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SOME INEQUALITIES FOR GG−CONVEX FUNCTIONS

AHMET OCAK AKDEMIR1, M. EMIN ÖZDEMIR2, AND FAHRINNISA SEVINÇ1

Abstract. We establish some new integral inequalities for GG−convex functions by us-
ing an integral equality which is proved by the authors in [11]. We also give some new
estimations for special means of real numbers.

1. Introduction

A function f : I ⊂ R → R is a convex function on I, if the inequality

f (tx + (1 − t) y) ≤ tf (x) + (1 − t) f (y)

holds for all x, y ∈ I and t ∈ [0, 1].
The Hermite-Hadamard inequality gives us upper and lower bounds for the mean-value

of a convex function which is given as (See [12]):

f

(

a + b

2

)

≤ 1
b − a

b
∫

a

f (x) dx ≤ f (a) + f (b)
2

.

Some recent results, generalizations and improvements see the papers [13–17].
Anderson et al. gave the following definition in [4]:

Definition 1.1. A function M : (0, ∞) × (0, ∞) → (0, ∞) is called a Mean function if

(1) M (x, y) = M (y, x),
(2) M (x, x) = x,
(3) x < M (x, y) < y, whenever x < y,
(4) M (ax, ay) = aM (x, y) for all a > 0.
Based on the definition of mean function, let us recall special means (See [4])
1. Arithmetic Mean: M (x, y) = A (x, y) = x+y

2 .
2. Geometric Mean: M (x, y) = G (x, y) =

√
xy.

3. Harmonic Mean: M (x, y) = H (x, y) = 1/A
(

1
x , 1

y

)

.
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4. Logarithmic Mean: M (x, y) = L (x, y) = (x − y) / (log x − log y) for x 6= y nd
L(x, x) = x.

5. Identric Mean: M (x, y) = I (x, y) = (1/e) (xx/yy)1/(x−y) for x 6= y nd I(x, x) = x.
In [4], Anderson et al. also defined generalized convexity as follows:

Definition 1.2. Let f : I → (0, ∞) be continuous, where I is subinterval of (0, ∞) . Let M

and N be any two Mean functions. We say f is MN -convex (concave) if

f (M (x, y)) ≤ (≥) N (f (x) , f (y))

for all x, y ∈ I.

Recall the definitions of AG−convex functions, GG−convex functions and GA−convex
functions that are given in [2] by Niculescu:

The AG−convex functions (usually known as log −convex functions) are those functions
f : I → (0, ∞) for which

x, y ∈ I and λ ∈ [0, 1] =⇒ f (λx + (1 − λ) y) ≤ f (x)1−λ f (y)λ , (1.1)

i.e., for which log f is convex.
The GG−convex functions (called in what follows multiplicatively convex functions) are

those functions f : I → J (acting on subintervals of (0, ∞)) such that

x, y ∈ I and λ ∈ [0, 1] =⇒ f
(

x1−λyλ
)

≤ f (x)1−λ f (y)λ . (1.2)

The class of all GA−convex functions is constituted by all functions f : I → R (defined on
subintervals of (0, ∞)) for which

x, y ∈ I and λ ∈ [0, 1] =⇒ f
(

x1−λyλ
)

≤ f (x)1−λ + f (y)λ . (1.3)

Besides, recall that the condition of GG−convexity is given in the following theorem by
Anderson et al. in [4].

Theorem 1.1. Let I be an open interval of (0, ∞) and let f : I → (0, ∞) be differentiable.

In parts (4) − (9) , let I = (0, b) , 0 < b < ∞.

(1) f is AA−convex (concave) if and only if f ′ (x) is increasing (decreasing).

(2) f is AG−convex (concave) if and only if f ′(x)
f(x) is increasing (decreasing).

(3) f is AH−convex (concave) if and only if f ′(x)
f(x)2 is increasing (decreasing).

(4) f is GA−convex (concave) if and only if xf ′ (x) is increasing (decreasing).

(5) f is GG−convex (concave) if and only if xf ′(x)
f(x) is increasing (decreasing).

