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SOME INEQUALITIES FOR GG-CONVEX FUNCTIONS

AHMET OCAK AKDEMIR!, M. EMIN OZDEMIR?, AND FAHRINNISA SEVINC!

ABSTRACT. We establish some new integral inequalities for GG—convex functions by us-
ing an integral equality which is proved by the authors in [I1]. We also give some new
estimations for special means of real numbers.

1. INTRODUCTION

A function f: I C R — R is a convex function on I, if the inequality

flz+ 1 —t)y) <tf(x)+(1—1t)f(y)

holds for all x,y € I and t € [0, 1].
The Hermite-Hadamard inequality gives us upper and lower bounds for the mean-value
of a convex function which is given as (See [12]):

a+b
1(557) =5
Some recent results, generalizations and 1mprovements see the papers [13—17].
Anderson et al. gave the following definition in [4]:

()+f()

x)dx <

Definition 1.1. A function M : (0,00) x (0,00) — (0, 00) is called a Mean function if

(1) M (z,y) = M (y,z),

(2) M (z,2) = =,

(3) z < M (z,y) < y, whenever = < y,

(4) M (az,ay) = aM (z,y) for all a > 0.

Based on the definition of mean function, let us recall special means (See [4])
1. Arithmetic Mean: M (z,y) = A (z,y) = &2,

2. Geometric Mean: M (z,y) = G (z,y) = \/_y

: . _ _ 11
3. Harmonic Mean: M (z,y) = H (z,y) = 1/A (E’ 5)'
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4. Logarithmic Mean: M (z,y) = L(z,y) = (x —y)/(logz —logy) for = # y nd
L(z,z) = x.

5. Identric Mean: M (z,y) = I (z,y) = (1/e) (% /y*)" @™ for  # y nd I(z,z) = .

In [4], Anderson et al. also defined generalized convexity as follows:

Definition 1.2. Let f : I — (0,00) be continuous, where I is subinterval of (0,00) . Let M
and N be any two Mean functions. We say f is M N-convex (concave) if

(M (2,y)) < (Z)N (f (), f (v))
for all x,y € I.

Recall the definitions of AG—convex functions, GG—convex functions and G A—convex
functions that are given in [2] by Niculescu:
The AG—convex functions (usually known as log —convex functions) are those functions

f:I— (0,00) for which
zy€land A€ [0,1] = f(Az+(1-N)y) < f(2) 7 fy), (1.1)

i.e., for which log f is convex.
The GG—convex functions (called in what follows multiplicatively convex functions) are
those functions f : I — J (acting on subintervals of (0,00)) such that

zyeland A€ [0,1] = f (a") < F (@) F ()™ (1.2)

The class of all GA—convex functions is constituted by all functions f: I — R (defined on
subintervals of (0,00)) for which

zyeland A€ [0,1] = f (a") < F(@)' 4+ F () (1.3)
Besides, recall that the condition of GG—convexity is given in the following theorem by
Anderson et al. in [4].
Theorem 1.1. Let I be an open interval of (0,00) and let f: I — (0,00) be differentiable.
In parts (4) — (9), let I = (0,b),0 < b < 0.

(1) [ is AA—convex (concave) if and only if ' (x ) is increasing (decreasing).
(2) f is AG—convex (concave) if and only if f( )

(3) f is AH—convex (concave) if and only zf f 2 is increasing (decreasing).

(4) f is GA—convex (concave) if and only if xf’( ) is increasing (decreasing).
(5) [ is GG—convex (concave) if and only if 36]{(9(69)6) is increasing (decreasing).

(6) f is GH—convex (concave) if and only if g;]z ()362 is increasing (decreasing).

(7) f is HA—convex (concave) if and only if x> f' () is increasing (decreasing).
2 ¢/
(8) f is HG—convex (concave) if and only if :vszx()m) is increasing (decreasing).

(9) f is HH—convex (concave) if and only if ”C;g:gi) is increasing (decreasing).

In [11], authors proved the following lemma and established new inequalities of Hermite-
Hadamard type for GA—convex functions:
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Lemma 1.1. Let f: I C Ry = (0,00) — R be a differentiable mapping on I° and a,b € I°
with a < b. If f' € L[a,b], then the following identity holds:

b
bf () — af (a /f
1 1
= (lnz —Ina) /thaQ(l_t)f' (xtal_t) dt — (Inxz — Inb) /thbz(l_t) I (mtbl_t) dt
0 0
for all x € [a,b].
For recent results, generalizations, improvements and counterparts see the papers [1—10]
and references therein.
The main aim of this paper is to prove some new integral inequalities for GG—convex

functions by using the above integral identity. Also some applications to special means are
given.

