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INEQUALITIES ARISING FROM THE MONOTONICITY AND
CONVEXITY

MERVE AVCI ARDIC' AND ZLATKO PAVIC?

In memory of our friend Hatice Yaldiz

ABSTRACT. We study the possibilities of creating inequalities with monotonic and convex
functions. This research makes the most of the convex combination center and bounded set
barycenter. Such approach gives rise to multiple inequalities in which the middle members
are variable.

1. INTRODUCTION

If a,b € R are points such that a < b, then the closed interval with endpoints a and b
can be introduced as the set

la,b] = {aa+Bb: o, €[0,1], a+ =1} (1.1)
Each point x € [a, b] is represented by the unique binomial convex combination a,a + 5,0
because the difference a — b is not zero. The convex combination
b—=x . r—a
= a
b—a b—a

shows that a, = (b—x)/(b—a) and 8, = (x —a)/(b—a). Formula (1.1) also applies in the
case a = b where [a,a] = {a}. If we use formula (1.1) with a, 8 € (0,1), then we have the
open interval (a,b).

b

x

The convex hull of a set X C R is the set convX containing all convex combinations of
points from X.

Let >, A\iz; be a convex combination of points x; € [a, b]. Its center ¢ can be formally
defined by the equation Y ;" Aj(x; —¢) = 0. Thus ¢ = > i, \iz; and it belongs to the
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convex hull of {z1,...,2,}. A convex function f : [a,b] — R satisfies the discrete form of

Jensen’s inequality (see [1]) i i
f(z )\ixi) <Y N f (@) (1.2)
i=1 i=1

Let X C [a,b] be a set of the length |X| > 0. Its barycenter ¢ can be defined by the
integral equation [y (z —¢)dx = 0. Thus ¢ = [y xdx/|X| and it belongs to the convex
hull of X. A convex function f : [a,b] — R satisfies the simple integral form of Jensen’s
inequality (see [5])

[y xdx Iy f(z)dx
f< X|X| )g X|X| : (1.3)

If we use an affine function f, then we have the equalities in formula (1.2) and formula
(1.3).
2. INEQUALITIES ON THE BOUNDED CLOSED INTERVAL

The consequent four lemmas employ the common centers and barycenters.

Lemma 2.1. Let Y1 ; \jz; be a convex combination of points x; € [a,b], and let aa + Bb
be the convex combination of the endpoints a and b such that

Z Aix; = aa + [Bb.
i=1
Then each convex function f : [a,b] — R satisfies the double inequality
flaa+ Bb) <> Xif(x:) < af(a) + B (D). (2.1)
i=1
Lemma 2.2. Let X C [a,b] be a set of positive length, and let aa + Bb be the convex
combination of the endpoints a and b such that

Jx zdx

x| = aa + Sb.
Then each convex function f : [a,b] — R satisfies the double inequality
x)dx
flaa-+ ) < LI < ap(a) + 10) 2.2

Lemma 2.3. Let 37" Nz and Y°71 kjy; be convex combinations of points x;,y; € [a,b]
such that no y; belongs to the interior of conv{x,...,x,} and that

n m
D Ny =) Ry,
i=1 =1

and let A and Kk be nonnegative numbers such that A+ = 1.

Then each convex function f : [a,b] — R satisfies the double inequality

DoNif () A Nif (i) + w8 wify) <Y Rif(y)): (2.3)
i=1 i=1

j=1 j=1
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The presentation of the middle member in formula (2.3) is not substantial. Its full
meaning comes to expression in the integral form.

Lemma 2.4. Let X, Y C [a,b] be sets of positive lengths such that'Y does not intersect the
interior of convX and that

Jx zdx _ Jyydy

| X| Y]
Then each convex function f : [a,b] — R satisfies the double inequality
Jx flz)dz < Jxuy f(2) dz < fyf(y)dy. (2.4)
RY (X UY] Y]

The above four Jensen type inequalities show that the convex function values taken in
the form of convex combinations or integral arithmetic means grow from the center, across
the middle, to the ends.

