − µi)
2 + ((µiνj)

1

2 − νi)
2
)

|yij |2

= 2v ‖AX − XB‖2
F + r0

(

∥

∥

∥A
1

2 XB
1

2 − AX
∥

∥

∥

2

F
+
∥

∥

∥A
1

2 XB
1

2 − XB
∥

∥

∥

2

F

)

.

Similarly, if 1
2 < v < 1, we can deduce

‖AX + XB‖2
F −

∥

∥

∥AvXB1−v + A1−vXBv
∥

∥

∥

2

F

≥ 2(1 − v) ‖AX − XB‖2
F + r0

(

∥

∥

∥A
1

2 XB
1

2 − AX
∥

∥

∥

2

F
+
∥

∥

∥A
1

2 XB
1

2 − XB
∥

∥

∥

2

F

)

.

So we conclude that the desired result hold for 0 < v < 1. �

Theorem 4.2. Let A, B, X ∈ Mn(C) such that A and B are positive semidefinite and

0 < v < 1. Then

2R ‖AX − XB‖2
F − r0

(

∥

∥

∥A
1

2 XB
1

2 − AX
∥

∥

∥

2

F
+
∥

∥

∥A
1

2 XB
1

2 − XB
∥

∥

∥

2

F

)

≥ ‖AX + XB‖2
F −

∥

∥

∥AvXB1−v + A1−vXBv
∥

∥

∥

2

F
.

(4.4)

Proof. By Lemma 2.4, the proof of the inequality (4.4) can be completed by an argument

similar to that used in the proof of Theorem 4.1. �

Remark 4.1. Combining (4.3) with (4.4), we obtain

4
∥

∥

∥A
1

2 XB
1

2

∥

∥

∥

2

F
≤
∥

∥

∥AvXB1−v + A1−vXBv
∥

∥

∥

2

F

≤2r ‖AX − XB‖2
F +

∥

∥

∥AvXB1−v + A1−vXBv
∥

∥

∥

2

F

≤2r ‖AX − XB‖2
F +

∥

∥

∥AvXB1−v + A1−vXBv
∥

∥

∥

2

F

+ r0

(

∥

∥

∥A
1

2 XB
1

2 − AX
∥

∥

∥

2

F
+
∥

∥

∥A
1

2 XB
1

2 − XB
∥

∥

∥

2

F

)

≤ ‖AX + XB‖2
F

≤2R ‖AX − XB‖2
F +

∥

∥

∥AvXB1−v + A1−vXBv
∥

∥

∥

2

F

− r0

(

∥

∥

∥A
1

2 XB
1

2 − AX
∥

∥

∥

2

F
+
∥

∥

∥A
1

2 XB
1

2 − XB
∥

∥

∥

2

F

)

≤2R ‖AX − XB‖2
F +

∥

∥

∥AvXB1−v + A1−vXBv
∥

∥

∥

2

F

≤2R ‖AX − XB‖2
F + ‖AX + XB‖2

F ,

which is an improvement of 4
∥

∥

∥A
1

2 XB
1

2

∥

∥

∥

2

F
≤
∥

∥AvXB1−v + A1−vXBv
∥

∥

2
F ≤ ‖AX + XB‖2

F

(see [2]).
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