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A TWO-PARAMETER SINGULAR FRACTIONAL DIFFERENTIAL
EQUATION OF LANE EMDEN TYPE

YASMINE BAHOUS!, ZOUBIR DAHMANI?, AND ZAKARIA BEKKOUCHE?

ABSTRACT. This paper deals with a nonlinear singular differential equation of Lane Emden
type involving Caputo fractional derivatives with two different parameters. We study the
existence and uniqueness of solutions for the considered problem. Then, we generate some
results for the stability in the sense of Ulam-Hyers.

1. INTRODUCTION

The fractional differential equations theory is an important tool in modeling many real
world phenomena since it can describe better many processes in biology, signal and image
processing, cosmology, physics, chemistry, etc... For more details, we refer the reader to
[5-8, 13, 14,16, 18,20, 24, 26-28]. In particular, two important and interesting areas of re-
search of this fractional theory are devoted, in one hand, to the study of singular fractional
differential equations [1,2,21,22 25] and, in the other hand, to investigate the Ulam-Hyers
stability phenomena in the singular theory (UH stability for short), for more details, see
the papers [4,9,21-23].

In the present work, we are motivated by the papers in [3,10-12,15,17,19] that are articu-
lated around the singular Lane Emden problem (L-E problem).
We note that the classical L-E model is given by equation:
2 () + 3o () +F (2 (1) =g(0), 1€ (0.1],
with the conditions
z(0)=A€eR, 2 (0)=BeR,

and f, g are given continuous functions.
With regard to the above equation, the interested reader can find many research papers
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that have studied the L-E model. To cite a few, we begin by the above cited reference [15]
where the authors proposed a numerical approach to study the problem:

Dy (1) + f(ty(t) =g(t), t€(0,1],

(6%
D%y (t) + ta—p

k>0, 1<a<2 0<p<1,
with
y(0) =4, y (0) = B,
and A, B € R.

Also, we recall that in [11], R.W. Ibrahim has been concerned with the following equation
with its UH stability:

u(0) = p, u(l) =v,
0<a,f<1,0<t<1, a>0,

such that D7 is the Caputo derivative; v > 0, the function f is continuous and g € C ([0, 1]) .
In [23], the authors investigated the following problem:

{ DP(D*+ §)u(t) + f (t,u(t) = g(t),

DP (Dot + %) 2y (t) + fr1 (¢, 21 (
DP2 (D2 + 92) g5 (t) + fo (¢, 21 (2

DP» (Dan + anrz Tn (t) + fn (t’xl (2) y L2 (t) y e In (t)) = gn (t) , e (0’ 1],
3 2k (0) = 3 | (0)] = . = 2 |oy 7 (0)] =0,

= k=1 n k=1 n

3> (Do (0)] = 35 [D% iy (0)] = o = 35 |Dori-2a (0)] = O,

k=1 k=1 k=1

5ak+l71mk (1) =0, k=1,2,..,n,

such that [ — 1 < ag, B, <1, ar > 0,1 € N—{0,1}, k=1,2,....,n, n € N—{0}.
In the recent paper [1], Z. Dahmani and M.Z. Sarikaya introduced the A—Ulam stability
for the system:

DAY (D 4 bygy (1) 1 (1) + f1 (tzy (8) 20 (8) = he (1), 0 <t < 1,
DP2 (D2 + bygy () 2 () + fo (t, 21 () 22 (1) = ho (t), 0 <t <1,

2y, (0) =0, D%y (1) + bgr (1) 25 (1) =0, k= 1,2,

with the conditions 0 < oy, B < 1, by, > 0, k = 1, 2. The derivatives D% and D%, k = 1,2,
are in the sense of Caputo.

In the very recent work of Z. Bekkouche et al. [3], it has been studied the following
2D —system:

2
D% (D2 + bags () wa () + fo (t, 21 (), 22 (1)) = waSa (21 (8) , 22 (1)), 0 <t <1,

{ DRV (D 4 bigy (8)) 1 () + fi (21 () 22 (1) = wiSy (21 (1), 22 (1), 0 <t <1,
2 (0) = 0, Dz (1) + bgr (1) (1) = 0,
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under the conditions 0 < fr < 1,0 < ax < 1,bx > 0,0 < wp < 00,k = 1,2 and the
derivatives D% and D% are of Caputo. The given functions f; : [0,1] x R?> — R and
Sy, : [0,1] x R? — R are continuous, g : |0, 1] — [0, +-00) is continuous and singular at ¢ = 0.

