
Turkish J. Ineq., 3 (1) (2019), Pages 73 –85 .

Turkish Journal of

I N E Q U A L I T I E S

Available online at www.tjinequality.com

INEQUALITIES ARISING FROM THE MONOTONICITY AND

CONVEXITY

MERVE AVCI ARDIÇ1 AND ZLATKO PAVIĆ2

In memory of our friend Hatice Yaldız

Abstract. We study the possibilities of creating inequalities with monotonic and convex
functions. This research makes the most of the convex combination center and bounded set
barycenter. Such approach gives rise to multiple inequalities in which the middle members
are variable.

1. Introduction

If a, b ∈ R are points such that a < b, then the closed interval with endpoints a and b

can be introduced as the set

[a, b] =
{

αa + βb : α, β ∈ [0, 1], α + β = 1
}

. (1.1)

Each point x ∈ [a, b] is represented by the unique binomial convex combination αxa + βxb

because the difference a − b is not zero. The convex combination

x =
b − x

b − a
a +

x − a

b − a
b

shows that αx = (b − x)/(b − a) and βx = (x − a)/(b − a). Formula (1.1) also applies in the

case a = b where [a, a] = {a}. If we use formula (1.1) with α, β ∈ (0, 1), then we have the

open interval (a, b).

The convex hull of a set X ⊆ R is the set convX containing all convex combinations of

points from X.

Let
∑n

i=1 λixi be a convex combination of points xi ∈ [a, b]. Its center c can be formally

defined by the equation
∑n

i=1 λi(xi − c) = 0. Thus c =
∑n

i=1 λixi and it belongs to the
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convex hull of {x1, . . . , xn}. A convex function f : [a, b] → R satisfies the discrete form of

Jensen’s inequality (see [4])

f

( n
∑

i=1

λixi

)

≤
n

∑

i=1

λif(xi). (1.2)

Let X ⊆ [a, b] be a set of the length |X| > 0. Its barycenter c̄ can be defined by the

integral equation
∫

X(x − c̄) dx = 0. Thus c̄ =
∫

X x dx/|X| and it belongs to the convex

hull of X. A convex function f : [a, b] → R satisfies the simple integral form of Jensen’s

inequality (see [5])

f

(

∫

X x dx

|X|

)

≤

∫

X f(x) dx

|X|
. (1.3)

If we use an affine function f , then we have the equalities in formula (1.2) and formula

(1.3).

2. Inequalities on the bounded closed interval

The consequent four lemmas employ the common centers and barycenters.

Lemma 2.1. Let
∑n

i=1 λixi be a convex combination of points xi ∈ [a, b], and let αa + βb

be the convex combination of the endpoints a and b such that
n

∑

i=1

λixi = αa + βb.

Then each convex function f : [a, b] → R satisfies the double inequality

f(αa + βb) ≤
n

∑

i=1

λif(xi) ≤ αf(a) + βf(b). (2.1)

Lemma 2.2. Let X ⊆ [a, b] be a set of positive length, and let αa + βb be the convex

combination of the endpoints a and b such that
∫

X x dx

|X|
= αa + βb.

Then each convex function f : [a, b] → R satisfies the double inequality

f(αa + βb) ≤

∫

X f(x) dx

|X|
≤ αf(a) + βf(b). (2.2)

Lemma 2.3. Let
∑n

i=1 λixi and
∑m

j=1 κjyj be convex combinations of points xi, yj ∈ [a, b]

such that no yj belongs to the interior of conv{x1, . . . , xn} and that

n
∑

i=1

λixi =
m

∑

j=1

κjyj,

and let λ and κ be nonnegative numbers such that λ + κ = 1.

Then each convex function f : [a, b] → R satisfies the double inequality

n
∑

i=1

λif(xi) ≤ λ
n

∑

i=1

λif(xi) + κ
m

∑

j=1

κjf(yj) ≤
m

∑

j=1

κjf(yj). (2.3)
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The presentation of the middle member in formula (2.3) is not substantial. Its full

meaning comes to expression in the integral form.

Lemma 2.4. Let X, Y ⊆ [a, b] be sets of positive lengths such that Y does not intersect the

interior of convX and that
∫

X x dx

|X|
=

∫

Y y dy

|Y |
.

Then each convex function f : [a, b] → R satisfies the double inequality
∫

X f(x) dx

|X|
≤

∫

X∪Y f(z) dz

|X ∪ Y |
≤

∫

Y f(y) dy

|Y |
. (2.4)

The above four Jensen type inequalities show that the convex function values taken in

the form of convex combinations or integral arithmetic means grow from the center, across

the middle, to the ends.

