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RECASTING THE PROOF OF PARSEVAL’S IDENTITY

JOSHUA M. SIKTAR1

Abstract. We generalize aspects of Fourier Analysis from intervals on R to bounded and
measurable subsets of Rn. In doing so, we obtain a few interesting results. The first is a new
proof of the famous Integral Cauchy-Schwarz Inequality. The second is a restatement that
doubles as a representation of integrating bounded and measurable functions over bounded
and measurable subsets of R

n. Finally, we apply these first two results to develop some
sufficient criteria for additional integral inequalities that are elementary in nature.

1. Introduction and Motivation

In a typical first study of partial differential equations, great attention is devoted to

Fourier Analysis, namely to the derivation of formulas for Fourier Coefficients and analyzing

when a function has a Fourier Expansion over some subset of the real line. This is evident

upon inspecting textbooks such as [9, 10]. Further analysis of Fourier Coefficients over

intervals in R is discussed in [1,3,8]12, and from these it is evident that Fourier Coefficients

have use in mathematics beyond analysis, such as in number theory.

However, in introductory texts the emphasis is usually on Fourier Coefficients of a func-

tion over an interval. If we use the fundamental tools of measure theory, from books such

as [6, 7], then we not only obtain results from Fourier Analysis in more generality, but also

find a new proof of the Integral Cauchy-Schwarz Inequality. From here on, we will assume

for convenience that we are over the standard Lebesgue Measure space in R
n, denoted

(Rn,M,Ln).

Section 2 will be devoted to demonstrating the aforementioned new proof. Then, Section

3 will prove a special case of Parseval’s Identity (which is discussed in [8]) using the proof

from 2 and tools from [7]. In particular, the following lemma will be used repeatedly in

Section 3:
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Lemma 1.1 (Countable Additivity of Integration). Let f be a measurable function over

the measurable set E ⊂ R
n. Let {En}∞

n=1 be a disjoint, countable collection of measurable

subsets of E whose union is E. Then

∫

E
fdµ =

∞
∑

n=1

∫

En

fdµ. (1.1)

Finally, Section 4 serves as an application of the results in Sections 2 and 3; namely, we

will describe sufficient conditions for when one can compare the integral of the product of

two functions to the product of the integrals of the two functions.

2. Proof of Integral Cauchy-Schwarz Inequality

The main theorem to be proven in this section is the following:

Theorem 2.1 (Integral Cauchy-Schwarz). Let E ⊂ R
n be a bounded and measurable set,

and let g, h : E → R be bounded and measurable functions. Then

(∫

E
g2dµ

)(∫

E
h2dµ

)

≥

(∫

E
ghdµ

)2

. (2.1)

We will break the proof of (2.1) into lemmas that act as a reduction of (2.1) onto the

case where the functions over which we integrate are strictly positive over the domain E.

Lemma 2.1. Let D ⊂ R
n be a bounded and measurable set, and let f, φ1 : D → R be

bounded and measurable functions, where f only takes positive values in D. Then

(∫

D
fdµ

)

(

∫

D

φ2
1

f
dµ

)

≥

(∫

D
φ1dµ

)2

. (2.2)

Proof. Fix the function φ1 and construct a family of functions φ2, φ3, ... such that the

collection {φi}
∞
i=1 is mutually orthogonal on D with respect to the [positive] weight function

1
f

. That is, ∀i 6= j,

∫

D
φiφj ·

1

f
dµ = 0. (2.3)

If there does not exist an infinite family of mutually orthogonal functions that includes

φ1, we truncate the family after including some k ≥ 1 functions (only the value φ1 will

have any relevance at the end of the proof). Now we define the sequence of partial sums

sN :=
∑N
n=1 cnφn, where for each n we set

cn :=

∫

D φndµ
∫

D
φ2
n

f
dµ
. (2.4)