The present work deals with a more complicated singular fractional equation of Lane
FEmden type. By introducing the derivative of Caputo in both sides of the equation and by
considering o and 3, two parameters of derivation without commutativity properties, we
study the following problem:

k

B «
DA + 5

Jy(t) + Af(t, DOy(t)) + g(t,y(t)) = h(t),

y(0) =m, (1) =m", (1)
0<B<a<ltel0,l, k>0, AeR

For (1), we take J := [0, 1], the derivative D® is taken in the sense of Caputo, the functions
f,9:J xR — R are continuous and h is continuous over .J.

The main advantage of using Caputo derivative and not the Riemann-Liouville one is that
when using Caputo approach in differential equations, standard initial conditions of de-
rivative in term of integer order are involved, but with Riemann-Liouville approach, such
conditions are not allowed. These initial conditions have a clear physical interpretation. An-
other advantage of Caputo approach is that it requires the existence of the n—th derivative
of the unknown functions, and we know that most functions that appear in applications
fulfill this requirement.

2. PRELIMINARIES ON FRACTIONAL CALCULUS

We recall some definitions and lemmas that will be used later. For more details, we refer
to [16].

Definition 2.1. Let & > 0, and f : [0,1] — R be a continuous function.The Riemann-
Liouville integral of order « is defined by:

I°f(t) = ﬁ/ot(t—f)alf(ﬂdﬂ a>0,0<t<l.

where I'(a):= [;° e “u*"du

Definition 2.2. For a function h € C"(]0,1],R) and n — 1 < a < n, the Caputo fractional
derivative is defined by:
dn

DeR(t) = I"2 (b))

1

= — t — sy 1p(n) () ds.
- P(n_a)/o(t a1y (5)

In order to study the problem (1), we need the following two lemmas:
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Lemma 2.1. Letn € N*, and n—1 < a < n. The general solution of DYy(t) = 0 is given

by
y(t) =co+ 1t + cot? 4+ o 4 eyt
where ¢; € R;1=0,1,2,..,n — 1.

Lemma 2.2. Givenn € N*, and n—1<a <n. Then
ID(t) = y(t) + co + ert + cat® + .. + ey t™ !
for some ¢; e R,i=0,1,2,..,.n — 1.
We need also to prove the following integral representation:

Lemma 2.3. Let G € C([0,1]) . Then, the problem

DA (D + tf_ﬁ)y(t) =G (1)t €)0,1]

*

y(0) =m, y(1) =m*,
0<fB<a<l k>0, AeR

admits as solution the function:

o) = s [a—or ([ R G- ) )i

_P’i;) /01(1 _ s)a—1</08 %G(u)du - saiﬁy(s))ds

—t*(m —m*) + m.

Proof. By using lemmas 3 and 4, we can written as:

o) = s [—or ([ R G- <) )i

—C()Ia(l) —C1
Then, it yields that
cT = —m
 TIla+1) ¢ o s (s —u)f~! k
co = W/O (1 — 5) 1</0 WG(u)du — Saﬁy(5)>d8

+T(a+ 1) (m —m™).
Replacing ¢, ¢1 in (2.5), we get the desired formule (2.4).

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)
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Now, let us introduce the Banach space:

X :={y e C(J,R), D’y € C(J,R)}
and the norm:

§
[z]lx = Maz{||lz]lo , [ D°%([o0},

where,

|z ]loc = sup |z(t)] , | D’xlloc = sup |D’x(1)].
teJ teJ

Then, we define the nonlinear operator H: X — X as follows:

B 1 t . S(S—U)B_l
w0 = g -0 ([ St

su(s) )ds

o S (s )b
@ /01(1 —( %

() = A D) = g,y (@) = —5(s) ) ds

=M f(u, D%y(u)) — g(u, y(u)))du —

2.7)

—t*(m —m*) +m.

Now, we are ready to study the above problem by means of the fixed point theory.