The above inequalities can be proved by using the secant line y = h(x) over the convex

hull of {x1, . . . , xn} or X, and applying the convexity of f and affinity of h through their

discrete and integral forms. The special cases for the discrete inequalities in formula (2.1)

and formula (2.3) must be considered particularly.

The inequality in formula (2.3) can be extended by inserting into the inequality f(αa +

βb) ≤ αf(a)+βf(b) if αa+βb =
∑n

i=1 λixi =
∑m

j=1 κjyj. The same is true for the inequality

in formula (2.4) if αa + βb =
∫

X x dx/|X| =
∫

Y y dy/|Y |.

The discrete Jensen type inequality in formula (2.3) and the integral Jensen type inequal-

ity in formula (2.4) were generally discussed in [13]. New generalizations and refinements

of the Jensen inequality were considered in [6], [7] and [8].

3. Main results

Initially, we present a simple construction of a nondecreasing and convex function which

can be employed to create inequalities.

Theorem 3.1. Let f : [a, b] → R be a convex function, and let c = αa + βb be a convex

combination of the endpoints a and b.

Then the function fc : [0, 1] → R defined by

fc(t) = αf
(

ta + (1 − t)c
)

+ βf
(

(1 − t)c + tb
)

(3.1)

is nondecreasing and convex.

Proof. The representation of fc: By pointing out the convex combinations originating from

the point c and determined as

ac(t) = ta + (1 − t)c and bc(t) = (1 − t)c + tb, (3.2)

we can set up the representation

fc(t) = αf(ac(t)) + βf(bc(t)). (3.3)
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The c-originating combinations in formula (3.2) can be regarded as the restricted affine

functions ac : [0, 1] → [a, c] and bc : [0, 1] → [c, b].

The monotonicity of fc: The proof of this part is based on Lemma 2.1. We take a pair

of arguments t1, t2 ∈ [0, 1] such that t1 < t2. Then it follows that

ac(t2) ≤ ac(t1) ≤ c ≤ bc(t1) ≤ bc(t2).

So we have the inclusion ac(t1), bc(t1) ∈ [ac(t2), bc(t2)]. We also have the equality

αac(t1) + βbc(t1) = c = αac(t2) + βbc(t2).

By applying the right-hand side (containing the second and third members) of the double

inequality in formula (2.1) to the above inclusion and equality, we obtain the inequality

αf(ac(t1)) + βf(bc(t1)) ≤ αf(ac(t2)) + βf(bc(t2))

which determines the relation fc(t1) ≤ fc(t2). Thus fc is nondecreasing.

The convexity of fc: Since the compositions f ◦ ac and f ◦ bc are convex, their convex

combination fc = α(f ◦ ac) + β(f ◦ bc) is certainly convex. �

If c = a or c = b, then fc(t) = f(c) for every t ∈ [0, 1], and so the constant f(c) represents

the function fc. The same is true if the function f is affine.

The combinations ac(t) = ta + (1 − t)c and bc(t) = (1 − t)c + tb tend to the center c if t

tends to 0, and tend to the ends a and b if t tends to 1. The combinations a⋆
c(t) = (1−t)a+tc

and b⋆
c(t) = tc + (1 − t)b behave the opposite.

Remark 3.1. Let f : [a, b] → R be a convex function, and let c = αa + βb be a convex

combination of the endpoints a and b.

Then the function f⋆
c : [0, 1] → R defined by

f⋆
c (t) = αf

(

(1 − t)a + tc
)

+ βf
(

tc + (1 − t)b
)

is nonincreasing and convex.

The effects of the function fc will be presented through the inequalities exposed in corol-

laries and theorems that follow.

Corollary 3.1. Let c = αa + βb be a convex combination of the endpoints a and b, and let

t ∈ [0, 1] be a number.

Then each convex function f : [a, b] → R satisfies the double inequality

f(αa + βb) ≤ αf
(

ta+(1−t)c
)

+ βf
(

(1−t)c+tb
)

≤ αf(a) + βf(b). (3.4)

Proof. The nondecreasing function fc provides a simple proof. Since

fc(0) = αf(c) + βf(c) = f(c) = f(αa + βb)

and

fc(1) = αf(a) + βf(b),

the relations

fc(0) ≤ fc(t) ≤ fc(1)
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affirm the inequality in formula (3.4). �

The inequality in formula (3.4) contains the variable number t. It allows the integration

over the interval [0, 1] by the variable t.