(6) f is GH−convex (concave) if and only if xf ′(x)
f(x)2 is increasing (decreasing).

(7) f is HA−convex (concave) if and only if x2f ′ (x) is increasing (decreasing).

(8) f is HG−convex (concave) if and only if x2f ′(x)
f(x) is increasing (decreasing).

(9) f is HH−convex (concave) if and only if x2f ′(x)
f(x)2 is increasing (decreasing).

In [11], authors proved the following lemma and established new inequalities of Hermite-
Hadamard type for GA−convex functions:
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Lemma 1.1. Let f : I ⊂ R+ = (0, ∞) → R be a differentiable mapping on Io and a, b ∈ Io

with a < b. If f ′ ∈ L [a, b] , then the following identity holds:

bf (b) − af (a) −
b
∫

a

f (u) du

= (ln x − ln a)

1
∫

0

x2ta2(1−t)f ′

(

xta1−t
)

dt − (ln x − ln b)

1
∫

0

x2tb2(1−t)f ′

(

xtb1−t
)

dt

for all x ∈ [a, b] .

For recent results, generalizations, improvements and counterparts see the papers [1–10]
and references therein.

The main aim of this paper is to prove some new integral inequalities for GG−convex
functions by using the above integral identity. Also some applications to special means are
given.

2. Main Results

Theorem 2.1. Let f : I ⊂ R+ = (0, ∞) → R be a differentiable mapping on Io, a, b ∈ Io

with a < b and f ′ ∈ L [a, b] . If |f ′ (x)| is GG−convex function on [a, b] , then one has the

following inequality:

∣

∣

∣

∣

∣

∣

bf (b) − af (a) −
b
∫

a

f (u) du

∣

∣

∣

∣

∣

∣

≤ (ln x − ln a) L
(

a2 ∣
∣f ′ (a)

∣

∣ , x2 ∣
∣f ′ (x)

∣

∣

)

+ (ln b − ln x) L
(

x2 ∣
∣f ′ (x)

∣

∣ , b2 ∣
∣f ′ (b)

∣

∣

)

for all x ∈ [a, b] .

Proof. From Lemma 1.1 and by using the GG−convexity of |f ′ (x)| , we have

∣

∣

∣

∣

∣

∣

bf (b) − af (a) −
b
∫

a

f (u) du

∣

∣

∣

∣

∣

∣

≤ (ln x − ln a)

1
∫

0

x2ta2(1−t)f ′

(

xta1−t
)

dt

+ (ln b − ln x)

1
∫

0

x2tb2(1−t)f ′

(

xtb1−t
)

dt
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≤ (ln x − ln a)

1
∫

0

x2ta2(1−t)
[

∣

∣f ′ (x)
∣

∣

t ∣
∣f ′ (a)

∣

∣

1−t
]

dt

+ (ln b − ln x)

1
∫

0

x2tb2(1−t)
[

∣

∣f ′ (x)
∣

∣

t ∣
∣f ′ (b)

∣

∣

1−t
]

dt.

By a simple computation, we deduce

∣

∣

∣

∣

∣

∣

bf (b) − af (a) −
b
∫

a

f (u) du

∣

∣

∣

∣

∣

∣

≤ (ln x − ln a)

(

x2 |f ′ (x)| − a2 |f ′ (a)|
ln (x2 |f ′ (x)|) − ln (a2 |f ′ (a)|)

)

+ (ln b − ln x)

(

b2 |f ′ (b)| − x2 |f ′ (x)|
ln (b2 |f ′ (b)|) − ln (x2 |f ′ (x)|)

)

.