3. MAIN RESULTS

3.1. A Unique Solution. We introduce the following quantities:

0 B 1 Mla+1)
a,B,0 F(/B_i_a_(g_,_l)+F(a+ﬁ+1)F(a—5+1)

o T+ D)I'(B-a+l) TB-a+1)
B0 T Tla—6+D)I(B+1) T(B-6+1)
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and

(+1.0) e
T (INLs + Ly + D (@T(8 = a+1)).

[AILg B(B+1,a)\Ly Lg
d=: Max

MNa+pg—-0+1) MNa—-0d6+1) MNa+pg—-0+1)

+k

B(B+1,a)L r'B—a+1) af (B—a+1,a)
TTaorn) "X TGt T(a—0+1) )

Also, we consider the following hypotheses:
(H1) : The functions f, g : J x R — R are continuous.

(H2) : There exist nonnegative constants Ly and L4 such that for all

teJ, (z,y) € R?

|f(t,$)—f(t,y)| < Lf|x—y|
lg(t, ) —g(t,y)] < Lglz —yl. (3.1)

(H3) : There exists non negative constants Mg, M, such that for all t € J, x € R, we
have

[f(t2)] < My, lg(t,z)] < M.

(H4) : There exists non negative constant M), that satisfies: |h(t)| < My, for all t € J.
Now we are ready to prove the following result:

Theorem 3.1. Assume that (H2),(H3)and (H4) hold. Then, the problem (1.1) has a
unique solution on J provided that 0 < d < 1.

Proof. We need to proceed on two steps:
Stepl: We consider the set B, := {z € X;||z||x <r, r > 0}, where:

) My 59+ (Jm]+ |m*)T(B+a+1)I(B+1) _
FB+1)T(a+B+1) —(|NLf+Ly) +kI'(B—a+1I(a+S+1)

Mh, 1,9 Qa8

>
2 M\ TN Ly) Qs — B 5

I'(a+1)(m —m*)
D=0+ 1)(1 = (JA[Ly + Lg) Qaps + kY, 55)
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For y € B, and t € J, we have

t s (g — )81
o) = gy 0= () = A Dyt

k o 1 o
~g(y)dn = 5u(s) s = s 1= 97

¢ s (s —u)f1
‘ric@ /01“—3)“(/0 : p(ﬁ)) (h(u) = Af(u, DOy(u)))

—g(u,y(u)))du — Sakﬁy(s))ds —t*(m — m*) + m].

Then, we get

1 t o S(S—u)ﬁ_l 5
)] <sup g [0 =9 ([Tl = A D)

—f(,0) + f(u,0)) = g(u,y(u)) — g(u,0) + g(u, 0)|)du

a s (s —u)f1 .
o) Jas +sup s = ([T o O

—Af(u, Dy(u)) — f(u,0) + f(u,0) — g(u,y(u)) — g(u,0)

k
5y(s)])ds +sup t®*lm —m*| + |m|.
teJ

+9g(u,0)|)du + |

SCV

By (H2), (H3)and (H4), we have

19600 < 2(Magg + INLAD I+ Lyl

1 ! a—1 B (8 — u)ﬁil
XP(a)/o(l_s) /0 ) duds

I'(B— 1
ety

+2|m| + [m”|.

Therefore, we can write



42 YASMINE BAHOUS, ZOUBIR DAHMANI, AND ZAKARIA BEKKOUCHE

My .9+ (IMLg + Lg)r
Fla+p+1)

[Hyllos < 2

ET(f—a+1) .
—I’([3+1) + 2|m| + |m*|

Moreover, we have:

t s (g — )81
D90 = =gy - ([

A D) - glusy(w))du — " 5u(s) )ds

o 1a—0 1 ol s (S _ u)ﬁfl
“T(a—0+1) /0 (1=2) (/0 R )

=S (u, Dy(w) = g(u, y(w))du — - :

(o + 1)t*9
MNao—0+1)

(m —m")

Thus,

D%yl < (Mg + (NLs+ L)1 )

1 D(a+1)
X(I‘(5+a—5+1)+I’(a+5+1)r(a_5+1)) (3.6)

i MNa+1)I'(B—a+1)
(F(a -0+ 1)I(B+1)

+I‘([5’—a+1)) 111‘((14—1)

T(B—0+1) (@—0+1)

Hence, |Hy||x <7 O

|m —m*|.