Corollary 3.2. Let c = αa + βb be a convex combination of the endpoints a and b with

positive coefficients α and β.

Then each convex function f : [a, b] → R satisfies the double inequality

f(αa + βb) ≤ α

∫ c
a f(x) dx

c − a
+ β

∫ b
c f(x) dx

b − c
≤ αf(a) + βf(b). (3.5)

By using c = (a + b)/2 in formula (3.5), or using X = [a, b] in formula (2.2), we get the

Hermite-Hadamard inequality (see [3] and [2])

f

(

a + b

2

)

≤

∫ b
a f(x) dx

b − a
≤

f(a) + f(b)

2
. (3.6)

As a reciprocity, this useful inequality gives an opportunity to refine the inequality in formula

(3.5). The Jensen inequality joins too.

Corollary 3.3. Let c = αa + βb be a convex combination of the endpoints a and b with

positive coefficients α and β.

Then each convex function f : [a, b] → R satisfies the multiple inequality

f(αa+βb) ≤ αf

(

a+c

2

)

+ βf

(

c+b

2

)

≤ α

∫ c
a f(x)dx

c − a
+ β

∫ b
c f(x)dx

b − c

≤ α
f(a) + f(c)

2
+ β

f(c) + f(b)

2
≤ αf(a) + βf(b).

(3.7)

Proof. The inequality of the first and second members follows from the Jensen inequality

applied to the convex combinations equality

αa + βb = c = α
a + c

2
+ β

c + b

2
.

The inequality of the second, third and fourth members follows from the Hermite–

Hadamard inequality applied to the function fc as

fc

(

0 + 1

2

)

≤

∫ 1

0
fc(t) dt ≤

fc(0) + fc(1)

2
.

The inequality of the fourth and fifth members follows from the convexity inequality

f(c) ≤ αf(a) + βf(b). �

To generalize Lemma 2.1, we use the c-originating combinations as points.

Theorem 3.2. Let c =
∑n

i=1 λixi be a convex combination of points xi ∈ [a, b], let c =

αa + βb be the convex combination of the endpoints a and b, and let t ∈ [0, 1] be a number.
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Then each convex function f : [a, b] → R satisfies the multiple inequality

f(αa+βb) ≤
n

∑

i=1

λif
(

txi+(1 − t)c
)

≤ αf
(

ta+(1−t)c
)

+βf
(

(1−t)c+tb
)

≤ αf(a) + βf(b).

(3.8)

Proof. The inequality of the last two members is included in formula (3.4).

To provide the inequality of the first three members, we use the c-originating convex

combinations

ac(t) = ta + (1 − t)c, xic(t) = txi + (1 − t)c, bc(t) = (1 − t)c + tb.

Each point xi can be represented by the convex combination xi = αia+βib. It further gives

the similar convex combination

xic(t) = αiac(t) + βibc(t).

This implies the inclusion xic(t) ∈ [ac(t), bc(t)] for i = 1, . . . , n. Besides, there follows the

equality
n

∑

i=1

λixic(t) = c = αac(t) + βbc(t).

We can apply the double inequality in formula (2.1) to the above inclusion and equality,

and obtain the inequality

f
(

αac(t) + βbc(t)
)

≤
n

∑

i=1

λif(xic(t)) ≤ αf(ac(t)) + βf(bc(t))

which provides the inequality of the first three members. �

The integration of formula (3.8) assumes and yields the following.

Corollary 3.4. Let c =
∑n

i=1 λixi be a convex combination of points xi ∈ [a, b] such that

no xi coincides with c, and let c = αa + βb be the convex combination of the endpoints a

and b.

Then each convex function f : [a, b] → R satisfies the multiple inequality

f(αa + βb) ≤
n

∑

i=1

λi

∫ xi

c f(x)dx

xi − c
≤ α

∫ c
a f(x)dx

c − a
+ β

∫ b
c f(x)dx

b − c

≤ αf(a) + βf(b).

(3.9)

In the next generalization of Lemma 2.3, we only observe the end-members of the in-

equality in formula (2.3).

