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SECOND HANKEL DETERMINANT PROBLEM FOR A CERTAIN

SUBCLASS OF ANALYTIC BI-UNIVALENT FUNCTIONS

SERAP BULUT1 AND TUĞBA YAVUZ2

Abstract. In the present article, we obtain an upper bound for the second Hankel deter-
minant H2(2) for a certain subclass of analytic bi-univalent functions in the unit disc U.
We also give the upper bounds for H2(2) of some certain sublasses of analytic bi-univalent
functions as speial cases of our results.

1. Introduction

Let U be the open unit disk {z : z ∈ C and |z| < 1} and let A denote the class of functions

analytic in U, satisfying the conditions

f(0) = 0 and f ′(0) = 1. (1.1)

Then each function f ∈ A has the Taylor expansion

f(z) = z +
∞

∑

n=2

anzn. (1.2)

Let S denote the class of analytic and univalent functions in U with the normalization

conditions (1.1). According to Koebe-One-Quarter Theorem [6, p. 259], every f ∈ S has an

inverse function f−1 satisfying

f−1(f(z)) = z (z ∈ U)

and

f−1(f(w)) = w

(

|w| < r0(f); r0(f) ≥ 1

4

)

,

where

f−1(w) = w − a2w2 +
(

2a2
2 − a3

)

w3 −
(

5a3
2 − 5a2a3 + a4

)

w4 + · · · . (1.3)

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent in U.

Let Σ denote the class of bi-univalent functions in U given by (1.2). In the recent articles,

various subclasses of bi-univalent functions were investigated (see, for example, [3,4,8,21,25,
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26,29,30]). Generally the upper bounds for the first two coefficient estimates were obtained

in these articles. There are only a few works determining the general coefficient bounds |an|
for the analytic bi-univalent functions (see, for example, [2, 10,15]). However, the problem

to find the coefficient bounds of |an| (n = 2, 3, 4, . . .) for functions f ∈ Σ is still an open

problem.

The qth determinant for q ≥ 1 and n ≥ 0 is stated by Noonan and Thomas [20] as

Hq (n) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

an an+1 · · · an+q+1
an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

(a1 = 1) . (1.4)

This determinant has also been considered by several authors. For example, Noor [19]

determined the rate of growth of Hq (n) as n → ∞ for functions f given by (1.2) with

bounded boundary. Ehrenborg [7] studied the Hankel determinant of exponential poly-

nomials. The Hankel transform of an integer sequence and some of its properties were

discussed by Layman [16].

Note that

H2(2) =

∣

∣

∣

∣

a2 a3
a3 a4

∣

∣

∣

∣

= a2a4 − a2
3.

The determinant H2(2) is called second Hankel determinant. Many authors have ob-

tained upper bounds for the second Hankel determinant for functions belonging to several

subclasses of analytic functions given by (1.2) , (see, for example, [11–14, 17, 24, 27, 28]).

Recently, the upper bounds of H2 (2) for functions in certain subclasses of Σ have been

discussed by many authors (see, for example, [5, 22,23]).

In the present article, we obtain an upper bound for the second Hankel determinant

H2(2) of a function f ∈ A, given by (1.2), belongs to a certain subclass of Σ defined by the

following:

Definition 1.1. (see [18]) A function f ∈ Σ given by (1.2) is said to be in the class MΣ (β, λ)

if the following conditions are satisfied:

ℜ
(

zf ′ (z)

(1 − λ) f (z) + λzf ′ (z)

)

> β, (1.5)

and

ℜ
(

wg′ (w)

(1 − λ) g (w) + λwg′ (w)

)

> β, (1.6)

where 0 ≤ β < 1; 0 ≤ λ < 1; z, w ∈ U; and g = f−1 is given by (1.3) .

Remark 1.1. Note that we have the following classes:

(i) MΣ (β, 0) = S
∗
Σ (β) the class of bi-starlike functions of order β (0 ≤ β < 1), introduced

and studied by Brannan and Taha [1],

(ii) MΣ (0, 0) = S
∗
Σ the class of bi-starlike functions.

Let P be the family of all functions p analytic in U for which ℜ (p(z)) > 0 and

p(z) = 1 + c1z + c2z + · · · . (1.7)



66 SERAP BULUT AND TUĞBA YAVUZ

The following lemmas are required to prove our main results.

Lemma 1.1. [6] If the function p ∈ P is given by the series (1.7), then the sharp estimate

|ck| ≤ 2 (k ∈ N = {1, 2, . . .}) holds.

Lemma 1.2. [9] If the function p ∈ P is given by the series (1.7), then

2c2 = c2
1 + x

(

4 − c2
1

)

(1.8)

4c3 = c3
1 + 2c1

(

4 − c2
1

)

x − c1

(

4 − c2
1

)

x2 + 2
(

4 − c2
1

) (

1 − |x|2
)

z (1.9)

for some x, z with |x| ≤ 1, |z| ≤ 1.

