Turkish J. Ineq., 3 (2) (2019), Pages 23 -33 .

Turkish Journal of

INEQUALITIES

Available online at www.tjinequality.com

FABER POLYNOMIAL COEFFICIENT ESTIMATION OF SUBCLASS OF
BI-SUBORDINATE UNIVALENT FUNCTIONS

S.A. SALEH!, ALAA H. EL-QADEEM?, AND MOHAMED A. MAMON?

ABSTRACT. In this paper, a comprehensive subclass of bi-univalent functions class are in-
troduced and investigated. Using the Faber polynomials, estimation of the coefficients |an|
and certain Fekete-Szegd inequality of Maclaurin expansion of functions in this subclass
are concluded. Finally, some earlier results are pointed out and improved.

1. INTRODUCTION

Let A denote the class of analytic functions of the form
[ee)
flz)=z+ Z anz", (1.1)
n=2

normalized by the conditions f(0) = 0 and f'(0) = 1 defined in the open unit disk
U={z€C:|z| <1}.

Let 8 be the subclass of A consisting of all functions of the form (1.1) which are univalent
in U. Let ¢ be an analytic univalent function in U with positive real part and ¢(U) be
symmetric with respect to the real axis, starlike with respect to ¢(0) = 1 and gp/(O) >
0. Ma and Minda [17] gave a unified presentation of various subclasses of starlike and
convex functions by introducing the classes G*(¢) and &(¢) of functions f € § satisfying
(2f (2)/f(2)) < @(2) and 1+ (zf"(2)/f (2)) < @(z) respectively, which includes several
well-known classes as special case. For example, when ¢(z) = (1 + Az)/(1 + Bz) with a
condition (-1 < B < A < 1), the classes &*(¢) and R(p) converted to the class §*[A, B]
and K[A, B], respectively, introduced by Janowski [15]. Although, for a special choose of the
value of A=1-28, B=—1 (0 </ < 1), the classes §*[A, B] and K[A, B] reduced to the
classes 8*(3) and K(/3), respectively, which are the class of starlike and convex functions of
order 3. For anther choose of the function ¢(z) = ((1+ 2)/(1 — 2))“, we obtain the classes
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8k and K, which are the class of strongly starlike and strongly convex functions of order
a(0<a<l).

The Koebe one quarter theorem [8] ensures that the image of U under every univalent
function f € § contains a disk of radius %. Thus every univalent function f has an inverse
f~! satisfying

_ _ 1
IR =2 (zeU)and f(f~H(w) = w (jw] <ro(f),ro(f) < 7).

A function f € 8 is said to be bi-univalent in U if both f and f~! are univalent in U. Let
Y. denote the class of all bi-univalent functions defined in the unit disk U. Since f € ¥ has
the Maclaurin series expansion given by (1.1), a simple calculation shows that its inverse

g = ! has the series expansion
gw) = fH(w)
= w— aw® + (2a3 — az)w’ — ...
Examples of functions in the class ¥ are

1 1
1iz’ —log(1—2z2) and §log< +Z>,

and so on. However, the familiar Koebe function is not a member of X.

Other common examples of functions in 8§ such as

2

L2 and 2
2 1—22

are also not members of ¥ (see [20]).

Many papers concerning bi-univalent functions have been published recently (for men-
tioned but a few, [5,6,9,11]). A function f € ¥ is in the class 8% () of bi-starlike function
of order B(0 < B < 1), or Kx () of bi-convex function of order 3 if both f and f~! are
respectively starlike or convex functions of order 8. For 0 < a < 1, the function f € X is
strongly bi-starlike function of order « if both the functions f and f~! are strongly starlike
functions of order a.. The class of all such functions is denoted by 85, ,. These classes were
introduced by Brannan and Taha [5]. They obtained estimates on the initial coefficients
lag| and |as| for functions in these classes. The research into ¥ was started by Lewin [16].
He focused on problems connected with coefficients and showed that |as| < 1.51. Subse-
quently, Brannan and Clunie [4] conjectured that |as| < v/2. Netanyahu [19] concluded that
max |as| = 3.

