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IMPROVED CAUCHY-SCHWARZ INEQUALITY

AND ITS APPLICATIONS

SLOBODAN FILIPOVSKI1

Abstract. In this paper we present an improvement of the well-known Cauchy-Schwarz
inequality in R

n. Based on this improvement, we improve the inequality between quadratic
and arithmetic mean of n positive real numbers and we give a new refinement of the triangle
inequality in R

n.

1. Introduction

The Cauchy-Schwarz inequality is one of the most famous inequalities in mathematics.

Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two sequences in Euclidean space R
n with the

standard inner product. The remarkable Cauchy-Schwarz inequality states
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with equality if and only if a and b are proportional, see [3].

Under additional conditions the inequalities can be improved. Notable refinement of the

Cauchy-Schwarz inequality is given in [8]. Ostrowski showed that if a = (a1, . . . , an), b =

(b1, . . . , bn) and c = (c1, . . . , cn) are n-tuples of real numbers such that a and b are not

proportional and
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Another known refinement of the Cauchy-Schwarz inequality is established in [1]. Alzer

proved, if a = (a1, . . . , an) and b = (b1, . . . , bn) are two sequences of real numbers and

0 = a0 < a1 ≤ a2

2
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Significant improvements of the Cauchy-Schwarz inequality in complex inner product spaces

are given by Dragomir in [4]. In [9], Walker gives refinement of this inequality in probability

case.

Relied on a relatively simple idea, Lemma 2.1, in this paper we give a new improvement

of Cauchy-Schwarz inequality, Theorem 2.1. We see the main strength of our result in

providing new bound without any additional conditions on the parameters ai and bi. As a

consequence of the improved Cauchy-Schwarz inequality we obtain two new improvements;

on the inequality between Quadratic and Arithmetic mean, Theorem 3.1, and on the triangle

inequality in R
n, Theorem 4.3.

2. Improved Cauchy-Schwarz inequality

It is well known that for any two strictly positive real numbers a and b it occurs
√

a
b

+
√

b
a

≥ 2. The main result in this paper is based on the following lemma, which

presents an improvement of the above inequality.

Lemma 2.1. If x and y are strictly positive real numbers, then
√

x

y
+

√

y

x
≥ 2 +

(x − y)2

2(x2 + y2)
.

Proof. We prove the following equivalent inequality
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Let t2 = x
y
, t > 0. The required inequality is equivalent to the inequalities

t +
1

t
≥ 2 +

t4 − 2t2 + 1

2(t4 + 1)
⇔ 2t6 − 5t5 + 2t4 + 2t3 + 2t2 − 5t + 2 ≥ 0.

Now we easily show 2t6 − 5t5 + 2t4 + 2t3 + 2t2 − 5t + 2 = (t − 1)4(2t2 + 3t + 2) ≥ 0. �

The main result in this paper is the following theorem.

Theorem 2.1. Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two sequences of positive real

numbers such that a2
i + b2

i 6= 0 for each i = 1, . . . , n. Let A =
√
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i and B =
√
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i

and let A, B 6= 0. Then the following inequality holds
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The equality holds if and only if a and b are proportional.

Proof. Setting x =
a2

i

A2 and y =
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i

B2 in Lemma 2.1 we get
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If we fix i = 1, . . . , n in the inequality (2.2), and if we sum up the obtained n inequalities,

we get
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Now, the inequality in (2.1) follows directly from (2.3) using
∑n

i=1
a2

i
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b2

i

B2 = 2.

If a and b are proportional, then ai

bi
= A

B
, i.e. a2

i B2 − b2
i A2 = 0 for each i = 1, 2, . . . , n.

In this case holds the equality
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3. Improved inequality between Quadratic and Arithmetic mean

Between quadratic and arithmetic mean of n positive real numbers a1, . . . , an the follow-

ing inequality holds:
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n

n
≥ a1 + . . . + an

n
.

The well-known QM-AM inequality is equivalent to the inequality

n(a2
1 + . . . + a2

n) ≥ (a1 + . . . + an)2 (3.1)

which follows easy if we apply Cauchy-Schwarz inequality to the sequences a = (a1, . . . , an)

and b = (1, . . . , 1). Using Theorem 2.1, we are in a position to improve the inequality in

(3.1).

Lemma 3.1. Let a1, . . . , an be positive real numbers such that a2
1 + . . . + a2

n 6= 0. Then the

following inequality holds
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Proof. It follows directly from (2.1), setting b1 = . . . = bn = 1 and B =
√

n. �

If we divide the inequality in (3.2) by n we arrive to a new refinement of the famous

quadratic-arithmetic mean as follows.

Theorem 3.1. If a1, . . . , an are n positive real numbers such that a2
1 + . . . + a2

n 6= 0, then
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4. A new refinement of the triangle inequality

For any two vectors x and y in the normed linear space (X, ‖ · ‖) over the real or

complex numbers occurs the triangle inequality ‖x + y‖ ≤ ‖x‖ + ‖y‖. Among many known

refinements of the triangle inequality let us mention two of them. In [5,6] Maligranda proved

a refinement of the triangle inequality as follows:
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Theorem 4.1. For nonzero vectors x and y in a normed space (X, ‖ · ‖), it is true that
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An improvement of the inequality due to Maligranda is done by Minculete and Pǎltǎnea

in [7]. Using integrals and the Tapia semi-product they proved the following result:

Theorem 4.2. Let (X, 〈·, ·〉) be an inner product space, with norm ‖·‖. For nonzero elements

x, y ∈ X
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In this paper, based on the improved Cauchy-Schwarz inequality, we give a new refinement

of the triangle inequality in the Euclidean space R
n with the standard inner product.

Theorem 4.3. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two vectors in R
n such that

x, y 6= 0 and x2
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Remark 4.1. If ‖x‖ = ‖y‖ and x2
i + y2

i 6= 0 for each i = 1, . . . , n, then the improved triangle

inequality becomes
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