2. Main Results

Theorem 2.1. Let the function f given by (1.2) be in the class in MΣ (β, λ). Then

∣

∣

∣a2a4 − a2
3

∣

∣

∣ ≤ (1 − β)2

(1 − λ)2















4
3

(

4β2 − 8β + 5
)

, β ∈ [0, τ ]

1 − 3(1+λ)(2−λ−β)2

(1−λ)[16(1−λ)(1−β)2−6(1−β)−5(1−λ)]
, β ∈ (τ, 1)

,

where

τ =
(29 − 32λ) −

√
128λ2 − 256λ + 137

32 (1 − λ)
.

Proof. Since f ∈ MΣ (β, λ), there exists analytic functions p, q ∈ P in the unit disk U with

p(0) = 1, ℜ (p(z)) > 0

and

q(0) = 1, ℜ (q(z)) > 0

such that
zf ′ (z)

(1 − λ) f (z) + λzf ′ (z)
= β + (1 − β) p(z) (2.1)

and
wg′ (w)

(1 − λ) g (w) + λwg′ (w)
= β + (1 − β) q(w) (2.2)

for some z, w ∈ U. Here p and q have the following series expansion

p(z) = 1 + c1z + c2z2 + · · · (2.3)

and

q(w) = 1 + d1w + d2w2 + · · · , (2.4)

respectively. By using (2.1) , (2.2) , (2.3) and (2.4) , it is obtained that

(1 − λ) a2 = (1 − β) c1, (2.5)

2 (1 − λ) a3 −
(

1 − λ2
)

a2
2 = (1 − β) c2, (2.6)

3 (1 − λ) a4 − (1 − λ) (3 + 4λ) a2a3 + (1 − λ) (1 + λ)2 a3
2 = (1 − β) c3, (2.7)

and

− (1 − λ) a2 = (1 − β) d1, (2.8)
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− 2 (1 − λ) a3 + (1 − λ) (3 − λ) a2
2 = (1 − β) d2, (2.9)

− 3 (1 − λ) a4 + 4 (1 − λ) (3 − λ) a2a3 − (1 − λ)
(

λ2 − 6λ + 10
)

a3
2 = (1 − β) d3. (2.10)

From (2.5) and (2.8) , it is obvious that

c1 = −d1 (2.11)

and

a2 =
(1 − β)

(1 − λ)
c1. (2.12)

By using (2.6) , (2.9) and (2.12) , we also obtain that

a3 =
(1 − β)2 c2

1

(1 − λ)2 +
(1 − β) (c2 − d2)

4 (1 − λ)
. (2.13)

Finally from (2.7) and (2.10) , we get

a4 =
2 + 2λ − λ2

3

(1 − β)3

(1 − λ)3 c3
1 +

5

8

(1 − β)2

(1 − λ)2 c1 (c2 − d2) +
1 − β

6 (1 − λ)
(c3 − d3) . (2.14)

Hence, we can easily write

∣

∣

∣a2a4 − a2
3

∣

∣

∣ =

∣

∣

∣

∣

∣

−1

3

(1 − β)4

(1 − λ)2 c4
1 +

(1 − β)3

8 (1 − λ)3 c2
1 (c2 − d2)

+
(1 − β)2

6 (1 − λ)2 c1 (c3 − d3) − (1 − β)2

16 (1 − λ)2 (c2 − d2)2

∣

∣

∣

∣

∣

. (2.15)

According to Lemma 1.2 and (2.11) , we may write

c2 − d2 =
4 − c2

1

2
(x − y) (2.16)

and

c3 − d3 (2.17)

=
c3

1

2
+

c1
(

4 − c2
1
)

(x + y)

2
− c1

(

4 − c2
1
) (

x2 + y2)

4
+

(

4 − c2
1
)

[(

1 − |x|2
)

z −
(

1 − |y|2
)

w
]

2

for some x, y, z and w with |x| ≤ 1, |y| ≤ 1, |z| ≤ 1 and |w| ≤ 1. Using (2.16) and (2.17) in

(2.15), we have

∣

∣

∣a2a4 − a2
3

∣

∣

∣ =

∣

∣

∣

∣

∣

−1

3

(1 − β)4

(1 − λ)2 c4
1 +

(1 − β)3

(1 − λ)3
c2

1
(

4 − c2
1
)

16
(x − y)

+
(1 − β)2

6 (1 − λ)2 c1

{

c3
1

2
+

c1
(

4 − c2
1
)

2
(x + y) − c1

(

4 − c2
1
)

4

(

x2 + y2
)

+

(

4 − c2
1
)

2

[(

1 − |x|2
)

z −
(

1 − |y|2
)

w
]

}

− (1 − β)2

(1 − λ)2

(

4 − c2
1
)2

64
(x − y)2

∣

∣

∣

∣

∣

.
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Since the function p(z) and p(eiθz), (θ ∈ R) are in the class P simultaneously, we assume

without loss of generality that c1 > 0. For convenience of notation, we take c1 = c, c ∈ [0, 2].