Theorem 3.3. Let c =
∑n

i=1 λixi and c =
∑m

j=1 κjyj be convex combinations of points

xi, yj ∈ [a, b] such that no yj belongs to the interior of the convex hull of {x1, . . . , xn}, let

c = αa + βb be the convex combination of the endpoints a and b, and let t ∈ [0, 1] be a

number.
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Then each convex function f : [a, b] → R satisfies the multiple inequality

f(αa + βb) ≤
n

∑

i=1

λif
(

txi + (1 − t)c
)

≤
m

∑

j=1

κjf
(

tyj + (1 − t)c
)

≤ αf(a) + βf(b).

(3.10)

Proof. The inequalities of the first two members and last two members are covered by

formula (3.8).

To prove the inequality of the middle members, we emphasize the numbers

a0 = min{x1, . . . , xn} and b0 = max{x1, . . . , xn},

combinations xic(t) = txi + (1 − t)c and yjc(t) = tyj + (1 − t)c, and equality
n

∑

i=1

λixic(t) = c =
m

∑

j=1

κjyjc(t). (3.11)

If a0 = b0, then x1 = . . . = xn = c. There is no restriction on the points yj. To represent

the inequality of the middle members, we engage Jensen’s inequality within the relations
n

∑

i=1

λif(xic(t)) = f(c) ≤
m

∑

j=1

κjf(yjc(t)). (3.12)

If a0 < b0, then we engage the c-originating convex combinations

a0c(t) = ta0 + (1 − t)c and b0c(t) = (1 − t)c + tb0.

Each point yj can be represented by the affine combination yj = αja0 + βjb0 including

αj ≤ 0 or βj ≤ 0 because yj /∈ (a0, b0). It follows that

yjc(t) = αja0c(t) + βjb0c(t),

and so yjc(t) /∈ (a0c(t), b0c(t)). Further, each xic(t) ∈ [a0c(t), b0c(t)] ⊆ [ac(t), bc(t)] and each

yjc(t) ∈ [ac(t), bc(t)] by the proof of Theorem 3.2. We have the inclusions

xic(t) ∈ [a0c(t), b0c(t)] and yjc(t) ∈ [ac(t), bc(t)] \ (a0c(t), b0c(t)).

By applying the inequality of the end-members in formula (2.3) to the above inclusions

and the equality in formula (3.11), we obtain the inequality of the end-members in formula

(3.12). �

The integration of the inequality in formula (3.10) runs as follows.

Corollary 3.5. Let c =
∑n

i=1 λixi and c =
∑m

j=1 κjyj be convex combinations of points

xi, yj ∈ [a, b] such that no yj belongs to the interior of the convex hull of {x1, . . . , xn} and

that no xi or yj coincides with c, and let c = αa + βb be the convex combination of the

endpoints a and b.

Then each convex function f : [a, b] → R satisfies the multiple inequality

f(αa + βb) ≤
n

∑

i=1

λi

∫ xi

c f(x) dx

xi − c
≤

m
∑

j=1

κj

∫ yj

c f(y) dy

yj − c

≤ αf(a) + βf(b).

(3.13)
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Given the previous experience, the refinement of the inequality in formula (3.13) stands

as

f(αa + βb) ≤
n

∑

i=1

λi f

(

xi + c

2

)

≤
n

∑

i=1

λi

∫ xi

c f(x) dx

xi − c

≤
m

∑

j=1

κj

∫ yj

c f(y) dy

yj − c
≤

m
∑

j=1

κj
f(yj)+f(c)

2

≤ αf(a) + βf(b).

(3.14)

The Hermite-Hadamard inequality still occupies the attention of mathematicians. Its

applications are generally focused on the classes of functions that are more general than

convex, see [11], [14] and [16].

4. Generalizations to higher dimensions

If a1, . . . , am+1 ∈ R
m are points such that the differences a1 − am+1, . . . , am − am+1 are

linearly independent, then the m-simplex with vertices a1, . . . , am+1 can be introduced as

the set

△a1...am+1
=

{

∑m+1
j=1 αjaj : αj ∈ [0, 1],

∑m+1
j=1 αj = 1

}

. (4.1)

Thus △a1...am+1
= conv{a1, . . . , am+1}. By applying the above formula to (k + 1)–

membered subsets of {a1 . . . am+1}, we get k–subsimplices of △a1...am+1
. Usually, 1-subsimp-

lices are called edges, and (m−1)–subsimplices are called facets. If we use the above formula

with αj ∈ (0, 1), then we have the open m-simplex △o
a1...am+1

.

Each point x ∈ △a1...am+1
is represented by the unique (m+1)-membered convex combi-

nation
∑m+1

j=1 αxjaj because the points a1 − am+1, . . . , am − am+1 are linearly independent.

