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REFINEMENTS OF JENSEN’S INEQUALITY FOR INFINITE CONVEX

COMBINATIONS

ZLATKO PAVIĆ1

Abstract. Jensen’s inequality for infinite convex combinations is studied in order to ob-
tain its refinements. The article is relied on two basic double inequalities related to convex
functions defined on the bounded closed interval of real numbers. Convex combinations
with the same center are employed.

1. Introduction

A bounded closed interval of real numbers is the basis for studying convex analysis. Let

a and b be real points such that a < b. The closed interval or segment between points a

and b can be appointed as the set

[a, b] =
{

αa + βb : α, β ∈ [0, 1], α + β = 1
}

,

that is, as the set of all binomial convex combinations of points a and b. In this regard,

each point x ∈ [a, b] can be represented as the binomial convex combination

x =
b − x

b − a
a +

x − a

b − a
b,

which shows that α(x) = (b − x)/(b − a) and β(x) = (x − a)/(b − a).

An n-membered linear combination
∑n

i=1 λixi of points xi ∈ [a, b] is said to be convex

if coefficients λi ∈ [0, 1] and
∑n

i=1 λi = 1. Using the binomial convex combinations xi =

αia + βib, it follows that
n

∑

i=1

λixi =

( n
∑

i=1

λiαi

)

a +

( n
∑

i=1

λiβi

)

b.

Taking α =
∑n

i=1 λiαi and β =
∑n

i=1 λiβi, we have α, β ∈ [0, 1] and α + β = 1, which shows

that the point c =
∑n

i=1 λixi = αa + βb belongs to [a, b]. The point c itself is usually called

a combination center.

Key words and phrases. Double Inequality, Infinite Convex Combination, Jensen’s Inequality.
2010 Mathematics Subject Classification. Primary: 26D15. Secondary: 26A51.
Received: 02/07/2018
Accepted: 19/12/2018.

44



JENSEN’S INEQUALITY FOR INFINITE CONVEX COMBINATIONS 45

2. Two basic inequalities with convex combinations

In creating mathematical inequalities, the main mediator is a convex function. A function

f : [a, b] → R is said to be convex if the inequality

f(αx + βy) ≤ αf(x) + βf(y)

holds for every binomial convex combination αx + βy of points x, y ∈ [a, b].

Let
∑n

i=1 λixi be a convex combination of points xi ∈ [a, b]. If αa + βb is the convex

combination of endpoints a and b such that

αa + βb =
n

∑

i=1

λixi,

then each convex function f : [a, b] → R satisfies the double inequality

f(αa + βb) ≤
n

∑

i=1

λif(xi) ≤ αf(a) + βf(b). (2.1)

This fundamental inequality says that the convex function values, taken in the forms of

convex combinations, grow from the center to the ends. The left-hand side (containing the

first and second members) of the above inequality written as

f

( n
∑

i=1

λixi

)

≤
n

∑

i=1

λif(xi) (2.2)

represents the discrete form of Jensen’s inequality (see [1]), and it can be proved by mathe-

matical induction. The right-hand side (containing the second and third members) of the in-

equality in formula (2.1) can be proved by multiplying each inequality f(xi) = f(αia+βib) ≤

αif(a) + βif(b) with λi, and then summing up over i = 1, . . . , n. The double inequality in

formula (2.1) can also be proved by using the support and secant lines, it was demonstrated

in [7, Theorem 3.1].

Let [a0, b0] be a closed subinterval of [a, b], where a0 < b0. Let
∑n

i=1 λixi be a convex

combination of points xi ∈ [a0, b0], and let
∑m

j=1 κjyj be a convex combination of points

yj ∈ [a, b] \ (a0, b0). If the above combinations have the same center c taken as the convex

combination c = α0a0 + β0b0, that is, if
n

∑

i=1

λixi = α0a0 + β0b0 =
m

∑

j=1

κjyj,

then each convex function f : [a, b] → R satisfies the double inequality
n

∑

i=1

λif(xi) ≤ α0f(a0) + β0f(b0) ≤
m

∑

j=1

κjf(yj). (2.3)

The above inequality, even more clearly then the inequality in formula (2.1), shows the

nature of growth of the convex function values. The proof of this double inequality can be

found in [5, Corollary 3.2].

