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SECOND HANKEL DETERMINANT PROBLEM FOR A CERTAIN
SUBCLASS OF ANALYTIC BI-UNIVALENT FUNCTIONS

SERAP BULUT' AND TUGBA YAVUZ?

ABSTRACT. In the present article, we obtain an upper bound for the second Hankel deter-
minant H3(2) for a certain subclass of analytic bi-univalent functions in the unit disc U.
We also give the upper bounds for H2(2) of some certain sublasses of analytic bi-univalent
functions as speial cases of our results.

1. INTRODUCTION

Let U be the open unit disk {z : z € C and |z| < 1} and let A denote the class of functions
analytic in U, satisfying the conditions

f(0)=0 and f(0)=1. (1.1)
Then each function f € A has the Taylor expansion
o0
flz)=z+ Z anz". (1.2)
n=2

Let 8 denote the class of analytic and univalent functions in U with the normalization
conditions (1.1). According to Koebe-One-Quarter Theorem [0, p. 259], every f € 8 has an
inverse function f~! satisfying

FFfR) =2 (2€U)
and
F@) = (fel <ol ml) = 7),
where
fHw) = w — agw® + (2@% - ag) w3 — (5@% — bagas + a4) wh - (1.3)

A function f € A is said to be bi-univalent in U if both f and f~! are univalent in U.
Let ¥ denote the class of bi-univalent functions in U given by (1.2). In the recent articles,
various subclasses of bi-univalent functions were investigated (see, for example, [3,4,8,21,25,
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26,29,30]). Generally the upper bounds for the first two coefficient estimates were obtained
in these articles. There are only a few works determining the general coefficient bounds |a,|
for the analytic bi-univalent functions (see, for example, [2, 10, 15]). However, the problem
to find the coefficient bounds of |a,| (n =2,3,4,...) for functions f € ¥ is still an open
problem.

The ¢*" determinant for ¢ > 1 and n > 0 is stated by Noonan and Thomas [20] as

G, Qp+1 - Opiggtl
An+41 Apy2 - Gp+4q
Hym)=| " A (a1 =1). (1.4)
an+g—1 Qntq °~°° Qn42¢-2

This determinant has also been considered by several authors. For example, Noor [19]
determined the rate of growth of H,(n) as n — oo for functions f given by (1.2) with

{

bounded boundary. Ehrenborg [7] studied the Hankel determinant of exponential poly-
nomials. The Hankel transform of an integer sequence and some of its properties were
discussed by Layman [16].

Note that
as as
as

Hy(2) = = apay — a3

The determinant Hy(2) is called second Hankel determinant. Many authors have ob-
tained upper bounds for the second Hankel determinant for functions belonging to several
subclasses of analytic functions given by (1.2), (see, for example, [11-14, 17, 24,27 28]).
Recently, the upper bounds of Hj (2) for functions in certain subclasses of ¥ have been
discussed by many authors (see, for example, [5,22,23]).

In the present article, we obtain an upper bound for the second Hankel determinant
H5(2) of a function f € A, given by (1.2), belongs to a certain subclass of 3 defined by the
following;:

Definition 1.1. (see [18]) A function f € ¥ given by (1.2) is said to be in the class My, (5, \)
if the following conditions are satisfied:

21 (2)
%<(1—A)f(2) e

(Z)> > B, (1.5)

and

wg' (w)
%<(1—)‘)g(w)+)\wg’ (w)> > b, (1.6)

where 0 <3< 1;0< A< 1; z,w € U; and g = f~! is given by (1.3).

Remark 1.1. Note that we have the following classes:

(i) My (B8,0) = 8% (/) the class of bi-starlike functions of order 3 (0 < # < 1), introduced
and studied by Brannan and Taha [1],
(ii) My (0,0) = 85, the class of bi-starlike functions.

Let P be the family of all functions p analytic in U for which R (p(z)) > 0 and
p(z)=14criz+coz+---. (1.7)



66 SERAP BULUT AND TUGBA YAVUZ

The following lemmas are required to prove our main results.

Lemma 1.1. [6] If the function p € P is given by the series (1.7), then the sharp estimate
lek| <2 (ke N={1,2,...}) holds.

Lemma 1.2. [9] If the function p € P is given by the series (1.7), then
2y =c 4z (4 - c%) (1.8)
de3 = ¢ + 2¢; (4 - C%) r—c (4 - C%) ) (4 - C%) (1 - |x|2) z (1.9)
for some x,z with |x| <1, |z] < 1.
2. MAIN RESULTS

Theorem 2.1. Let the function f given by (1.2) be in the class in My, (8, A). Then
2 (482 — 83 +5) , Belo, 1]

2
‘a2a4 —a%’ < u 5)2 )
(1= 1_ 3(1+M)(2-A-p) Be(r1)
(1-N)[16(1-A)(1-B)*~6(1-B)—5(1-A)] ’

)

where

(29 — 32)) — V128)\2 — 256\ + 137
32(1-X) '