By using the sets △aj=x = conv{a1, . . . , aj−1, x, aj+1, . . . , am+1} and the denotation volm
for the volume in the space R

m, the convex combination

x =
m+1
∑

j=1

volm(△aj=x)

volm(△a1...am+1
)
aj

indicates that αxj = volm(△aj =x)/volm(△a1...am+1
). Depending on the position of x, the

set △aj=x appears as one of two volumetric shapes, as an m-simplex in the case αxj > 0,

or as the facet △a1...aj−1aj+1...am+1
in the case αxj = 0.

The generalization of Lemma 2.1 to the m-simplex involves a certain convex combination

of its vertices.

Lemma 4.1. Let
∑n

i=1 λixi be a convex combination of points xi ∈ △a1...am+1
, and let

∑m+1
j=1 αjaj be the convex combination of the vertices aj such that

n
∑

i=1

λixi =
m+1
∑

j=1

αjaj .
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Then each convex function f : △a1...am+1
→ R satisfies the double inequality

f

( m+1
∑

j=1

αjaj

)

≤
n

∑

i=1

λif(xi) ≤
m+1
∑

j=1

αjf(aj). (4.2)

The generalization of Lemma 2.2 to the m-simplex includes the barycenter of its subset

with a positive volume.

Lemma 4.2. Let X ⊆ △a1...am+1
be a set with volm(X) > 0, and let

∑m+1
j=1 αjaj be the

convex combination of the vertices aj such that

(

∫

X x1 dx1 . . . dxm

volm(X)
, . . . ,

∫

X xm dx1 . . . dxm

volm(X)

)

=
m+1
∑

j=1

αjaj.

Then each convex function f : △a1...am+1
→ R satisfies the double inequality

f

( m+1
∑

j=1

αjaj

)

≤

∫

X f(x1, . . . , xm) dx1 . . . dxm

volm(X)
≤

m+1
∑

j=1

αjf(aj). (4.3)

We can easily generalize the statement of Theorem 3.1, but the proof is more demanding.

Theorem 4.1. Let f : △a1...am+1
→ R be a convex function, and let c =

∑m+1
j=1 αjaj be a

convex combination of the vertices aj .

Then the function fc : [0, 1] → R defined by

fc(t) =
m+1
∑

j=1

αjf
(

taj + (1 − t)c
)

(4.4)

is nondecreasing and convex.

Proof. The representation of fc: By emphasizing the c-originating convex combinations

ajc(t) = taj + (1 − t)c, (4.5)

we appoint the representation

fc(t) =
m+1
∑

j=1

αjf(ajc(t)). (4.6)

The point ajc(t) belongs to the line segment △caj
with the endpoints c and aj . The combi-

nations in formula (4.5) are restricted affine mappings ajc : [0, 1] → △caj
. If t > 0, then it

can be proved that the points ajc(t) span the m-simplex

△t = △a1c(t)...am+1 c(t). (4.7)

The limit case is the singleton △0 = {c}, and the given simplex is △1.

The monotonicity of fc: We rely on Lemma 4.1. Let t1, t2 ∈ [0, 1] be a pair of arguments

such that t1 < t2. Then the convex combination

ajc(t1) =
t2 − t1

t2
c +

t1

t2
ajc(t2)
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indicates that the point ajc(t1) belongs to the line segment △cajc(t2). Therefore we have the

inclusion ajc(t1) ∈ △t2
for j = 1, . . . , m + 1 (in fact this proves △t1

⊂ △t2
). We also have

the equality
m+1
∑

j=1

αjajc(t1) = c =
m+1
∑

j=1

αjajc(t2).

Then the application of the right-hand side of the double inequality in formula (4.2) to the

above inclusion and equality results as the inequality

m+1
∑

j=1

αjf(ajc(t1)) ≤
m+1
∑

j=1

αjf(ajc(t2))

which affirms the relation fc(t1) ≤ fc(t2). Thus fc is nondecreasing.

The convexity of fc: Since the compositions f ◦ ajc are convex, their convex combination

fc =
∑m+1

j=1 αj(f ◦ ajc) is definitely convex. �

An elegant approach to the simplices △t can be realized as follows.

Remark 4.1. Let t1, t2 ∈ (0, 1] be numbers satisfying t1 < t2, and let Hc,t1/t2
: Rm → R

m be

the homothety with the center at c and ratio t1/t2 standing as

Hc,t1/t2
(x) − c =

t1

t2
(x − c).