More details on the convexity in general, convex functions and their inequalities can be

found in books [9] and [10]. An extension of Jensen’s inequality to affine combinations was
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obtained in [6]. New generalizations and refinements of Jensen’s inequality were considered

in [4], [3] and [2].

3. Inequalities with infinite convex combinations

In this section, we briefly recall some main results obtained in [8].

Definition 3.1. An infinite linear combination
∑

∞

i=1 λixi of a real vector space points xi

is said to be convex if coefficients λi ∈ [0, 1] and their sum
∑

∞

i=1 λi converges to number 1

in the field R, usually written as
∑

∞

i=1 λi = 1.

A finite convex combination
∑n

i=1 λixi can be taken as
∑

∞

i=1 λixi with λi = 0 for every

i > n.

Infinite convex combinations are prone to convergence.

Theorem A. An infinite convex combination
∑

∞

i=1 λixi of points xi ∈ [a, b] converges in

[a, b].

Each infinite combination
∑

∞

i=1 λixi with nonnegative coefficients λi such that
∑

∞

i=1 λi =

λ ∈ R converges. Namely, the combination
∑

∞

i=1(λi/λ)xi is convex.

Theorem A also refers to infinite convex combinations of the function values.

Corollary B. Let X be a nonempty set, and let g : X → R be a function with the image

in [a, b]. Then an infinite convex combination
∑

∞

i=1 λig(xi) of function values g(xi) with

arguments xi ∈ X converges in [a, b].

The inequality in formula (2.1) can be expanded to infinite convex combinations.

Theorem C. Let
∑

∞

i=1 λixi be an infinite convex combination of points xi ∈ [a, b], and let

αa + βb be the convex combination such that αa + βb =
∑

∞

i=1 λixi.

Then each convex function f : [a, b] → R satisfies the double inequality

f(αa + βb) ≤
∞

∑

i=1

λif(xi) ≤ αf(a) + βf(b). (3.1)

The left-hand side (containing the first end second member) of the above inequality

represented as

f

( ∞
∑

i=1

λixi

)

≤
∞

∑

i=1

λif(xi) (3.2)

is Jensen’s inequality for infinite convex combinations.

The inequality in formula (2.3) can also be exposed in the infinite form.

Corollary D. Let [a0, b0] be a subinterval of [a, b] with a0 < b0, let
∑

∞

i=1 λixi be an in-

finite convex combination of points xi ∈ [a0, b0], and let
∑

∞

i=1 κiyi be an infinite convex

combination of points yi ∈ [a, b] \ (a0, b0).
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If the above infinite combinations have the same center expressed by the convex combina-

tion α0a0 + β0b0, that is, if

∞
∑

i=1

λixi = α0a0 + β0b0 =
∞

∑

i=1

κiyi,

then each convex function f : [a, b] → R satisfies the double inequality

∞
∑

i=1

λif(xi) ≤ α0f(a0) + β0f(b0) ≤
∞

∑

i=1

κif(yi). (3.3)

4. Main results

In this section, we investigate refinements of the Jensen and related inequalities with

infinite convex combinations.

Using two infinite and two binomial convex combinations such that all have the same cen-

ter, we can obtain the extended inequality which encompasses the inequalities in Theorem

C and Corollary D.

Corollary 4.1. Let [a0, b0] be a subinterval of [a, b] with a0 < b0, let
∑

∞

i=1 λixi be an

infinite convex combination of points xi ∈ [a0, b0], and let
∑

∞

i=1 κiyi be an infinite convex

combination of points yi ∈ [a, b] \ (a0, b0).