Proof. Since f € My (8, A), there exists analytic functions p,q € P in the unit disk U with
p(0) =1, R(p(z)) >0

and
q(0) =1, R(q(z))>0
such that )
T S A A 21)
and
wg () = B+ (1= B)qw) (22)

(1=A)g(w) + Awg" (w)

for some z,w € U. Here p and ¢ have the following series expansion

p(z) =1+cr1z+ ez 4 - (2.3)
and
q(w) =1+ dyw + dogw? + - - -, (2.4)
respectively. By using (2.1), (2.2), (2.3) and (2.4), it is obtained that
(1—)\) as = (1—,3) Ci, (2.5)
2(1=Nag— (1-X) a3 = (1-B)ca, (2.6)
3(1=Nas—(1—=XN (3+4N) azas+ (1 —N) (1 +N?ad = (1—5)es, (2.7)
and

—(1=XNaz=(1-p)di, (2.8)
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—2(1=XNaz+ (1 =N B=Na3=(1-p)do, (2.9)
~3(1=Nas+4(1-A) (3= N aas — (1= 1) (M = 6A+10)af = (1 B)ds.  (2.10)
From (2.5) and (2.8), it is obvious that

Cc1 = —d1 (2.11)
and
ay = 8 — f; cr. (2.12)

By using (2.6), (2.9) and (2.12), we also obtain that
(L=8)c  (1-5)(ecr—dy)

= . 2.13
BTN AN (2.13)
Finally from (2.7) and (2.10) , we get
2420 -N(1-5)° 5 5(1-p)° — B
= — —d ——— (c3 — d3). 2.14
aq 3 (1_)\)361 8(1_)\)261(02 2)+6(1—)\) (c3 —d3) (2.14)
Hence, we can easily write
11-p) (1-8)°
2 4 2
jazas - af |_§(1—)\)261+ sa_ap @ ®)
(1-5)° (1-p5)° 2
+—"=5c1 (g —d3) — ———— (e — d . 2.15
TSy R TITES Ve (215
According to Lemma 1.2 and (2.11), we may write
2
T (2.16)
and
C3 — d3 (217)
_ 4, al-Qe+y _al-Q @+ G-D (k) (1)l
2 2 4 2

for some z,y, z and w with |z] <1, |y| <1, |z| <1 and |w| < 1. Using (2.16) and (2.17) in
(2.15), we have

_ra-st . -8’ dE-4)
‘a2a4—a§’— g(l—)\)Qc%_F(l—)\)?) 1 = L (z—y)
— B)? & c(4-c2 c1 (4—c2
+6((11 _ﬂ;)261{51+ 1(42 ) (x+y)— 1(44 1) <x2+y2)

+(4—20%) Kl_mz)z_ (1—]y\2)w}} B S:ﬁ)Q (4—¢) (-7,
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Since the function p(z) and p(e?z), (# € R) are in the class P simultaneously, we assume
without loss of generality that ¢; > 0. For convenience of notation, we take ¢; = ¢, ¢ € [0, 2].
By using the triangle inequality, it is obtained that
10— 4 2 1_3)?2
’ 2‘ < ( B) (1-8) At ( B) 0(4—02)

asay4 — ag

44

o

3(1—n)>2 12(1—\)? 6(1—N\)>
(1-8)2c4-¢) (1 1-8
P 5 Ty e D
20 c— B 2 _22
IO (o o) + S
Thus, for § = || <1 and p = |y| < 1 we obtain
‘a2a4 — a%‘ <Ti+1T5 (5 +M) + 13 (52 —i—,U,Q) + Ty (5+M)2 = F((S,/j,), (2.18)
where
o la=pt, =8, (=B )
h=100 =352 T a2 +6(1—,\)2C(4_c)20’
N e R G D L S St
To=Tle) = 4(1 -0 {3+4(1—>\)}20’
B __(1—6)204—02)(2—0)
T3_T3(C)_ 24( _)\)2 <0,
(=B’
T4 = T4(C) = 64 (1 — )\) = 0.

Now, we have to determine the maximum of F'(d, ) on the closed square [0,1] x [0, 1]. We
need to examine the cases ¢ € (0,2), ¢ =2 and ¢ = 0. Let

MI={(0,pu):0<6<1, 0<pu<1}.

We know that T3 is negative and

(1L-B*(4-c)(2-0
48 (1 — \)?

T3+ 2Ty =

is positive for ¢ € (0,2). Hence, it is obvious that
FssF — Fy, = ATy (Ts 4 214) < 0.