By using the triangle inequality, it is obtained that

∣

∣

∣a2a4 − a2
3

∣

∣

∣ ≤ 1

3

(1 − β)4

(1 − λ)2 c4 +
(1 − β)2

12 (1 − λ)2 c4 +
(1 − β)2

6 (1 − λ)2 c
(

4 − c2
)

+
(1 − β)2 c2 (

4 − c2)

4 (1 − λ)2

{

1

3
+

1 − β

4 (1 − λ)

}

(|x| + |y|)

+
(1 − β)2 c

(

4 − c2)

(c − 2)

24 (1 − λ)2

(

|x|2 + |y|2
)

+
(1 − β)2 (

4 − c2)2

64 (1 − λ)2 (|x| + |y|)2 .

Thus, for δ = |x| ≤ 1 and µ = |y| ≤ 1 we obtain
∣

∣

∣a2a4 − a2
3

∣

∣

∣ ≤ T1 + T2 (δ + µ) + T3

(

δ2 + µ2
)

+ T4 (δ + µ)2 = F (δ, µ), (2.18)

where

T1 = T1(c) =
1

3

(1 − β)4

(1 − λ)2 c4 +
(1 − β)2

12 (1 − λ)2 c4 +
(1 − β)2

6 (1 − λ)2 c
(

4 − c2
)

≥ 0,

T2 = T2(c) =
(1 − β)2 c2 (

4 − c2)

4 (1 − λ)2

{

1

3
+

1 − β

4 (1 − λ)

}

≥ 0,

T3 = T3(c) = −(1 − β)2 c
(

4 − c2)

(2 − c)

24 (1 − λ)2 ≤ 0,

T4 = T4(c) =
(1 − β)2 (

4 − c2)2

64 (1 − λ)2 ≥ 0.

Now, we have to determine the maximum of F (δ, µ) on the closed square [0, 1] × [0, 1]. We

need to examine the cases c ∈ (0, 2) , c = 2 and c = 0. Let

Π = {(δ, µ) : 0 ≤ δ ≤ 1, 0 ≤ µ ≤ 1} .

We know that T3 is negative and

T3 + 2T4 =
(1 − β)2 (

4 − c2)

(2 − c)

48 (1 − λ)2

is positive for c ∈ (0, 2) . Hence, it is obvious that

FδδFµµ − F 2
δµ = 4T3 (T3 + 2T4) < 0.

So, it means that the function F (δ, µ) cannot have a local maximum in the interior of the

closed square Π. Now, we need to compare the boundary values of F (δ, µ).

For δ = 0 and 0 ≤ µ ≤ 1 (similarly for µ = 0 and 0 ≤ δ ≤ 1), we obtain

F (0, µ) = G(µ) = (T3 + T4) µ2 + T2µ + T1.

Here, we have to consider the following two cases:
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Case 1: Let T3 + T4 ≥ 0. In this case it is clear that G′(µ) = 2 (T3 + T4) µ + T2 > 0 for

0 < µ < 1 and any fixed c with c ∈ (0, 2) . Therefore G(µ) is an increasing function. For

fixed c ∈ (0, 2) , we have

max
0<µ<1

G(µ) = T1 + T2 + T3 + T4.

Case 2: Let T3 +T4 < 0. Since T2+2 (T3 + T4) ≥ 0 for 0 < µ < 1 and any fixed c ∈ [0, 2) ,

it is clear that T2 + 2 (T3 + T4) < T2+ 2 (T3 + T4) µ < T2 and so G′(µ) > 0. Hence for fixed

c ∈ (0, 2) , we have

max
0<µ<1

G(µ) = T1 + T2 + T3 + T4.

For δ = 1 and 0 ≤ µ ≤ 1 (similarly for µ = 1 and 0 ≤ δ ≤ 1), we obtain

F (1, µ) = H(µ) = (T3 + T4) µ2 + (T2 + 2T4) µ + T1 + T2 + T3 + T4.

Replaying the above cases, we obtain the following equality

max
0<µ<1

H(µ) = T1 + 2T2 + 2T3 + 4T4.

We see that G(1) ≤ H(1) for c ∈ (0, 2) . So, we have

max F (δ, µ) = F (1, 1)

on the boundary of the closed square Π.

Let K : (0, 2) → R,

K(c) = F (1, 1) = T1 + 2T2 + 2T3 + 4T4. (2.19)

Substituting the values of T1, T2, T3 and T4 in the function K(c) yields

K(c) =
(1 − β)2

12 (1 − λ)2

{[

4 (1 − β)2 − 3 (1 − β)

2 (1 − λ)
− 5

4

]

c4 + 6

[

1 +
1 − β

1 − λ

]

c2 + 12

}

.