2. MAIN RESULTS

Theorem 2.1. Let f: I C Ry = (0,00) — R be a differentiable mapping on I°, a,b € I1°
with a < b and f" € Lla,b]. If |f' (z)| is GG—convex function on [a,b], then one has the
following inequality:

bf (b) = af (a /f

< (Inz—1Ina)L (a2 | ()] ,z? |f/($)‘)
+(Inb—1Inx) L (3:2 ’f’ (x)‘ ,bz ’f/ (b)’)

for all x € [a,b].

Proof. From Lemma 1.1 and by using the GG—convexity of |f’ (x)|, we have

bf (b) — af (a /f

< (lnx—lna)/x2ta2(1 by (mtalft) dt

0
1

+(Inb—Inz) / 2200 f (2 ) de

0
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1

< (ne=ma) 00 ||/ @)"|f @] a

0
1

+(Inb—Inz) / 22D @) )] .

0

By a simple computation, we deduce

bf (b) — af (a /f

nr—Ina x ’fl()‘ ’f/()‘
I )<1n<x2\f'<>r> 1n(a2\f’()!)>

e 0 |f (0)] =2 |f' ()]
+(Inb—1 )<ln(62\f’()‘) In m”f’()’))

Which completes the proof.

Theorem 2.2. f : [ C Ry = (0,

O

o0) — R be a differentiable mapping on 1°, a,b € I°

with a < b and f' € L{a,b]. If | f' (z)|? is GG— convex function on [a,b], then the following

inequality holds:

b
bf (5) = af (a) - [ f (u)du

a |1 @|", 2 | (@)]')

< (lnz—1Ina)L'” é(az,xQ)
1
q

Q=
»owA

+(nb—1Inz) L'

for all x € [a,b] and ¢ > 1.

Ls (2| @)" 5 |1 (0)]")

Proof. From Lemma 1.1, by using the GG—convexity of |f’(z)| and by Holder integral

inequality, we have

bf (b) — af (a /f
1

< (Inz— lna)/x%(f(l*t)
0

Vi (xtalft) ‘ dt
1

+(Inb—Inz) / 22p2(1-0) '(xtbl’t)‘dt
0

81
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0 0

1 1*5 1 %
+ (hlb — hlx) (/ thbQ(l_t)dt) (/ thbQ(l—t) [|f }qt |f |q (1-t) } dt)

0 0

1 -1 3
S (lnx —In a) (/ $2ta2(1_t)dt) (/ thGQ(l—t) |:‘f ’qt ‘f ’(I(l —t) i| dt)

By making use of the necessary computation, we get

bf (b) — af (a /f

< (1nx_1na)%<x _a2>1%< 2 |f (2)|" = a® | f (a)|* )3

2 In (22 [f" (2)|*) = In (a®[f' (a)|)

(E—\TE R er - @\
+ (Inb—1Inx) ( 5 ) (ln(b2|f’(b)|q)—ln(x2|f/($)|q)> .

This completes the proof. O

Theorem 2.3. Let f: I C Ry = (0,00) = R be a differentiable mapping on I°, a,b € 1°

with a < b and f' € L|a,b]. If |f (2)|? is GG—convex function on [a,b], then the following
inequality holds:

b
bf (b) = af (@)~ [ £ () du

< (Inz —1Ina) Llf% (a%,x%) L% (‘f/ (a)|q,‘fl ($)|q)
+(nb—Inx) L' (x%, = )LE (' ( )|qa‘fl(b)‘q)
for all x € [a,b] and ¢ > 1.

Proof. Since |f’ (z)| is GG—convex function on [a,b], from Lemma 1.1 and by using Holder
integral inequality, we can write

bf (b) — af (a /f
1

< (Inz— lna)/x%a%l*t)
0

Vi (xtalft) ‘ dt

4 (xth)‘ dt

1
+(Inb—1Inx) /x2tb2(17t)
0
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< a2(lnm—lna) (/1 (z);qadl‘)lq (/1 ’f, ‘Qt’f/ ‘q(l_t)} )6
0 0
1

+b? (Inb —Inx) (/(b o ) (/1 }f |qt|f |q(1 t} )

By a simple computation, we have

b

b (b) = af (@) = [ f (w)du

a

o2\ : L
e Ina) [ F e f (@) = | (a)]* )
= : (lnx%—lna%) (hl‘f’(x)’q—ln’f/(a)‘q

2¢g 2q 1-3 .

b1 — gt L@ -1 @) )q

Inb—1 2 2 .
+ (In nz) <1an_ql —lnxq_ql) <1n|f/(b)|q_1n|f/(ﬂ:)|q

This last inequality completes the proof. ]

Theorem 2.4. Let f: I C Ry = (0,00) = R be a differentiable mapping on I°, a,b € 1°
with a < b and f' € L|a,b]. If |f' (2)|? is GG—convex function on [a,b], then the following

inequality holds:
bf (b) ~ af (a /f

< (nz-1Ina) Lq (( Q‘f ])q,(wQ\f/(x)’)q)
+(nb—lnz) L3 (2] @)])", (8|7 0)])")

for all x € [a,b] and ¢ > 1.