Which completes the proof. �

Theorem 2.2. f : I ⊂ R+ = (0, ∞) → R be a differentiable mapping on Io, a, b ∈ Io

with a < b and f ′ ∈ L [a, b] . If |f ′ (x)|q is GG−convex function on [a, b] , then the following

inequality holds:

∣

∣

∣

∣

∣

∣

bf (b) − af (a) −
b
∫

a

f (u) du

∣

∣

∣

∣

∣

∣

≤ (ln x − ln a) L1−
1

q

(

a2, x2
)

L
1

q

(

a2 ∣
∣f ′ (a)

∣

∣

q
, x2 ∣

∣f ′ (x)
∣

∣

q
)

+ (ln b − ln x) L1−
1

q

(

x2, b2
)

L
1

q

(

x2 ∣
∣f ′ (x)

∣

∣

q
, b2 ∣

∣f ′ (b)
∣

∣

q
)

for all x ∈ [a, b] and q ≥ 1.

Proof. From Lemma 1.1, by using the GG−convexity of |f ′ (x)| and by Hölder integral
inequality, we have

∣

∣

∣

∣

∣

∣

bf (b) − af (a) −
b
∫

a

f (u) du

∣

∣

∣

∣

∣

∣

≤ (ln x − ln a)

1
∫

0

x2ta2(1−t)
∣

∣

∣f ′

(

xta1−t
)∣

∣

∣ dt

+ (ln b − ln x)

1
∫

0

x2tb2(1−t)
∣

∣

∣f ′

(

xtb1−t
)∣

∣

∣ dt
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≤ (ln x − ln a)





1
∫

0

x2ta2(1−t)dt





1−
1

q




1
∫

0

x2ta2(1−t)
[

∣

∣f ′ (x)
∣

∣

qt ∣
∣f ′ (a)

∣

∣

q(1−t)
]

dt





1

q

+ (ln b − ln x)





1
∫

0

x2tb2(1−t)dt





1−
1

q




1
∫

0

x2tb2(1−t)
[

∣

∣f ′ (x)
∣

∣

qt ∣
∣f ′ (b)

∣

∣

q(1−t)
]

dt





1

q

.

By making use of the necessary computation, we get
∣

∣

∣

∣

∣

∣

bf (b) − af (a) −
b
∫

a

f (u) du

∣

∣

∣

∣

∣

∣

≤ (ln x − ln a)
1

q

(

x2 − a2

2

)1−
1

q
(

x2 |f ′ (x)|q − a2 |f ′ (a)|q
ln (x2 |f ′ (x)|q) − ln (a2 |f ′ (a)|q)

) 1

q

+ (ln b − ln x)
1

q

(

b2 − x2

2

)1−
1

q
(

b2 |f ′ (b)|q − x2 |f ′ (x)|q
ln (b2 |f ′ (b)|q) − ln (x2 |f ′ (x)|q)

) 1

q

.

This completes the proof. �

Theorem 2.3. Let f : I ⊂ R+ = (0, ∞) → R be a differentiable mapping on Io, a, b ∈ Io

with a < b and f ′ ∈ L [a, b] . If |f ′ (x)|q is GG−convex function on [a, b] , then the following

inequality holds:

∣

∣

∣

∣

∣

∣

bf (b) − af (a) −
b
∫

a

f (u) du

∣

∣

∣

∣

∣

∣

≤ (ln x − ln a) L
1−

1

q

(

a
2q

q−1 , x
2q

q−1

)

L
1
q (∣
∣f ′ (a)

∣

∣

q
,
∣

∣f ′ (x)
∣

∣

q)

+ (ln b − ln x) L1−
1

q

(

x
2q

q−1 , b
2q

q−1

)

L
1
q (∣
∣f ′ (x)

∣

∣

q
,
∣

∣f ′ (b)
∣

∣

q)

for all x ∈ [a, b] and q > 1.

Proof. Since |f ′ (x)| is GG−convex function on [a, b], from Lemma 1.1 and by using Hölder
integral inequality, we can write

∣

∣

∣

∣

∣

∣

bf (b) − af (a) −
b
∫

a

f (u) du

∣

∣

∣

∣

∣

∣

≤ (ln x − ln a)

1
∫

0

x2ta2(1−t)
∣

∣

∣f ′

(

xta1−t
)∣

∣

∣ dt

+ (ln b − ln x)

1
∫

0

x2tb2(1−t)
∣

∣

∣f ′

(

xtb1−t
)∣

∣

∣ dt



SOME INEQUALITIES FOR GG−CONVEX FUNCTIONS 83

≤ a2 (ln x − ln a)