If the above infinite combinations have the same center expressed by the convex combina-

tions αa + βb and α0a0 + β0b0, that is, if

αa + βb =
∞

∑

i=1

λixi = α0a0 + β0b0 =
∞

∑

i=1

κiyi,

then each convex function f : [a, b] → R satisfies the multiple inequality

f(αa + βb) ≤
∞

∑

i=1

λif(xi)

≤ α0f(a0) + β0f(b0)

≤
∞

∑

i=1

κif(yi)

≤ αf(a) + βf(b).

(4.1)

Proof. Extending the left-hand side (containing the first and second members) of the in-

equality in formula (3.1) with the inequality in formula (3.3), we get the inequality of the

first four members in formula (4.1). The inequality of the fourth and fifth members in

formula (4.1) is in fact the inequality of the second and third members in formula (3.1)

because αa + βb =
∑

∞

i=1 κiyi. �

Taking a0 = a and b0 = b, formula (4.1) is shortened to formula (3.1). In this case, the

only choice for yi is a or b.
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In the next lemma, we demonstrate the refining method using two interposed points

represented as the binomial convex combinations.

Lemma 4.1. Let x ∈ [a, b] be a point, let αa + βb be the convex combination such that

αa + βb = x, and let p ≥ 0 be a number.

Then each convex function f : [a, b] → R satisfies the multiple inequality

f(αa + βb) ≤ αf

(

pa + x

p + 1

)

+ βf

(

x + pb

p + 1

)

≤
pαf(a) + f(x) + pβf(b)

p + 1

≤ αf(a) + βf(b).

(4.2)

Proof. Between a and x, and between x and b, we interpose the points

xa =
pa + x

p + 1
and xb =

x + pb

p + 1
.

It follows that αa + βb = x = αxa + βxb. Applying the convexity of f to the right side of

the above equality, we get

f(αa + βb) = f(αxa + βxb) ≤ αf(xa) + βf(xb). (4.3)

Further, applying the convexity of f to convex combinations

xa =
p

p+1
a +

1

p+1
x and xb =

1

p+1
x +

p

p+1
b,

we obtain

αf(xa) + βf(xb) ≤
αp

p+1
f(a) +

α

p+1
f(x) +

β

p+1
f(x) +

βp

p+1
f(b)

=
pαf(a) + f(x) + pβf(b)

p + 1
.

(4.4)

Since f(x) = f(αa + βb) ≤ αf(a) + βf(b), it follows that

pαf(a) + f(x) + pβf(b)

p + 1
≤

pαf(a) + αf(a) + βf(b) + pβf(b)

p + 1

= αf(a) + βf(b).

(4.5)

Connecting the inequalities in formula (4.3), formula (4.4) and formula (4.5), we gain the

inequality in formula (4.2). �

We may use α = (b − x)/(b − a) and β = (x − a)/(b − a) in formula (4.2). If x = a or

x = b, then all four members in formula (4.2) are equal to f(x). The figurative form of the

inequality in formula (4.2) is presented in Figure 1.

Remark 4.1. The limits of the interposed part (containing the second and third members)

in formula (4.2) as p approaches zero and infinity are as follows.

The second and third members approach f(αa + βb) as p approaches zero.

The third member approaches αf(a) + βf(b) as p approaches infinity.
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If x ∈ (a, b), then the second member approaches αf(a+)+βf(b−) as p approaches infinity.

This is true because the monotonicity and boundedness of f on (a, a + ε) and (b − ε, b) for

sufficiently small ε > 0 provide the limits

lim
p→∞

f

(

pa + x

p + 1

)

= f(a+)

and

lim
p→∞

f

(

x + pb

p + 1

)

= f(b−).

In the light of the above considerations, we recall that the observed convex function f

satisfies the boundary inequalities f(a+) ≤ f(a) and f(b−) ≤ f(b).

Figure 1. Visual presentation of the inequality in formula (4.2)

By combining infinite and binomial convex combinations, we can achieve the refinements

of the fundamental inequality in formula (3.1).

Theorem 4.1. Let
∑

∞

i=1 λixi be an infinite convex combination of points xi ∈ [a, b], let

αia + βib be convex combinations such that αia + βib = xi, let αa + βb be the convex

combination such that αa + βb =
∑

∞

i=1 λixi, and let p ≥ 0 be a number.