So, it means that the function F'(d, 1) cannot have a local maximum in the interior of the
closed square II. Now, we need to compare the boundary values of F'(4, u).
For § =0 and 0 < p <1 (similarly for 4 =0 and 0 < § < 1), we obtain

F(0,p) = G(p) = (Ts + Ty) pi* + Top + T

Here, we have to consider the following two cases:
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Case 1: Let T3 + T4 > 0. In this case it is clear that G'(u) = 2 (T3 + T4) p + To > 0 for
0 < pu < 1 and any fixed ¢ with ¢ € (0,2). Therefore G(p) is an increasing function. For
fixed ¢ € (0,2), we have

G =Ty +T5 +T5+Ty.
0@3?1 (1) 1ty +13+ 1y

Case 2: Let T3+Ty < 0. Since To+2 (T5 + Ty) > 0 for 0 < u < 1 and any fixed ¢ € [0,2),
it is clear that Th + 2 (T3 + Tu) < To+ 2 (T35 + Tu) u < T> and so G'(p) > 0. Hence for fixed
c € (0,2), we have

=T, + T+ T35+ Ty.

&ﬁgGW) \+ T+ T3+ Ty

For § =1 and 0 < p <1 (similarly for 4 =1 and 0 < § < 1), we obtain
F(Lp) = H(p) = (Ty + Ta) p* + (To + 2T0) p+ Ty + To + T + Ty

Replaying the above cases, we obtain the following equality

H(p) =11 + 215 + 215 + 47T).
2, 0 = T1 42T, 4 2Ty 4 4,

We see that G(1) < H(1) for ¢ € (0,2). So, we have
max F(,n) = F(1,1)

on the boundary of the closed square II.
Let K :(0,2) —» R,

K(c) = F(1,1) =Ty + 215 + 2T5 + 4T}. (2.19)

Substituting the values of T3, T, T3 and T} in the function K(c) yields

K@%:é%f?%g{Pﬂ—ﬁf—%ggg%—gy#+6P+%§§}?+H}.

(
We need to determine the maximum of K (c). After some elementary calculations, we obtain

1-p)c 2 3(1-5) 5 1-5

K’ :(7{[4 1-— —7——} 2 3[1 —}} 2.20
O = sa e W Ty Al A s (2:20)

Now, we have to do following examine:

Case 1: Let
3(1—-p5) 5
4(1-p)7% = >
=8 —gq=x 120
—16))—/BONZ—1601189

It means that 8 € [0, (13-16) 1650_)‘;) 1602189 | Hence K'(¢) > 0 for ¢ € (0,2). It means

that it has no maximum value in this interval since K (c) is an increasing function in the
interval (0,2).
Case 2: Let
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. . - —v/80A2—160)\+89 .
It is possible for 5 € ((13 — 16(?0—)\;) 160/\+897 1) . Then we see that the function K’(c) has

the critical points

co1 =0 and ¢ :\/ —122-2—6)
: PV -0 618 51—

If B e (13—160)—V/BOAZ—160A+89  (29—32))—v/128A\%—256A+137
16(1—N) ) 32(1—X)

} , then we observe that cpo > 2.

29—32X) —V128X2—256A+137 1

It means that cpy is out of the interval (0,2). If § € <( 321N , > , We see

that cpo < 2. Since K”(¢) < 0, the function K (¢) has a maximum at ¢ = ¢py which is in the
interval (0,2) . Hence we have

OIE?EQK(C) = K(cp2) (2.21)
_ a=8 ) 3(1+X)(2-A—p) e
A= =N [160 -2 =8°~6(1-8)-50-))
On the other hand, in the second case for ¢ = 2 and (4, 1) € II, we obtain
A8 (e
Fo,m) = Y (462 - 88 +5) (2.22)

for € [0,1) and A € [0,1).
Finally, for ¢ = 0 and (d, ) € II, we have

o 2
F@urzﬁ%f%iw+uf, (2.23)

for § €]0,1) and A € [0,1). From (2.21), (2.22) and (2.23), it is obvious that

w < M(Zlﬁz—é%ﬂ—i—f))

(1—1)? 3(1—))?
-2 3(1+X)(2-A-5)° +1
(1—))? (1-A)[16(1—A)(1—6)2—6(1—ﬁ)—5(1—A)}

32(1—N) ’
other hand, we obtain

—390)— /12832 25671137 . .
for § € (29-320)— v 128X° ~ 2567+ 137 1) . We see that our second inequality holds. On the

(1-p7° _4(0-8)
(1-2% 3(1-))?
for every 3 € [0,1). Thus we have our first inequality holds for

—39\)—V/I28NZ—2B6AT 137 .
XS {0, (20-323) 321583‘;) 256)‘+137] . The proof is completed. O

(452 — 8B+ 5)

We obtain the following corollaries as a special cases of our parameters.
Taking A = 0 in Theorem 2.1, the following result is obtained for bi-starlike functions of
order 5 (0<f/<1).
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Corollary 2.1. (see [5, Theorem 2.1|) Let f(z) given by (1.2) be in the class 85, (3). Then
4(1-B8)° (4B =88+5) , Be |0, D15
2 148
(-9 (Re=mims) - e (B81)

Taking f = 0 and A\ = 0 in Theorem 2.1 yields the following coefficient estimates for
bi-starlike functions.

}a2a4 - ag} <

Corollary 2.2. Let f(z) given by (1.2) be in the class S5. Then

20
‘a2a4 — a3 < E
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