The above inequalities can be proved by using the secant line y = h(x) over the convex
hull of {x1,...,2,} or X, and applying the convexity of f and affinity of A through their
discrete and integral forms. The special cases for the discrete inequalities in formula (2.1)
and formula (2.3) must be considered particularly.

The inequality in formula (2.3) can be extended by inserting into the inequality f(aa +
Bb) < af(a)+Bf(b)if aa+pBb= 371 Niz; = 31 kjy;. The same is true for the inequality
in formula (2.4) if wa + pb = [y xdx/|X| = [y ydy/|Y].

The discrete Jensen type inequality in formula (2.3) and the integral Jensen type inequal-
ity in formula (2.4) were generally discussed in [13]. New generalizations and refinements
of the Jensen inequality were considered in [6], [7] and [8].

3. MAIN RESULTS

Initially, we present a simple construction of a nondecreasing and convex function which
can be employed to create inequalities.

Theorem 3.1. Let f : [a,b] — R be a convex function, and let ¢ = aa + b be a convex
combination of the endpoints a and b.

Then the function f.:[0,1] — R defined by
fe(t) =af(ta+ (1 —1t)c) + Bf((1 —t)c+ tb) (3.1)
s nondecreasing and convexz.

Proof. The representation of f.: By pointing out the convex combinations originating from
the point ¢ and determined as

ac(t) =ta+ (1 —t)c and b.(t) = (1 —t)c + tb, (3.2)
we can set up the representation

fc(t) - af(ac(t)) + /Bf(bc(t)) (3'3)
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The c-originating combinations in formula (3.2) can be regarded as the restricted affine
functions a. : [0,1] — [a, ] and b, : [0, 1] — [c, b].

The monotonicity of f.: The proof of this part is based on Lemma 2.1. We take a pair
of arguments t1,t2 € [0, 1] such that ¢; < t5. Then it follows that

ac(tZ) < ac(tl) <c< bc(tl) < bc(tZ)
So we have the inclusion a.(t1),bc(t1) € [ac(t2), be(t2)]. We also have the equality
aac(ty) + Bbe(t1) = ¢ = aac(ta) + Bbe(ta).

By applying the right-hand side (containing the second and third members) of the double
inequality in formula (2.1) to the above inclusion and equality, we obtain the inequality

af(ac(tr)) + Bf(be(t1)) < af(ac(ta)) + B (be(t2))
which determines the relation f.(t1) < f.(t2). Thus f. is nondecreasing.
The convexity of f.: Since the compositions f o a. and f o b. are convex, their convex
combination f. = a(f oa.)+ B(f o b.) is certainly convex. 0
If c=a or c =0, then f.(t) = f(c) for every t € [0, 1], and so the constant f(c) represents
the function f.. The same is true if the function f is affine.

The combinations a.(t) = ta + (1 — t)c and b.(t) = (1 — t)c + tb tend to the center c¢ if ¢
tends to 0, and tend to the ends a and b if ¢ tends to 1. The combinations a(t) = (1—t)a+tc
and b%(t) = tc+ (1 — t)b behave the opposite.

Remark 3.1. Let f : [a,b] — R be a convex function, and let ¢ = aa + b be a convex
combination of the endpoints a and b.

Then the function f¥ :[0,1] — R defined by
f2@t) =af((l=t)a+te) + Bf(te+ (1 —t)b)
is nonincreasing and convex.

The effects of the function f. will be presented through the inequalities exposed in corol-
laries and theorems that follow.

Corollary 3.1. Let ¢ = aa+ b be a convex combination of the endpoints a and b, and let
t €[0,1] be a number.

Then each convex function f : [a,b] — R satisfies the double inequality
flaa+B6) < af(tat(1-0)0) + Bf(1-D)c+t8) < af(a)+BF0).  (34)
Proof. The nondecreasing function f. provides a simple proof. Since

fe(0) = af(c) + Bf(c) = f(¢) = flaa+ Bb)

and

the relations
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affirm the inequality in formula (3.4). O

The inequality in formula (3.4) contains the variable number ¢. It allows the integration
over the interval [0, 1] by the variable t.