If our family of mutually orthogonal functions {φi} only contains k functions, then we

set sn := sk whenever n > k; in this case, the sequence of partial sums is said to be
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eventually constant. Now the inequality (2.2) will follow from an attempt to minimize

the mean-square deviation integral

∫

D
(f − sN )2 ·

1

f
dµ, (2.5)

much akin to how [9] derives Parseval’s Identity, except here we are considering the special

case where ρ := 1

f
. Since f > 0 on D, the integral (2.5) is nonnegative for all N ∈ N

+. We

can expand the integral (2.5) and complete the square; due to the mutual orthogonality of

the functions {φn}Nn=1, (2.5) in fact equals

∫

D
fdµ− 2

N
∑

n=1

cn

∫

D
φndµ+

N
∑

n=1

c2
n

∫

D

φ2
n

f
dµ =

N
∑

n=1

∫

D

φ2
n

f
dµ



cn −

∫

D φndµ
∫

D
φ2
n

f
dµ





2

+

∫

D
fdµ−

N
∑

n=1

(
∫

D φndµ)2

∫

D
φ2
n

f
dµ

. (2.6)

Due to our choice of coefficients cn in (2.4), the leftmost term in (2.6) vanishes. Hence

by the equivalence between (2.5) and (2.6),

∫

D
(f − sN )2 ·

1

f
dµ =

∫

D
fdµ−

N
∑

n=1

(
∫

D φndµ)2

∫

D
φ2
n

f
dµ

. (2.7)

This is a special case of what is known as Bessel’s Inequality [9]. However, the left-hand

side of (2.7) is nonnegative, so

∫

D
fdµ ≥

N
∑

n=1

(
∫

D φndµ)2

∫

D
φ2
n

f
dµ

. (2.8)

Moreover, since f > 0 on D, each term in the sum on the lesser side of (2.8) is nonnegative.

Regardless of the value of N ,

∫

D
fdµ ≥

(
∫

D φ1dµ)2

∫

D

φ2

1

f
dµ

. (2.9)

Rearranging the factors in (2.9) gives us (2.2) immediately. �

We now immediately use (2.2) in the proof of another lemma that will complete the

reduction of (2.1) to the case of integrating functions taking strictly positive values over a

bounded, measurable set.

Lemma 2.2. Let D ⊂ R
n be a bounded and measurable set, and let g, h : D → R \ {0} be

bounded and measurable functions. Then

(∫

D
g2dµ

)(∫

D
h2dµ

)

≥

(∫

D
ghdµ

)2

. (2.10)
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Proof. We will perform a change of variables onto g and h. Let f := g2 and φ1 := gh on D.

Then the functions f ,
φ2

1

f
, and φ1 are all bounded and measurable on D, and moreover, f

is strictly positive on D since g is. With this change of variables the result (2.10) follows

immediately from (2.2). �

Finally we can consider how to address the case where the functions in question take on

the value zero within our choice of measurable set. We hence turn to complete the proof of

(2.1).

Proof of (2.1). We set D := {x ∈ E. g(x) 6= 0 ∧ h(x) 6= 0}, and this set is bounded

and measurable since E is. Then the bounded and measurable set E \ D is equivalent to

{x ∈ E. g(x) = 0 ∨ h(x) = 0}. Since E = D ∪ (E \D) is a disjoint union, the identity (1.1)

yields

∫

E
ghdµ =

∫

D
ghdµ +

∫

E\D
ghdµ. (2.11)

However, by the choice of set D, gh = 0 on E \ D, so the final term in (2.11) vanishes,

and (2.10) gives us

(∫

D
g2dµ

)(∫

D
h2dµ

)

≥

(∫

E
ghdµ

)2

. (2.12)

Now we notice that g2 and h2 are nonnegative on E \D, so the following hold:

∫

E
g2dµ =

∫

D
g2dµ +

∫

E\D
g2dµ ≥

∫

D
g2dµ (2.13)

∫

E
h2dµ =

∫

D
h2dµ+

∫

E\D
h2dµ ≥

∫

D
h2dµ. (2.14)

Substituting (2.13) and (2.14) into (2.12) gives us the desired result. �

Remark 2.1. This line of reasoning would clearly not be valid if we were using Riemann

Integrals over intervals in R.

3. Parseval’s Identity on Bounded and Measurable Functions

While the Integral Cauchy-Schwarz Inequality is an extremely powerful tool in analysis

and partial differential equations, among other fields, the other merit of the proof used in

Section 2 is it expedites the development of a special case of Parseval’s Identity. Namely,

we will investigate the case where the standard Parseval’s Identity in [9] is reduced to

integrating some function f over a measurable set.