Proof. By a similar argument to the proof of previous theorem, since |f’ (z)| is GG—convex
function on [a, b], from Lemma 1.1 and by using a version of Holder integral inequality, we
have

bf (b) — af (a /f
1

Vi (xtalft) ‘ dt

4 (xth)‘ dt

< (Inz— lna)/x%(f(l*t)
0

1
+(Inb—1Inx) /x2tb2(17t)
0
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< o®(Inz—Ina) (jdt) N (/1 (2)2@ [\f )™ |f (@) t}dt)?
0 0

+b? (Inb —Inx) (/ldt) K (/1 <%>2qt “f }qt}f }ql t}dt)E
0 0

By computing the above integrals, we deduce

bf (b) — af (a /f

v [ @ @D @1 @D ]
< (nz-l >Ln<m2rf'<>r>q In a2!f’<a>!)q]
)
)

“mb—m)l 011 (b)) ~ (@ rf/<>r>q)r.

|
O [ () = In (2> [ f' ()])*
This last inequality completes the proof.

3. APPLICATIONS TO SPECIAL MEANS

Let us recall the special means of two nonnegative real numbers a,b with a < b :

a) The arithmetic mean:

a+b
5

A=A(a,b) = a,b >0,
b) The geometric mean:
G =G (a,b) :=Vab, a,b>0,

¢) The harmonic mean:

2ab
H = H (a,b) := a , a,b>0,
a+b
d) The logarithmic mean:
a if a=0
L=1L(ab):= _ . , a,b>0,
( ) { lng—?na if a 7& b

e) The Identric mean.

a(l

a if a=0
I:I(a,b):: (bb)ﬁ X a,b>0,

o=

f) The p—logarithmic mean:

ppt+1_pt1 1/p .
L, =L, (a,b) = { ey ] if a#b e R\{-1,0}; a,b>0.

a if a=
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The following inequality is well known in the literature:
H<GLSLL<I<A

It is also known that L, is monotonically increasing over p € R, denoting Lo = I and
L_; =L (See [12]).

The following propositions hold for our main results:

Proposition 3.1. Suppose that a,b € Ry and s > 0. Then, we have

|(b—a) L31] (a.0)] (3.1)
(x—a) +2 542 (b —=) +2 7542
L S S L S bS
L (a,z) (a742,27%) + L (z,b) i
for all x € [a,b] .
Proof. The proof is follows from Theorem 2.1 by applying f (z) = %, x € Ry, s >0,
where |f’ (z)| is GG—convex function. O

Proposition 3.2. Suppose that a,b € Ry and s > 0. Then for all ¢ > 1, one has the
inequality

(b~ a) L} (a.0) (3:2)

(z —a) Ll—é (aQ,xz) L% (a5q+2’x8q+2)

IN

Ll—% ($2,b2) L% (msq+2’bsq+2)

for all x € [a,b].

Proof. The proof is immediate from Theorem 2.2 applied for f (z) = %, reRy, s>0
where |f’ (z)|? is GG—convex function. O

Proposition 3.3. Suppose that a,b € Ry and s > 0. Then for all ¢ > 1, we have
|(b—a) L3} (a,b)

1
(z —a) Ll—% (a%,x%) L7 (a%1,2%9)

IN

L{(a,x)
b— 1/ 2 20\ g
+§/(x7x'b; Ll (11 <xq_ql,bq_ql) Lq (xsq, bsq)
Proof. The proof is immediate from Theorem 2.3 applied for f (z) = %, reRy, s>0

where |f/ (2)|? is GG—convex function. O

Proposition 3.4. Suppose that a,b € R and s > 0. Then for all ¢ > 1, we have
(b— =)

_ s+1 (.%' — a’) 1 sq+2 ,.sq+2 1 sq+2 sq+2
’(b a) Ly (a, b)’ < Tl (a,x)Lq (a T ) + L(x,b)Lq (x ,bx ) (3.3)
:L'S+1

Proof. Tt is easy to see that by applying f (z) = <71 to Theorem 2.4, x € Ry, s > 0, where
|f’ (z)]? is GG—convex function. O
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