Corollary 3.2. Let ¢ = aa + b be a convex combination of the endpoints a and b with
positive coefficients o and 3.
Then each convex function f : [a,b] — R satisfies the double inequality

ff ff

—a b—c

flaa+8b) <

< af(a)+ Bf(0). (3.5)

By using ¢ = (a + b)/2 in formula (3.5), or using X = [a, ] in formula (2.2), we get the
Hermite-Hadamard inequality (see [3] and [2])

b
f(a;_b) - fal{(_xzbdm < f(a)—;f(b). (3.6)

As a reciprocity, this useful inequality gives an opportunity to refine the inequality in formula
(3.5). The Jensen inequality joins too.

Corollary 3.3. Let ¢ = aa + b be a convex combination of the endpoints a and b with
positive coefficients o and f3.

Then each convex function f : [a,b] — R satisfies the multiple inequality

) 1 op(S5L) < adidledie | e

c—a b—c
fle) + £(b)
2

flaat ) < af (%]

SNICELCI

(3.7)

< af(a) + Bf(b).

Proof. The inequality of the first and second members follows from the Jensen inequality
applied to the convex combinations equality

a+c c+b

> T

The inequality of the second, third and fourth members follows from the Hermite—

aa+ pPb=c=a«a

Hadamard inequality applied to the function f. as

(0+1) /fc b di < ()+fc().

The inequality of the fourth and fifth members follows from the convexity inequality

fle) < af(a)+ Bf (D). -
To generalize Lemma 2.1, we use the c-originating combinations as points.

Theorem 3.2. Let ¢ = Y7y \jx; be a convexr combination of points x; € [a,b], let ¢ =
aa + b be the convexr combination of the endpoints a and b, and let t € [0, 1] be a number.
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Then each convex function f : [a,b] — R satisfies the multiple inequality
flaa+8b) < Y Nif(tai+(1 —t)e) < af(ta+(1—t)c)+Bf ((1—t)c+tb)
i=1

< af(a) + B ).

Proof. The inequality of the last two members is included in formula (3.4).

(3.8)

To provide the inequality of the first three members, we use the c-originating convex
combinations

ac(t) =ta+ (1 —t)e, xic(t) =tz; + (1 —t)e, be(t) = (1 —1t)c+tb.

Each point x; can be represented by the convex combination z; = a;a+ B;b. It further gives
the similar convex combination

xic(t) = aiac(t) + ,Bibc(t).

This implies the inclusion z;.(t) € [ac(t),b.(t)] for i = 1,...,n. Besides, there follows the
equality

i Aiic(t) = ¢ = aac(t) + Bbe(t).
1=1

We can apply the double inequality in formula (2.1) to the above inclusion and equality,
and obtain the inequality

flaac(t) + Bbe(t)) < Z Aif (@ie(t)) < af(ac(t)) + Bf(be(t))
i=1
which provides the inequality of the first three members. O

The integration of formula (3.8) assumes and yields the following.

Corollary 3.4. Let ¢ = Y i" | \iz; be a convexr combination of points x; € |a,b] such that
no x; coincides with ¢, and let ¢ = aa + Bb be the convex combination of the endpoints a
and b.

Then each convex function f : [a,b] — R satisfies the multiple inequality

n T c b
flaa+Bb) < Z)‘ifcxf(x)dm < af“ f(@)dx —i—,ch f(z)dx
i=1

i—C c—a b—c (3.9)
af(a) + Bf(b).

In the next generalization of Lemma 2.3, we only observe the end-members of the in-

IN

equality in formula (2.3).