1
∫

0

(

x

a

)
2qt

q−1

dt





1−
1

q




1
∫

0

[

∣

∣f ′ (x)
∣

∣

qt ∣
∣f ′ (a)

∣

∣

q(1−t)
]

dt





1

q

+b2 (ln b − ln x)





1
∫

0

(

x

b

)
2qt

q−1

dt





1−
1

q




1
∫

0

[

∣

∣f ′ (x)
∣

∣

qt ∣
∣f ′ (b)

∣

∣

q(1−t)
]

dt





1

q

.

By a simple computation, we have
∣

∣

∣

∣

∣

∣

bf (b) − af (a) −
b
∫

a

f (u) du

∣

∣

∣

∣

∣

∣

≤ (ln x − ln a)





x
2q

q−1 − a
2q

q−1

ln x
2q

q−1 − ln a
2q

q−1





1−
1

q
(

|f ′ (x)|q − |f ′ (a)|q
ln |f ′ (x)|q − ln |f ′ (a)|q

) 1

q

+ (ln b − ln x)





b
2q

q−1 − x
2q

q−1

ln b
2q

q−1 − ln x
2q

q−1





1−
1

q
(

|f ′ (b)|q − |f ′ (x)|q
ln |f ′ (b)|q − ln |f ′ (x)|q

) 1

q

.

This last inequality completes the proof. �

Theorem 2.4. Let f : I ⊂ R+ = (0, ∞) → R be a differentiable mapping on Io, a, b ∈ Io

with a < b and f ′ ∈ L [a, b] . If |f ′ (x)|q is GG−convex function on [a, b] , then the following

inequality holds:
∣

∣

∣

∣

∣

∣

bf (b) − af (a) −
b
∫

a

f (u) du

∣

∣

∣

∣

∣

∣

≤ (ln x − ln a) L
1

q

((

a2 ∣
∣f ′ (a)

∣

∣

)q
,
(

x2 ∣
∣f ′ (x)

∣

∣

)q)

+ (ln b − ln x) L
1

q

((

x2 ∣
∣f ′ (x)

∣

∣

)q
,
(

b2 ∣
∣f ′ (b)

∣

∣

)q)

for all x ∈ [a, b] and q ≥ 1.

Proof. By a similar argument to the proof of previous theorem, since |f ′ (x)| is GG−convex
function on [a, b], from Lemma 1.1 and by using a version of Hölder integral inequality, we
have

∣

∣

∣

∣

∣

∣

bf (b) − af (a) −
b
∫

a

f (u) du

∣

∣

∣

∣

∣

∣

≤ (ln x − ln a)

1
∫

0

x2ta2(1−t)
∣

∣

∣f ′

(

xta1−t
)∣

∣

∣ dt

+ (ln b − ln x)

1
∫

0

x2tb2(1−t)
∣

∣

∣f ′

(

xtb1−t
)∣

∣

∣ dt
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≤ a2 (ln x − ln a)





1
∫

0

dt





1−
1

q




1
∫

0

(

x

a

)2qt [
∣

∣f ′ (x)
∣

∣

qt ∣
∣f ′ (a)

∣

∣

q(1−t)
]

dt





1

q

+b2 (ln b − ln x)





1
∫

0

dt





1−
1

q




1
∫

0

(

x

b

)2qt [
∣

∣f ′ (x)
∣

∣

qt ∣
∣f ′ (b)

∣

∣

q(1−t)
]

dt





1

q

.

By computing the above integrals, we deduce
∣

∣

∣

∣

∣

∣

bf (b) − af (a) −
b
∫

a

f (u) du

∣

∣

∣

∣

∣

∣

≤ (ln x − ln a)

[

(

x2 |f ′ (x)|
)q −

(

a2 |f ′ (a)|
)q

ln (x2 |f ′ (x)|)q − ln (a2 |f ′ (a)|)q

] 1

q

+ (ln b − ln x)

[

(

b2 |f ′ (b)|
)q −

(

x2 |f ′ (x)|
)q

ln (b2 |f ′ (b)|)q − ln (x2 |f ′ (x)|)q

] 1

q

.