The coefficient estimate problem for each of the following Taylor Maclaurin coefficients
lan|, n € {2,3,---} is presumably still an open problem. This is because the bi-univalency
requirement makes the behavior of the coefficients of the function f and f~! unpredictable.
The Faber polynomials play an important role in various areas of mathematical sciences,
especially in geometric function theory. The recent publications [12,13] applying the Faber
polynomial expansions to meromorphic bi-univalent functions motivated us to apply this
technique to classes of analytic bi-univalent functions. In the literature, there are only a few
works determining the general coefficient bounds |a,| for the analytic bi-univalent functions
given by (1.1) using Faber polynomial expansions.



FABER POLYNOMIAL COEFFICIENT ESTIMATION 25

In this present work, we use the Faber polynomials in obtaining bounds of Maclaurin
coefficients |a,|, n € N 1 and bounds for the Fekete-Szegd functional |ag — 2a3| of a new
defined subclass of ¥ to generalize some earlier results.

2. CONSTRUCTION OF THE SUBCLASS Hx (T, A, d; ¢)

Throughout this section, let us assume that ¢ be an analytic function with positive real
part in the unit disc U satisfying ¢(0) = 1, ¢/(0) > 0 and ¢(U) is symmetric with respect
to the real axis. Such a function has a series expansion of the form

¢(2) =1+ Biz + Bo2? + B3z® + - - (By > 0). (2.1)

where B, € R, for all n = 2,3, ....
Using the Faber polynomial [1,2] expansion of the functions f € ¥ of the form (1.1), the
inverse function ¢ = f~! may be expressed as

o
glw) = fHw) =w+ Z A,w™, (2.2)
n=2
where .
Ao = A 0050 00) 23
Now, for any p € Z := {0,4+1,+£2,--- }, the expansion of KX? is given by
p! 2 P! 3 p!
XP = — D 7D — D7, 2.4
=t g P e s 24
where
D' = D(ai,az,...,an),
> m!
= > alta?ak® - aln, (2.5)

= palpolpst s !
while a1 = 1 and the sum is taken over all non-negative integers 1, 2, i3, ..., fbn, satisfying
prtpetps ot =m, g+ 202 4+, = n.

It is observed that
Dy (a1, as,...,an) = af.

Thus, from equation (2.4) together with (2.5) we get an expression of K " as

—n —n! n— n
Kala(02,03,0) = TG+ G o
(—’I’L)' n—4
T o)Ay ™
(—TL)' n—>5 2
— 2
M CTEy T T (a5 + (=n +2)a3)
—m)!
+ (=n)! a8 (ag + (—2n + 5)azay)

(—2n +5))!(n —6)! 2

n—j
+ Y ay 'V,
=7
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where such expressions as (—n)! are to be interpreted by
(—n)!:=T(1—-n)=(—n)(-n—-1)(—n—=2)--- (ne€Ny:=NU{0} ),

and V; (7 < j < n) is a homogeneous polynomial in the variables as, a3, ..., a,. In particular,
in case of n = 2, 3,4 the expression of K" is reduced to

K2 = —2az, K3° =323 —a3), K3*=—4(5a3 — 5a0a3 + a4).
Definition 2.1. Let A > 1,7 € C* =C - {0}, 0<d <1 and f,g € ¥ given by (1.1) and
(2.2) respectively, then f is said to be in the class Hx (7, A, §; ) if
2 (0= ar @ 4o () - 1) <o) 26)
and
1+ % ((1 — )\)%w) + Mg (w) + 029" (w) — 1) =< p(w), (2.7)
where z,w € U and ¢(z) is given by (2.1).

Remark 2.1. For special choices of the parameters A, 7,0 and the function ¢(z), the class
Hs (1, A, 65 ) reduced to the following subclasses:

1. Hx (1,1,7;¢) = X(7,7, ¢) which introduced by A.E. Tudor [23] and recently studied
by H.M. Srivastava and Deepak Bansal [22].