Theorem 3.3. Let ¢ = 71" Nz and ¢ = 377" Kkjy; be convex combinations of points
xi,yj € [a,b] such that no y; belongs to the interior of the convex hull of {x1,...,x,}, let
¢ = aa + Bb be the conver combination of the endpoints a and b, and let t € [0,1] be a

number.
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Then each convex function f : [a,b] — R satisfies the multiple inequality

flaa+ pb) < Z)\if(txi (1—-1t)c Zn]f (ty; + (1 —t)c)
i=1 (3.10)
< af(a)+Bf(b).
Proof. The inequalities of the first two members and last two members are covered by
formula (3.8).

To prove the inequality of the middle members, we emphasize the numbers
ag = min{xy,...,x,} and by = max{xy,..., Ty},

combinations x;.(t) = tz; + (1 — t)c and y;.(t) = ty; + (1 — t)c, and equality

Z )\imic(t) =C= Z lijyjc(t). (3.11)
=1 Jj=1

If ap = by, then x1 = ... = x,, = c. There is no restriction on the points y;. To represent
the inequality of the middle members, we engage Jensen’s inequality within the relations

Do Aif(@ie(t)) = f(e) <D ki f(yie(t)). (3.12)
iz =

If ag < by, then we engage the c-originating convex combinations
ape(t) = tag + (1 —t)e and boe(t) = (1 — t)c + tho.

Each point y; can be represented by the affine combination y; = ajag + Bjbg including
a; <0 or B <0 because y; ¢ (ag,bo). It follows that

Yje(t) = ajaoe(t) + Bjboc(t),
and so yjc(t) ¢ (aoc(t), boc(t)). Further, each zc(t) € [aoc(t), boc(t)] C [ac(t), be(t)] and each
Yic(t) € lac(t), be(t)] by the proof of Theorem 3.2. We have the inclusions
ZTie(t) € [aoc(t), boc(t)] and yje(t) € [ac(t), be(t)] \ (aoe(t), boc(t))-
By applying the inequality of the end-members in formula (2.3) to the above inclusions

and the equality in formula (3.11), we obtain the inequality of the end-members in formula
(3.12). O

The integration of the inequality in formula (3.10) runs as follows.

Corollary 3.5. Let ¢ = Y ;" \iz; and ¢ = Z;nzl kjyj be convex combinations of points
xi,yj € |a,b] such that no y; belongs to the interior of the convex hull of {z1,...,x,} and
that no x; or y; coincides with c, and let ¢ = aa + (b be the convexr combination of the
endpoints a and b.

Then each convex function f : [a,b] — R satz’sﬁes the multiple inequality

Flaa+Bb) < zAf Sl z fy]
< af(0+ A1 >-

(3.13)
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Given the previous experience, the refinement of the inequality in formula (3.13) stands
as

IN

floa+Bb) < zxif@g”) > AL
=1 =1

. Z AL i fas) 410 (3.14)

]—C

IN

< af (a) + Bf(b).

The Hermite-Hadamard inequality still occupies the attention of mathematicians. Its
applications are generally focused on the classes of functions that are more general than
convex, see [11], [14] and [16].

4. GENERALIZATIONS TO HIGHER DIMENSIONS

If ai,...,ame1 € R™ are points such that the differences a1 — amt1, .-+ 5 Gy — Qa1 are
linearly independent, then the m-simplex with vertices aq,...,amn+1 can be introduced as
the set

DNay.ampr = {Z;‘lel aja;: aj € [0,1], Z;“:Jrll aj = 1}. (4.1)

Thus Ay amyy = conviai,...,a,mq1}. By applying the above formula to (k+1)-
membered subsets of {a; ... am+1}, we get k—subsimplices of Ay, q,, +1- Usually, 1-subsimp-
lices are called edges, and (m—1)-subsimplices are called facets. If we use the above formula
with o € (0,1), then we have the open m-simplex A

at...am+1"

Each point x € Nqy..apy, is represented by the unique (m+1)-membered convex combi-
nation Z - ax]a] because the points a1 — amy1,-- ., @m — amy1 are linearly independent.
By using the sets Ngj=p = conv{ay,...,a;—1,%,a;41,...,0n4+1} and the denotation vol,,
for the volume in the space R™, the convex combination

+1
T = mz: VOlm(A“j:x) a;
= VOlm(Aal---aerl)

1

indicates that au; = voly,(Ag;=z)/volyn(Aay. a,,., ). Depending on the position of z, the
set Ag;=, appears as one of two volumetric shapes, as an m-simplex in the case ay; > 0,
or as the facet Aal...aj_lajﬂ...amﬂ in the case a,; = 0.