Lemma 3.1 (Parseval’s Identity on Positive Functions). Let D ⊂ R
n be a bounded and

measurable set, let f : D → R be bounded, positive, and measurable on D, and let φn : D →

R be a collection of functions which are mutually orthogonal on D with respect to 1

f
. Let the

constants cn be defined as in (2.4), and in addition now assume that f ’s Fourier Expansion

actually exists, i.e. f =
∑∞
n=1 cnφn. Then
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∞
∑

n=1

c2
n

∫

D

φ2
n

f
dµ =

∫

D
fdµ. (3.1)

Proof. The conditions on D and f for this lemma are the same as for (2.2). Thus we can

re-assert (2.8). Since (2.8) holds ∀n ∈ N
+, we actually have

∫

D
fdµ ≥

∞
∑

n=1

(
∫

D φndµ)2

∫

D
φ2
n

f
dµ

. (3.2)

Since f ’s Fourier Expansion exists, we have that f =
∑∞
n=1 cnφn and that (2.5) will

converge to 0 [9]. Then (3.1) follows immediately, as (3.2) becomes an equality. �

Remark 3.1. In the more traditional proof of Parseval’s Identity found in [9], the function

f we use here is essentially replaced by 1
f

. We made this modification specifically in order

to reinterpret Parseval’s Identity as a decomposition equalling the integral of a bounded,

measurable function over a bounded, measurable set.

In other words, (3.1) establishes a connection between the existence of Fourier Coefficients

and the ability to integrate a positive function over a bounded and measurable set. In fact,

even if f does not have Fourier Coefficients over a set but does have coefficients on some

collection of disjoint, covering subsets, then we can use this theorem multiple times and sum

the resulting integrals. It won’t even matter if the Fourier Coefficients for f are different

on each set. This is demonstrated in the forthcoming proof of (3.4).

Theorem 3.1 (Integration of Bounded and Measurable Functions). Let E ⊂ R
n be a

bounded and measurable set, let f : E → R be bounded and measurable, and let the sets Di

be bounded, measurable, and mutually disjoint such that E = ∪∞
i=1Di. Assume that on each

Di, f carries a unique sign (i.e. is positive, negative, or zero) and has Fourier Coefficients

denoted by

ci,n :=

∫

Di
φi,ndµ

∫

Di

φ2

i,n

f
dµ

(3.3)

for each i ∈ N
+, where φi,n represents a mutually orthogonal family of functions with

respect to 1
f

on Di. Then

∞
∑

i=1

∞
∑

n=1

c2
i,n

∫

Di

φ2
i,n

f
dµ =

∫

E
fdµ. (3.4)

Proof. First we assume without loss of generality that f is nonzero on E. If there exists an

i ∈ N
+ for which f is identically zero on Di, then its Fourier Coefficients are all zeros, and

so Di can essentially be ignored when calculating
∫

E fdµ.

Now let i ∈ N
+ be arbitrary. If Di is such that f > 0 on Di, then (3.1) immediately holds

over Di. On the other hand, if f < 0 on Di, then −f > 0 on Di so (3.1) can be applied to
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−f . We leave the details to the reader to show that this case also reduces to (3.1). That is,

∀ i ∈ N
+,

∞
∑

n=1

c2
i,n

∫

Di

φ2
i,n

f
dµ =

∫

Di

fdµ. (3.5)

Summing (3.5) over all i ∈ N
+ and applying (1.1) to the right-hand side gives the desired

result. �

4. Criterion for the Product Inequality

One problem that appears distant from Parseval’s Identity and Fourier Analysis is deter-

mining for which measurable functions f and g we have the inequality

∫

D
fgdµ ≥

∫

D
fdµ

∫

D
gdµ (4.1)

for some bounded measurable set D. It turns out we can utilize the results of Section 3

to develop a sufficient condition for when this occurs. We state this result explicitly now.