Step 2: We proceed to prove that H is a contraction mapping.
For (x,y) € X? and for each t € J, we can write
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t s (g — )81
560(0) ~ 9600)] = 7 [ (= 9 ([ ST )~ A D)

k o 1 o
— g(u, z(u))du — sa—_ﬁx(s))ds - o) /0 (1—s)1

s (s —u)l!
(ST ) = A D) = gl )

a

— Af D) = g ) — () ) ds + 1

()
1 o s (s — )1
x/o (1—s) 1(/0 T () = Af, Dy(w)
~ gl (@) = () sl (3.7

We get

| Ha(t) — Hy(t)|

t s(s—u B—1
Si‘g},’—r?a) [e—o( - m)) L7 D) = (s D)) s
psup b [1(1 gy ([ (5= £, D) = D y())ldu ) s
teJ F(a) 0 0 F(ﬁ) ’ '
1 t . S(S—U)B_l
wsup s [ ([ lotu ) = g y(w)ldu ) ds 58)

o 1 o s(s_u)ﬂ—l
+sup s [ (1= () = 9, 0(a)) = g(u y(w))|du) ds

1 t a1 k
+§g§m/o (t =) =5 (x(s) — y(s))ds

o g1 Lk
+ig§m/o (1—s)>t (z(s) — y(s))ds.
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Thanks to (H2), we can write
[Hz = Hyl o

AL t s (g _ q)B8-1
< A fsup/ (t—s)o‘_l(/ (S%du\\D‘Sx—Dédeu)ds
0 0

(@) tes (B)
ALt gt [ mwt 50— DOulldu ) ds
T T /o (1-35) (/0 ) |D°z — DOy|d )d
= STRRRTSRY G o Gl i (3.9)
+F(a) igy/(J (t—s) </0 r'(B) ||z — y||du) ds

et f 0o (e )

+sup kflz — y[| T~ (1 +¢%).
teJ

Then,

B(B+1,a) 5y
@+ 12 @9l (310)

B(B+1,0) I—-—a+1)
IT()(B+1) r(B+1)

|[Hz — Hylloo < 2|A|Ly

+2L |z —yll + 2K |z —yll-

Consequently,

(B+1,a)

[Hr — Hylloo < QW

<|)\|Lf 4L, 4 k(@D —a+ 1)) Iz —yllx. (3.11)

Similarly, we have

ALy B (B+1,a) MLy L,
Mla+f-0+1) Tla=d+1)  Tla+p-0+1)
B(B+1a)Ly TB-—a+l)  af(B-—a+1la)
T(a—d+1) +Kr(5—5+1) T(a—0+1) >Hx—yllx.

(3.12)

| D*Ha — D3yl < <

+

Combining (3.11) and (3.12), it yields that

[He —Hyllx < dllz—yllx.
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3.2. At Least One Solution.

Theorem 3.2. Assume that hypotheses (H1)and (H3) are fulfilled. Then, the problem (1.1)
has at least one solution over J..

Proof. Let us subdivide the proof into the following steps:
Step 1: First of all, we show that the operator H is completely continuous on X.
We have

t s (g )81
966~ 3600 = |5 ) 6= ([ g (b = A Do )

k to 1 o
— g(u, zp (u))du — sa—_ﬁxn(s))ds — (@) /0 (1—s) 1

s (s —u)Pt
) (/0 %wu) — Af(u, DYy () = g1 0 ()

— M (u, D°x(u)) — g(u, x(w)))du — Sai—ﬁx(s))ds _ Ft((:;)

1 o s (s — u)ﬁfl
< [ = ([ = A, D)

_ g(u, x(u))du — Sak5$(5)>ds

. (3.13)

Hence,

B(B+1,a)

360~ 9aloo < 2N 15 Dan() = £ D 2O 57 5 1)

1209 () — gz % (3.14)

'g—a+1)

L Y

[n — |-

By (H1), we have:

|Hxy — Hz|loo — 0 as n — 0o (3.15)

Similarly, it can be shown that
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5 5 Al B (B+1,a)Al
[D°FHan — DKzl < (p(a+5_5+1) F(a—5+1))

X|fC Doxa() = f( D))