The generalization of Lemma 2.1 to the m-simplex involves a certain convex combination
of its vertices.

Lemma 4.1. Let 31" | \jz; be a convex combination of points x; € Ny, .y, and let
ZT:'T ajaj be the convexr combination of the vertices aj such that

m+1

n
Z)\sz == Z ozjaj.
i=1 Jj=1
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Then each convex function f: A, . .a,,., — R satisfies the double inequality

m—+1 n m—+1
1O ST ED HIEED Seusith) (4.2)
j=1 i=1 j=1

The generalization of Lemma 2.2 to the m-simplex includes the barycenter of its subset

with a positive volume.

Lemma 4.2. Let X C Ag,. 4., be a set with vol,(X) > 0, and let Z;n:"il aja; be the
convexr combination of the vertices a; such that

m+1
(fxxldxldCCm,’fXCCmdxldCUm):Zaja]
vol, (X) voln, (X) —1

Then each convex function f: AN, .a,,., — R satisfies the double inequality

m+1 m+1
Flarsn ) day .. dy,
13X aey) < Sefiommtietin <5 ) 3
Jj=1 Jj=1

We can easily generalize the statement of Theorem 3.1, but the proof is more demanding.

Theorem 4.1. Let f: Ag,. a0 — R be a conver function, and let ¢ = ZT:'T aja; be a
convex combination of the vertices a;.
Then the function f.:[0,1] — R defined by
m+1

fe(t) = Z a;f(taj + (1 —t)c) (4.4)

j=1

is nondecreasing and convezx.

Proof. The representation of f.: By emphasizing the c-originating convex combinations

ajc(t) =ta; + (1 —t)c, (4.5)
we appoint the representation
m—+1
felt) = Y ajflaje(t)). (4.6)
j=1

The point a;.(t) belongs to the line segment A,; with the endpoints ¢ and a;. The combi-
nations in formula (4.5) are restricted affine mappings ajc : [0,1] = Acq;. If £ > 0, then it
can be proved that the points a;.(t) span the m-simplex

At - Aalc(t)...am+1 C(t)' (47)

The limit case is the singleton Ag = {c}, and the given simplex is A;.

The monotonicity of f.: We rely on Lemma 4.1. Let t1,%2 € [0, 1] be a pair of arguments
such that t; < t5. Then the convex combination
to — t1 t1

ty c+ t2a]0( 2)

aje(t1) =
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indicates that the point a;.(t1) belongs to the line segment Acajc(m)' Therefore we have the
inclusion aj.(t1) € Ay, for j =1,...,m + 1 (in fact this proves A, C A,). We also have
the equality

m+1 m+1

Z ozjajc(tl) =C= Z Oéjajc(tg).
=1 i=1

Then the application of the right-hand side of the double inequality in formula (4.2) to the
above inclusion and equality results as the inequality

m+1 m+1
S oy flagelt) < 3 oy flagelts))
= =1

which affirms the relation f.(¢1) < fc(t2). Thus f. is nondecreasing.
The convexity of f.: Since the compositions f oaj. are convex, their convex combination
fe= Z;n:"il a;(f oaje) is definitely convex. O
An elegant approach to the simplices /A\; can be realized as follows.
Remark 4.1. Let t1,t3 € (0,1] be numbers satisfying ¢ < ta, and let H,,, /s, : R™ — R™ be
the homothety with the center at ¢ and ratio ¢1/ty standing as

3]

Hc7t1/t2(ac) —c= g(x — o).