Theorem 4.1 (Sufficient Condition for Product Inequality). Let D ⊂ R
n be a bounded

and measurable set, let f, g : D → R be bounded, positive, and measurable on D, and let

φn, ψm : D → R be two collections of bounded, measurable functions that are mutually

orthogonal on D with respect to 1
f

and 1
g
, respectively. Suppose that f and g have Fourier

Expansions f =
∑∞
n=1 cnφn, g =

∑∞
m=1 dmψm where

cn :=

∫

D φndµ
∫

D
φ2
n

f
dµ

(4.2)

dm :=

∫

D ψmdµ
∫

D
ψ2
m

g
dµ

(4.3)

for all m,n ∈ N
+. Further suppose that the following inequalities hold for all m,n ∈ N

+:

∫

D

φ2
nψ

2
m

fg
dµ ≤

∫

D

φ2
n

f
dµ

∫

D

ψ2
m

g
dµ (4.4)

cndm

∫

D
φnψmdµ ≥ cndm

∫

D
φndµ

∫

D
ψmdµ (4.5)

Under these conditions (4.1) holds.

Proof. We can assume without loss of generality that the families {φn}∞
n=1 and {ψm}∞

m=1

both contain infinitely many distinct functions for the same reason as in the proof of (2.1).

For each N ∈ N
+ denote the partial sums sN :=

∑N
n=1 cnφn and tN :=

∑N
m=1 dmψm. With

that we seek to minimize another mean-square deviation inequality:

∫

D
(fg − sN tN )2 ·

1

fg
dµ. (4.6)
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Expanding the square yields

∫

D
fgdµ− 2

N
∑

n=1

N
∑

m=1

cndm

∫

D
φnψmdµ+

∫

D

(

∑N
n=1 cnφn

∑N
m=1 dmψm

)2

fg
dµ. (4.7)

Notice that when we expanded the square of (2.5), we used the mutual orthogonality

property of {φn}∞
n=1 to cause many terms in the expansion of

∫

D

(
∑N

n=1
cnφn

)2

fg
dµ to cancel.

On the other hand, we do a different analysis here, and henceforth this proof is no longer

merely a generalization of the proof of (2.1). We use the Cauchy Schwarz Inequality for

finite sums to conclude that (4.7) is bounded above by

∫

D
fgdµ − 2

N
∑

n=1

N
∑

m=1

cndm

∫

D
φnψmdµ+

∫

D

∑N
n=1 c

2
nφ

2
n

∑N
m=1 d

2
mψ

2
m

fg
dµ. (4.8)

Furthermore, rewrite the third integral expression as a double sum of integrals:

∫

D
fgdµ− 2

N
∑

n=1

N
∑

m=1

cndm

∫

D
φnψmdµ +

N
∑

n=1

N
∑

m=1

c2
nd

2
m

∫

D

φ2
nψ

2
m

fg
dµ. (4.9)

Now, upon using (4.4) and (4.5) for each m,n ≤ N we see that (4.9) is bounded above

by

∫

D
fgdµ− 2

N
∑

n=1

N
∑

m=1

cndm

∫

D
φndµ

∫

D
ψmdµ +

N
∑

n=1

N
∑

m=1

c2
nd

2
m

∫

D

φ2
n

f
dµ

∫

D

ψ2
m

g
dµ. (4.10)

If we add and subtract the term
∑N
n=1

∑N
m=1

(
∫

D
φndµ)

2

(
∫

D
ψmdµ)

2

∫

D

φ2
n
f
dµ
∫

D

ψ2
m
g
dµ

from (4.10) and com-

plete the square we obtain

N
∑

n=1

M
∑

n=1

∫

D

φ2
n

f
dµ

∫

D

ψ2
m

g
dµ



cndm −

∫

D φndµ
∫

D ψmdµ
∫

D
φ2
n

f
dµ
∫

D
ψ2
m

g
dµ





2

+

∫

D
fgdµ−

N
∑

n=1

N
∑

m=1

(
∫

D φndµ)2 (
∫

D ψmdµ)2

∫

D
φ2
n

f
dµ
∫

D
ψ2
m

g
dµ

. (4.11)

Of course, the squared term vanishes due to the Fourier Coefficient assignments (4.2) and

(4.3), and hence it follows

∫

D
(fg − sN tN )2 ·

1

fg
dµ ≤

∫

D
fgdµ−

N
∑

n=1

N
∑

m=1

(
∫

D φndµ)2 (
∫

D ψmdµ)2

∫

D
φ2
n

f
dµ
∫

D
ψ2
m

g
dµ

. (4.12)