1 B(B+1,0)
+<F(a+5—5+1)+F(a—5+1)) (3.16)
X[lg(san () =g z())]
P(B-oa+1) af(f-a+la)
+<K TG o+1) " T st >
X||xn — x|
Then,
| D°Hap, — DOHi||oo — 0 as n — oo (3.17)

From (3.15) and (3.17), we conclude that

|Hxy — Hzl|x — 0as n— oo

Consequently, H is continuous on X

Step 2: H maps bounded sets into bounded sets in X.
Indeed, it is enough to show that for any r > 0, there exists a positive constant p such that
for each y € B, ={y € X ;||y||x < r} one has ||Hy||x < p. Let x € B,. We put:

BB +1,a) I(B-—a+l)
Mitoryrgn TR TG
B 1 B(B+1a)
p = Max{ Mpy, (F(a+,3—5+1) I‘(a—5+1))
FrB-a+1) aB(B-a+la)
+KT<F(B—5+1) Ia—6+1) >

Using (H3)and (H4), we can write

BlB+1,0) | o plB—a+l) (3.18)

|Hz| < 2Mh,f,gm TG+ 1)
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Moreover, we have:

1 + 1, «
D95 < Mgy (7 + )

(a+B—-0+1) T(a—0d+1)
(3.19)

+Kr< rBg—a+1) aﬁ(,@—a—i—l,a)).

T(B—0+1) T(a—0o+1)

We deduce that

[Hylx <p.

Consequently, H is uniformly bounded on Br.

Step 3: H maps bounded sets into equicontinuous sets of X.

Let t1,t3 € [0,1],¢1 < t2 and let B, be a bounded set of X as in Step 2.Let « € B, Then
for each t € J we have

t s (s —u)ft
() = 96o(ta)| = s [ (0= 92 (T E T hw) = At Do)

k tla 1 o
— g(u, x(u))du — Sa—ﬁx(s)>d5 — (o) /0 (1—s) 1

(s —w)! 5
([ S k) = A Do) = gz ()i

o * 1 f2 a—
Saﬁm(s))ds—tl (m—m)—m/0 (ty —s)* !

([T ) — A D) — gl ()
NG A
L ﬁ 1 . o1 s (S_u)ﬁfl .
~ () )+ r(a)/o = ( py )
— A (u, D‘Sy(u)) — g(u,y(u))du — iy(s))ds + t2%(m — m™)|. (3.20)

58

Then,
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9€(ty) — Fa(ts)] < L) (07 —t7) + (0° - 1)

- I'(BH+a+1
3.21)
M(f—atl) B_ 4+ B a4« (
+k F(ﬂ—k 1) ((tQ 3] )+ (tl to ))
+lm —m* (6% — £2),
and
]Déﬂ{x(t )_ Déme(t )‘ < Mf,g,h (t B+a—5§ ¢ ﬁ-}-a—é)
1 VS TBra-o+1)" 2
FB-—a+1), 55 55
+rkzr(ﬁ_6+1)(t — "7
Mf’ h F(a + 1) a—6 4 a—6 (322)
+F(a—5—g|r1)1“(a+ﬂ+1)(t1 t2%7°)

MNa+1DI'(B—-a+1)

T(a—6+ 1I(B+1) (7" = 1:"7")

+kr

Pla+1)|m — m*!( a-s

_ pa=0
Ta—01 1) 7).

The right hand sides of (3.21) and (3.22) tend to zero independently of x € Br as t; — to.
As a consequence of Steps 1,2,3 together with the AscolidASArzela theorem, we can con-

clude that H is completely continuous.

Step 4: The set A= {x € X : 2 = ocHz,o0 €]0,1[} is bounded.
Let y € A, t € J. Then, we have y = cHy,0 < o < 1. Hence, we can write

[ylloo < 2<I>\| My + Mg> % + 2TK%. (3.23)

1 pB+1a)
||D5yHOO < (Mygpn) (F(a +B8—-6+1) + Do — 8+ 1))
(3.24)

I’(ﬂ—a+1)+aﬁ(ﬁ—a—|—1,a)).