We need to determine the maximum of K(c). After some elementary calculations, we obtain

K ′(c) =
(1 − β)2 c

3 (1 − λ)2

{[

4 (1 − β)2 − 3 (1 − β)

2 (1 − λ)
− 5

4

]

c2 + 3

[

1 +
1 − β

1 − λ

]}

. (2.20)

Now, we have to do following examine:

Case 1: Let

4 (1 − β)2 − 3 (1 − β)

2 (1 − λ)
− 5

4
≥ 0.

It means that β ∈
[

0,
(13−16λ)−

√
80λ2−160λ+89

16(1−λ)

]

. Hence K ′(c) > 0 for c ∈ (0, 2) . It means

that it has no maximum value in this interval since K(c) is an increasing function in the

interval (0, 2) .

Case 2: Let

4 (1 − β)2 − 3 (1 − β)

2 (1 − λ)
− 5

4
< 0.
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It is possible for β ∈
(

(13−16λ)−
√

80λ2−160λ+89
16(1−λ) , 1

)

. Then we see that the function K ′(c) has

the critical points

c01 = 0 and c02 =

√

−12 (2 − λ − β)

16 (1 − λ) (1 − β)2 − 6 (1 − β) − 5 (1 − λ)
.

If β ∈
(

(13−16λ)−
√

80λ2−160λ+89
16(1−λ) ,

(29−32λ)−
√

128λ2−256λ+137
32(1−λ)

]

, then we observe that c02 ≥ 2.

It means that c02 is out of the interval (0, 2) . If β ∈
(

(29−32λ)−
√

128λ2−256λ+137
32(1−λ) , 1

)

, we see

that c02 < 2. Since K ′′(c) < 0, the function K(c) has a maximum at c = c02 which is in the

interval (0, 2) . Hence we have

max
0<c<2

K(c) = K(c02) (2.21)

=
(1 − β)2

(1 − λ)2







− 3 (1 + λ) (2 − λ − β)2

(1 − λ)
[

16 (1 − λ) (1 − β)2 − 6 (1 − β) − 5 (1 − λ)
] + 1







.

On the other hand, in the second case for c = 2 and (δ, µ) ∈ Π, we obtain

F (δ, µ) =
4 (1 − β)2

3 (1 − λ)2

(

4β2 − 8β + 5
)

(2.22)

for β ∈ [0, 1) and λ ∈ [0, 1) .

Finally, for c = 0 and (δ, µ) ∈ Π, we have

F (δ, µ) =
(1 − β)2

4 (1 − λ)2 (δ + µ)2 , (2.23)

for β ∈ [0, 1) and λ ∈ [0, 1) . From (2.21) , (2.22) and (2.23) , it is obvious that

(1 − β)2

(1 − λ)2 <
4 (1 − β)2

3 (1 − λ)2

(

4β2 − 8β + 5
)

<
(1 − β)2

(1 − λ)2







− 3 (1 + λ) (2 − λ − β)2

(1 − λ)
[

16 (1 − λ) (1 − β)2 − 6 (1 − β) − 5 (1 − λ)
] + 1







for β ∈
(

(29−32λ)−
√

128λ2−256λ+137
32(1−λ) , 1

)

. We see that our second inequality holds. On the

other hand, we obtain

(1 − β)2

(1 − λ)2 <
4 (1 − β)2

3 (1 − λ)2

(

4β2 − 8β + 5
)

for every β ∈ [0, 1) . Thus we have our first inequality holds for

β ∈
[

0,
(29−32λ)−

√
128λ2−256λ+137

32(1−λ)

]

. The proof is completed. �

We obtain the following corollaries as a special cases of our parameters.

Taking λ = 0 in Theorem 2.1, the following result is obtained for bi-starlike functions of

order β (0 ≤ β < 1) .
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Corollary 2.1. (see [5, Theorem 2.1]) Let f(z) given by (1.2) be in the class S
∗
Σ (β) . Then

∣

∣

∣a2a4 − a2
3

∣

∣

∣ ≤















4
3 (1 − β)2 (

4β2 − 8β + 5
)

, β ∈
[

0, 29−
√

137
32

]

(1 − β)2
(

13β2−14β−7
16β2−26β+5

)

, β ∈
(

29−
√

137
32 , 1

)

.

Taking β = 0 and λ = 0 in Theorem 2.1 yields the following coefficient estimates for

bi-starlike functions.

Corollary 2.2. Let f(z) given by (1.2) be in the class S∗
Σ. Then

∣

∣

∣a2a4 − a2
3

∣

∣

∣ ≤ 20

3
.
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