The lesser side of (4.12) is nonnegative, so bounding it below by 0 and rearranging yields

another Bessel-type inequality
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∫

D
fgdµ ≥

N
∑

n=1

N
∑

m=1

(
∫

D φndµ)2 (
∫

D ψmdµ)2

∫

D
φ2
n

f
dµ
∫

D
ψ2
m

g
dµ

. (4.13)

We can readily write the lesser side of (4.13) as a product of two sums:

∫

D
fgdµ ≥





N
∑

n=1

(
∫

D φndµ)2

∫

D
φ2
n

f
dµ









N
∑

m=1

(
∫

D ψmdµ)2

∫

D
ψ2
m

g
dµ



 . (4.14)

Since the greater side of (4.14) is independent of N we can take the limit N → ∞ to

realize

∫

D
fgdµ ≥





∞
∑

n=1

(
∫

D φndµ)2

∫

D
φ2
n

f
dµ









∞
∑

m=1

(
∫

D ψmdµ)2

∫

D
ψ2
m

g
dµ



 . (4.15)

In particular the lesser side is finite because the integral
∫

D fgdµ is finite. Since the

families {φn}∞
n=1, {ψm}∞

m=1 are mutually orthogonal on D with respect to 1
f

and 1
g

respec-

tively, and we have the Fourier expansions f =
∑∞
n=1 cnφn, g =

∑∞
m=1 dmψm, we can use

the Parseval Identity (3.1) twice to immediately conclude (4.1). �

Remark 4.1. Notice that we have

∫

D

φ2
nψ

2
m

fg
dµ ≤

√

∫

D

φ4
n

f2
dµ

∫

D

ψ4
m

g2
dµ (4.16)

as a corollary of (2.1). In this case, (4.4) follows if
∫

D
φ4
n

f2 dµ ≤
(

∫

D
φ2
n

f
dµ
)2

for all n ∈ N
+

and
∫

D
ψ4
m

g2 dµ ≤
(

∫

D
ψ2
m

g
dµ
)2

. This gives us a sense of what type of behavior is required for

the individual functions {φn}∞
n=1 and {ψm}∞

m=1.

We notice that the proof we just completed not only utilizes (3.1) twice, but it also

serves to magnify the significance of the proofs given in Section 2 because the proofs rest

on the same fundamental idea and setup. Moreover, observe that in this proof the mutual

orthogonality of the families {φn}∞
n=1 and {ψm}∞

m=1 was not invoked explicitly, but only

implicitly in justifying the use of (3.1).

5. Future Work

The potential extensions of the theory used to reinvent Parseval’s Identity are abundant.

In particular, one natural extension is to revert the Lebesgue integrals in (3.4) to Riemann

Integrals and use the formula to perform explicit calculations. The book [9] provides some

explicit choices for mutually orthogonal families of functions to serve this purpose.

There also exist more theoretical extensions of the work done that penetrate into other

fields of mathematics. For instance, if one writes the mean-square deviation integral (2.5)

in the form of a generic energy functional
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∫

D
G(f, {φn}, N)dµ, (5.1)

then utilization of techniques from calculus of variations can be used to address problems

in the existence of minimizers. That is, for a choice of f and N , which choice of mutually

orthogonal functions {φn}Nn=1 minimizes the value of (5.1), if such a family even exists. In

a similar vein one may ask how the decay rate of (2.5) changes with respect to choice of

function f , and alternatively if the square exponent is replaced with a higher power.

While inequality (4.1) was introduced primarily as an application of the material in

Sections 2 and 3, it is interesting in its own right. One may wish to explore necessary

conditions for the inequality to hold, or alternatively the sharpness of the inequality.

Finally, there is a problem of potential interest to numerical analysts. The measure-

theoretic techniques of changing the variables and gradual construction of measurable sets

used in Section 2 are likely reusable to find generalizations of the Trapezoid Rule Inequalities

found in [2, 4, 5]. In particular we ask if similar bounds exist when the Riemann Integrals

are replaced with Lebesgue Integrals over bounded measurable subsets of R.
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