+KT< TB—6+1)  T(a—o+1)
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Therefore
2(W Mj + Mg) % + 2TK%,
bl < 310z Mygn (F 7 =57y * e =52 17)
)

Consequently, [|y|lx < op < oo, the set is thus bounded.
As a consequence of Schaefer fxed point theorem, we deduce that H has a fixed point which
is a solution of the problem (1).
O

3.3. UH-Stability.

Definition 3.1. The equation (1.1) has the UH stability if there exists a real number
R > 0, such that for each € > 0, for any ¢t € J, and for each = € X solution of the inequality

DD+ —)a(t) + Af(t, DPa(t)) + g(t.a(t) — h(t)] < -, (3.25)

ta—h
there exists a solution y € X of (1.1); that is

Jy(t) + Af(t, Dy(1) + g(t,y(1)) = h(t),At, (3.26)

B «
D”(D* + Py
such that,

Iz = yllx < Re.

Definition 3.2. The equation (1.1) has the UH stability in the generalized sense if there
exists ¢ € C(R*,RT), such that »(0) = 0 : for each € > 0, and for any z € X solution of

D (D + Yo (t) + M (¢, Dx(t)) + g(t, x(t)) — h(t)| <e, (3.27)

to—h
there exists a solution y € X of equation (1.1), such that

[z = yllx < (o).

Theorem 3.3. Let the assumptions of Theorem (3.1) hold and |X\|Ly + L, < 1. If the
inequality
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Mh,f,g+(\)\|Lf+Lg)7’ EL(B—a+1

) *].
T(a+A+1) TG+ 2ml

2

(Mh,f,g + ([A[Ly + LQ)T) (F(B-ﬁ-ozl—é-i-l)

I'(a+1)
| DB (D + ta’iﬁ)xH > Max +F(a+ﬁ+1)r(a—6+1)) (3.28)

i (I‘(oz+1)1’([3+a+1) I’([i’—a+1))
MNa-6+1)I(BE+1) T(B-0+1)
I'(a+1)

st m ™

is valid, then problem(1.1) has the UH stability.

Proof. Let € and let € X be a function which satisfies (3.25) and let y € X be the unique
solution of the equation (1.1). We have:

My pg+ (N Ly + Lg)r kD(B —a+1) X1
Tla+B+1) +r NCESY + 2|m| + |m*|;
1
(Mh,ﬁg + (IAlLy + LQ)T) (F(ﬁ +a—0+1)
n INa+1) )
2]l < Maz{ "T(a+ B+ 1)(a—0+1) (3.29)
k (F(a—i—l)F(ﬁ—i—a—i—l) P(ﬁ—a+1))
FNa-6+1)I(BE+1) T(B-0+1)
Mo+ 1) *
Ta—ospm—"m
Combining (3.28) and (3.29), we obtain
k (3.30)

|zlle < [|IDP(D*+

el
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Therefore, we get

k
le =yl < DD+ (e =)

« k «
< ilel}l)!DB(D + 2amp)x(t) - DF(D* + o= )Y(t)

NS, Dz (t)) + g(t, (1)) — h(t) = Af(t, D°y(t)) — g(t,y(t)) — h(1)

—AS(t, DOz (t)) — g(t,x(t)) + h(t) + Af(t, D°y()) + g(t, y(1)) + h(D)]

(3.31)
Thanks to (3.25) and (3.26), we get
Iz = ylls < e+ ALsl[Dx — D°y|| + Lylz — yll. (3.32)
But since,
|)\|Lf + Lg <1,
then, we can write
€
— < =eR. 3.33
On the other hand,
(3.34)
ID%z]|los < | DP(D* + 7o)
So,
€
D(z — < =¢R. 3.35
By (3.33) and (3.35), we get
€
lz —yllx < =R (3.36)
1= (IAILy + Ly)

Consequently, (1.1) has the UH stability.
Taking ¢(¢) = R, we can state that the equation (1.1) has the generalized UH stability.
U

4. CONCLUSION

We have studied a singular differential problem of Lane Emden type. By considering
a sequential equation that involves a Caputo operator of type D (D®)) that depends on
two parameters of derivation without commutativity properties and by taking a § Caputo
derivative in the right hand side of the equation, we have proved an existence and uniqueness
theorem for our problem. Then, based on Schaefer fixed point theorem, an existence result
for our problem has been studied. This second result establishes some sufficient conditions
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assuring at least one solution for the problem. At the end, two UH stability definitions have
been introduced and UH stability results have been delivered.
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