Then each convex function f : [a, b] → R satisfies the multiple inequality

f(αa + βb) ≤
∞

∑

i=1

λif(xi)

≤
∞

∑

i=1

λi

[

αif

(

pa + xi

p + 1

)

+ βif

(

xi + pb

p + 1

)]

≤
∞

∑

i=1

λi

pαif(a) + f(xi) + pβif(b)

p + 1

≤ αf(a) + βf(b).

(4.6)
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Proof. The inequality of the first and second members is verified in formula (3.1). The

remaining inequality part (containing the second, third, fourth and fifth members) can be

derived as follows.

Applying the inequality in formula (4.2) to the point xi, we obtain

f(xi) = f(αia + βib) ≤ αif

(

pa + xi

p + 1

)

+ βif

(

xi + pb

p + 1

)

≤
pαif(a) + f(xi) + pβif(b)

p + 1

≤ αif(a) + βif(b).

Multiplying the above inequality with λi, and then summing up over i = 1, . . . , ∞, we reach

the remaining inequality part. The last member
∞

∑

i=1

λi[αif(a)+βif(b)] =

( ∞
∑

i=1

λiαi

)

f(a)+

( ∞
∑

i=1

λiβi

)

f(b) = αf(a)+βf(b)

because the equality

αa + βb =
∞

∑

i=1

λi(αia + βib) =

( ∞
∑

i=1

λiαi

)

a +

( ∞
∑

i=1

λiβi

)

b

provides α =
∑

∞

i=1 λiαi and β =
∑

∞

i=1 λiβi. Thus the above calculation completes the

proof. �

As regards the coefficients αi and βi in formula (4.6), since

xi =
b − xi

b − a
a +

xi − a

b − a
b,

we may use

αi =
b − xi

b − a
and βi =

xi − a

b − a
.

Some refinements of the inequality in formula (3.1) can be achieved by the skilful use of

the convex combination center.

Theorem 4.2. Let
∑

∞

i=1 λixi be an infinite convex combination of points xi ∈ [a, b], let

c =
∑

∞

i=1 λixi be its center, and let p ≥ 0 be a number.

Then each convex function f : [a, b] → R satisfies the multiple inequality

f

( ∞
∑

i=1

λixi

)

≤
∞

∑

i=1

λif

(

xi + pc

p + 1

)

≤
∞

∑

i=1

λi

f(xi) + pf(c)

p + 1

≤
∞

∑

i=1

λif(xi)

≤
b − c

b − a
f(a) +

c − a

b − a
f(b).

(4.7)
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Proof. Applying Jensen’s inequality for infinite convex combinations in formula (3.2) to the

right side of the convex combinations equality

∞
∑

i=1

λixi =
1

p + 1

∞
∑

i=1

λixi +
p

p + 1
c =

∞
∑

i=1

λi

xi + pc

p + 1
,

we get

f

( ∞
∑

i=1

λixi

)

≤
∞

∑

i=1

λif

(

xi + pc

p + 1

)

. (4.8)

Further, applying the convexity of f to each convex combination

xi + pc

p + 1
=

1

p + 1
xi +

p

p + 1
c,

we obtain
∞

∑

i=1

λif

(

xi + pc

p + 1

)

≤
∞

∑

i=1

λi

f(xi) + pf(c)

p + 1
. (4.9)

Since

f(c) = f

( ∞
∑

i=1

λixi

)

≤
∞

∑

i=1

λif(xi),

it follows that

∞
∑

i=1

λi

f(xi) + pf(c)

p + 1
=

1

p + 1

∞
∑

i=1

λif(xi) +
p

p + 1
f(c) ≤

∞
∑

i=1

λif(xi). (4.10)

Let αa + βb be the convex combination such that c = αa + βb. Since

c =
b − c

b − a
a +

c − a

b − a
b,

the coefficients are α = (b − c)/(b − a) and β = (c − a)/(b − a). According to the right-hand

side (containing the second and third members) of the inequality in formula (3.1), we have

∞
∑

i=1

λif(xi) ≤ αf(a) + βf(b) =
b − c

b − a
f(a) +

c − a

b − a
f(b). (4.11)

The chain of the inequalities in formulae (4.8)-(4.11) yields formula (4.7). �

Combining the inequalities in formula (4.7) and formula (4.6), we reach the full refinement

of the double inequality in formula (3.1) as follows.