This last inequality completes the proof. �

3. Applications to Special Means

Let us recall the special means of two nonnegative real numbers a, b with a < b :
a) The arithmetic mean:

A = A (a, b) :=
a + b

2
, a, b ≥ 0,

b) The geometric mean:

G = G (a, b) :=
√

ab, a, b ≥ 0,

c) The harmonic mean:

H = H (a, b) :=
2ab

a + b
, a, b ≥ 0,

d) The logarithmic mean:

L = L (a, b) :=

{

a if a = b
b−a

ln b−ln a if a 6= b
, a, b ≥ 0,

e) The Identric mean.

I = I (a, b) :=







a if a = b

1
e

(

bb

aa

) 1

b−a if a 6= b
, a, b ≥ 0,

f) The p−logarithmic mean:

Lp = Lp (a, b) :=







[

bp+1
−ap+1

(p+1)(b−a)

]1/p
if a 6= b

a if a = b
, p ∈ R\ {−1, 0} ; a, b > 0.
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The following inequality is well known in the literature:

H ≤ G ≤ L ≤ I ≤ A

It is also known that Lp is monotonically increasing over p ∈ R, denoting L0 = I and
L−1 = L (See [12]).

The following propositions hold for our main results:

Proposition 3.1. Suppose that a, b ∈ R+ and s > 0. Then, we have
∣

∣

∣(b − a) Ls+1
s+1 (a, b)

∣

∣

∣ (3.1)

≤ (x − a)
L (a, x)

L
(

as+2, xs+2
)

+
(b − x)
L (x, b)

L
(

xs+2, bs+2
)

for all x ∈ [a, b] .

Proof. The proof is follows from Theorem 2.1 by applying f (x) = xs+1

s+1 , x ∈ R+, s > 0,
where |f ′ (x)| is GG−convex function. �

Proposition 3.2. Suppose that a, b ∈ R+ and s > 0. Then for all q ≥ 1, one has the

inequality
∣

∣

∣(b − a) Ls+1
s+1 (a, b)

∣

∣

∣ (3.2)

≤ (x − a)
L (a, x)

L
1−

1

q

(

a2, x2
)

L
1

q

(

asq+2, xsq+2
)

+
(b − x)
L (x, b)

L
1−

1

q

(

x2, b2
)

L
1

q

(

xsq+2, bsq+2
)

for all x ∈ [a, b] .

Proof. The proof is immediate from Theorem 2.2 applied for f (x) = xs+1

s+1 , x ∈ R+, s > 0
where |f ′ (x)|q is GG−convex function. �

Proposition 3.3. Suppose that a, b ∈ R+ and s > 0. Then for all q > 1, we have
∣

∣

∣(b − a) Ls+1
s+1 (a, b)

∣

∣

∣

≤ (x − a)
L (a, x)

L1−
1

q

(

a
2q

q−1 , x
2q

q−1

)

L
1
q

(asq, xsq)

+
(b − x)
L (x, b)

L1−
1

q

(

x
2q

q−1 , b
2q

q−1

)

L
1
q

(xsq, bsq)

Proof. The proof is immediate from Theorem 2.3 applied for f (x) = xs+1

s+1 , x ∈ R+, s > 0
where |f ′ (x)|q is GG−convex function. �

Proposition 3.4. Suppose that a, b ∈ R+ and s > 0. Then for all q ≥ 1, we have
∣

∣

∣(b − a) Ls+1
s+1 (a, b)

∣

∣

∣ ≤ (x − a)
L (a, x)

L
1

q

(

asq+2, xsq+2
)

+
(b − x)
L (x, b)

L
1

q

(

xsq+2, bxsq+2
)

(3.3)

Proof. It is easy to see that by applying f (x) = xs+1

s+1 to Theorem 2.4, x ∈ R+, s > 0, where
|f ′ (x)|q is GG−convex function. �
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