Then the above homothety satisfies
t
Hey, iy (aje(ta)) = ¢+ é(%‘c(tz) —¢) =tia; + (1 —t1)c = aje(t1)

for every j = 1,...,m + 1, so it maps the vertices of A, onto the vertices of A,. Since
a homothety preserves affine (including convex) combinations, it follows that the above
homothety maps the simplex /\;, onto the simplex A, .

The relations f.(0) < f.(t) < fo(1) give the following inequality.
Corollary 4.1. Let ¢ = Z;“:Jrll ajaj be a conver combination of the vertices aj, and let
t €[0,1] be a number.
Then each convex function f: Nq,..ams, — R satisfies the double inequality
m—+1 m—+1 m—+1
(X ) <30 apflta +(1-10) < Y- aif(ay) (4.8)
j=1 j=1 j=1

The refinement of the inequality in formula (4.8) can be obtained by using any convex

combination of points belonging to the simplex Ay, a,,. ;-

Theorem 4.2. Let ¢ = 1" | \ix; be a convex combination of points x; € Ny, . .y, let
c= Z?ﬁll aja; be the convex combination of the vertices aj, and let t € [0,1] be a number.
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Then each convex function f : /A — R satisfies the multiple inequality

m+1 n o m+1
f( > ajaj) < S Nif(tzi+ (1 —t)e) < D ajf(ta; + (1—t)e)
j=1 i=1 j=1
i (4.9)
< > ajf(ay).
j=1

Proof. The inequality of the last two members is contained in formula (4.8).
To ensure the inequality of the first three members, we utilize Lemma 4.1. Given the

point x;, we use the convex combination x; = Z;“:Jrll ajjaj. Then we have the similar convex
combination
m—+1
xic(t) = Z ozl-jajc(t).
j=1
It implies the inclusion x;.(t) € Ay for i = 1,...,n. Furthermore, there follows the equality

m—+1

Z)\ixic(t) = C= Z ozjajc(t).
i=1 7j=1

By applying the double inequality in formula (4.2) to the above inclusion and equality, we
get the inequality

m+1 n m+1
13 @) < S NS @) < 3 apf i)
j=1 i=1 j=1
which ensures the inequality of the first three members. O

The point ¢ = Z;{lel a;j/(m + 1) is the barycenter of the m-simplex A Wi_thin
Lemma 4.2, the next corollary exploits the point ¢ as the barycenter of m-simplices A\; =

at...Qm41-"

Aalé(t)---am+16(t) with ¢ > 0. Obviously, Aal...am+1 = /4.

Corollary 4.2. Let ¢ = Z;n:ll a;j/(m + 1) be the barycentric convex combination of the
vertices aj, and let t € (0,1] be a number.

Then each convex function f : A — R satisfies the double inequality

ai...am+1
f(zzn-iil aj) _ fAtf(xl,...,xm)dxl...dxm _ Z;@il (ta;+(1—t)c)
+1 )~ L (A - +1
" Zm-i—l f( V()) m( t) " (410)
; a;
< &=l T
- m—+1

Proof. To obtain the inequality of the first three members, we apply formula (4.3) to the
m-simplex X = /\;. The barycentric equality
Y age(t) X7 g
m+1  om+1
plays a role. O
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The second member in formula (4.10) approaches f(c¢) as ¢t approaches 0. Namely, the
first member is the constant f(¢), and the third member approaches f(¢).

By using ¢ = 1 in formula (4.10), or using X = A,,. in formula (4.3), we get the

< Am+1
Hermite-Hadamard inequality for the m-simplex as

f(zgn;ll aj) < 'anlmam;Fl f($17 o 7xm) 4o - dm < Z;n:ll f(aj)- (4-11)

m + 1 VOlm(Aal...am+1) B m+ 1

The Hermite-Hadamard inequality for the simplices was considered in the papers [1,9,10,
12,15] and many others.
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