Corollary 4.2. Let
∑

∞

i=1 λixi be an infinite convex combination of points xi ∈ [a, b], let

c =
∑

∞

i=1 λixi be its center, and let p ≥ 0 be a number.
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Then each convex function f : [a, b] → R satisfies the multiple inequality

f

( ∞
∑

i=1

λixi

)

≤
∞

∑

i=1

λif

(

xi + pc

p + 1

)

≤
∞

∑

i=1

λi

f(xi) + pf(c)

p + 1

≤
∞

∑

i=1

λif(xi)

≤
∞

∑

i=1

λi

[

b − xi

b − a
f

(

pa + xi

p + 1

)

+
xi − a

b − a
f

(

xi + pb

p + 1

)]

≤
∞

∑

i=1

λi

p(b − xi)f(a) + (b − a)f(xi) + p(xi − a)f(b)

(p + 1)(b − a)

≤
b − c

b − a
f(a) +

c − a

b − a
f(b).

(4.12)

5. Infinite convex combination of infinite convex combinations

We observe the influence of a convex function to the infinite convex combination of infinite

convex combinations.

Lemma 5.1. Let (
∑

∞

i=1 λijxij)∞

j=1 be a sequence of infinite convex combinations of points

xij ∈ [a, b], and let (κj)∞

j=1 be a sequence of coefficients κj ∈ [0, 1] such that
∑

∞

j=1 κj = 1.

Then each convex function f : [a, b] → R satisfies the double inequality

f

( ∞
∑

j=1

κj

∞
∑

i=1

λijxij

)

≤
∞

∑

j=1

κjf

( ∞
∑

i=1

λijxij

)

≤
∞

∑

j=1

κj

∞
∑

i=1

λijf(xij).

(5.1)

Proof. Infinite convex combinations will be denoted as the points

xj =
∞

∑

i=1

λijxij

for j = 1, . . . , ∞. Relying on Theorem A, we can conclude that points xj and their infinite

convex combination

x =
∞

∑

j=1

κjxj =
∞

∑

j=1

κj

∞
∑

i=1

λijxij

belong to [a, b]. Applying Jensen’s inequality for infinite convex combinations in formula

(3.2) to the above equalities, we get the double inequality

f(x) ≤
∞

∑

j=1

κjf(xj) ≤
∞

∑

j=1

κj

∞
∑

i=1

λijf(xij),

representing formula (5.1). �
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By combining the sequences of infinite and binomial convex combinations, we can obtain

the following.

Corollary 5.1. Let (
∑

∞

i=1 λijxij)∞

j=1 be a sequence of infinite convex combinations of points

xij ∈ [a, b], let (αja + βjb)∞

j=1 be the sequence of convex combinations such that αja + βjb =
∑

∞

i=1 λijxij, let (κj)∞

j=1 be a sequence of coefficients κj ∈ [0, 1] such that
∑

∞

j=1 κj = 1, and

let αa + βb be the convex combination such that αa + βb =
∑

∞

j=1 κj(αja + βjb).

Then each convex function f : [a, b] → R satisfies the multiple inequality

f(αa + βb) ≤
∞

∑

j=1

κjf
(

αja + βjb
)

≤
∞

∑

j=1

κj

∞
∑

i=1

λijf(xij)

≤
∞

∑

j=1

κj

(

αjf(a) + βjf(b)
)

≤ αf(a) + βf(b).

(5.2)

Proof. The inequality in formula (5.2) can be derived using the inequalities in formula (3.2)

and formula (3.1). �
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