Then the above homothety satisfies

Hc,t1/t2
(ajc(t2)) = c +

t1

t2

(

ajc(t2) − c
)

= t1aj + (1 − t1)c = ajc(t1)

for every j = 1, . . . , m + 1, so it maps the vertices of △t2
onto the vertices of △t1

. Since

a homothety preserves affine (including convex) combinations, it follows that the above

homothety maps the simplex △t2
onto the simplex △t1

.

The relations fc(0) ≤ fc(t) ≤ fc(1) give the following inequality.

Corollary 4.1. Let c =
∑m+1

j=1 αjaj be a convex combination of the vertices aj , and let

t ∈ [0, 1] be a number.

Then each convex function f : △a1...am+1
→ R satisfies the double inequality

f

( m+1
∑

j=1

αjaj

)

≤
m+1
∑

j=1

αjf
(

taj + (1 − t)c
)

≤
m+1
∑

j=1

αjf(aj). (4.8)

The refinement of the inequality in formula (4.8) can be obtained by using any convex

combination of points belonging to the simplex △a1...am+1
.

Theorem 4.2. Let c =
∑n

i=1 λixi be a convex combination of points xi ∈ △a1...am+1
, let

c =
∑m+1

j=1 αjaj be the convex combination of the vertices aj , and let t ∈ [0, 1] be a number.
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Then each convex function f : △a1...am+1
→ R satisfies the multiple inequality

f

( m+1
∑

j=1

αjaj

)

≤
n

∑

i=1

λif
(

txi+(1 − t)c
)

≤
m+1
∑

j=1

αjf
(

taj + (1 − t)c
)

≤
m+1
∑

j=1

αjf(aj).

(4.9)

Proof. The inequality of the last two members is contained in formula (4.8).

To ensure the inequality of the first three members, we utilize Lemma 4.1. Given the

point xi, we use the convex combination xi =
∑m+1

j=1 αijaj . Then we have the similar convex

combination

xic(t) =
m+1
∑

j=1

αijajc(t).

It implies the inclusion xic(t) ∈ △t for i = 1, . . . , n. Furthermore, there follows the equality

n
∑

i=1

λixic(t) = c =
m+1
∑

j=1

αjajc(t).

By applying the double inequality in formula (4.2) to the above inclusion and equality, we

get the inequality

f

( m+1
∑

j=1

αjajc(t)

)

≤
n

∑

i=1

λif(xic(t)) ≤
m+1
∑

j=1

αjf(ajc(t))

which ensures the inequality of the first three members. �

The point c̄ =
∑m+1

j=1 aj/(m + 1) is the barycenter of the m-simplex △a1...am+1
. Within

Lemma 4.2, the next corollary exploits the point c̄ as the barycenter of m-simplices △̄t =

△a1c̄(t)...am+1 c̄(t) with t > 0. Obviously, △a1...am+1
= △̄1.

Corollary 4.2. Let c̄ =
∑m+1

j=1 aj/(m + 1) be the barycentric convex combination of the

vertices aj, and let t ∈ (0, 1] be a number.

Then each convex function f : △a1...am+1
→ R satisfies the double inequality

f

(

∑m+1
j=1 aj

m + 1

)

≤

∫

△̄t
f(x1, . . . , xm) dx1 . . . dxm

volm(△̄t)
≤

∑m+1
j=1 f

(

taj +(1−t)c̄
)

m + 1

≤

∑m+1
j=1 f(aj)

m + 1
.

(4.10)

Proof. To obtain the inequality of the first three members, we apply formula (4.3) to the

m-simplex X = △̄t. The barycentric equality
∑m+1

j=1 ajc̄(t)

m + 1
=

∑m+1
j=1 aj

m + 1

plays a role. �
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The second member in formula (4.10) approaches f(c̄) as t approaches 0. Namely, the

first member is the constant f(c̄), and the third member approaches f(c̄).

By using t = 1 in formula (4.10), or using X = △a1...am+1
in formula (4.3), we get the

Hermite-Hadamard inequality for the m-simplex as

f

(

∑m+1
j=1 aj

m + 1

)

≤

∫

△a1...am+1

f(x1, . . . , xm) dx1 . . . dxm

volm(△a1...am+1
)

≤

∑m+1
j=1 f(aj)

m + 1
. (4.11)

The Hermite-Hadamard inequality for the simplices was considered in the papers [1,9,10,

12,15] and many others.
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