2. Hx (1,1,0; ) = H,(¢) which defined and studied by Rosihan M. Ali et al. [3].

3. K (1 1,58; (p_rz)a) = Hsx (e, B) which introduced by B.A. Frasin [11].

4. H (1 1,0; (Hz) ) = H§ which introduced by H.M. Srivastava et al. [20].

5. > (1 A, 0; (Hz) ) = Byx.(a, A) which is introduced by B.A. Frasin and M.K. Aouf
10], and recently studied by H.M. Srivastava et al. [21].

6. (1 v, 1, 5; i) = Hx (v, 5) which introduced by B.A. Frasin [11].

7. H (1 —a,\,5; i‘f) = Nx(a, A, 0) which introduced by S. Bulut [6].

8. X (1 3,1,0; 1+j) = Hx(B) which introduced by H.M. Srivastava et al. [20].

9. ( — B,\,0; %Jrj) = By (5, ) which introduced by B.A. Frasin and M.A. Aouf

)] and recently studied by J.M. Jahangiri and S.G. Hamidi [14].
10. (T, Y3 %igz) = R’ ,(A, B) which introduced by A.E. Tudor [23].

Lemma 2.1. [18] Let u(z) be analytic function in the unit disc U with uw(0) = 0 and
lu(2)| <1 for all z € U with the power series expansion

o
z) = Z ",
n=1

then |cp| <1 for allm =1,2,3,.... Furthermore, |c,| =1 for some n =1,2,3, ... if and only

if
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Lemma 2.2. [7] Let the function p(z) = 1+ Y 02 ppz" be so that R(p(z)) > 0 for z € U.
Then for —o0o < a < 0,
|2

N[

2 —alpy Pa<

[ps — ap?| < { : (2.8)

2—(1—a)pf* 5 a>

D=

Let o(z) = 372 anz™ be a Schwarz function so that |p(z)| <1, z € U. Setp(z) = }fggg
where p(z) = 14+ 0 ppz™ is so that R(p(z)) > 0 for z € U. Comparing the corresponding
coefficients of powers of z yields py = 2p1 and ps = 2(p2 + p?). Now, substituting for p

and po and letting n =1 — 2« in (2.8), we obtain
, L—(1=n)le]? 502>0
@2+t < : (2.9)
L= (1+n)e* 5 1n<0
2.1. Coefficient bounds of members of Hx (7, A, d; ).

Unless otherwise mentioned, let us assume in the reminder of this section that z € U,
A>1,0<0<1landr7eC-{0}

Theorem 2.1. Let f defined by (1.1) belong to the class Hx (T, A, d;¢) and ar, = 0 (2 <
k<n-—1), then

] < 1
"7 14 (n = 1) (A +nd)

Proof. Since f € Hx (1, A, d;¢), then we have

y+%01—mfw)+xf@y+&fk@—1):1+§§(1+““4MA+”®)%ylH

z T

(n>4). (2.10)

n=2

(2.11)
and since the inverse map g = f~! represented by (2.2) also belonging to the same subclass,
then

1+% ((1—)\)%11))—%)\9,(11))—1—529//(11}) —1) =1+ S (1+(n_1)()\+n5))Anw"_1.

n=2 T
(2.12)
Now, Since f,g € Hx(1, A, 0;¢), by the definition 2.1, there exist two Schwarz functions
u(z) =202 2™ and v(w) = > 02 | d,w" such that
1 f(Z) ’ " B
1—|—; (1—)\)7—{—)\]‘ (2)+dzf (2) — 1) = p(u(z)), (2.13)
1 / "
1+ - ((1 — A)% + g (w) +6zg (w) — 1) = p(v(w)), (2.14)
such that
LP(U(Z)) =1- Z Blny_Lil(cla vy Cn—13 Bl, ceey Bn_l)zn_l, (215)
n=2
QD(”U(U})) =1- Z Blg{r_zll(dl’ cey dnfl; Bl’ sy anl)wnila (216)

n=2
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where in general X? = K? (py, ..., pn, B1, ..., By) are defined by

p! Bn p! =) anl
j{p - &9 0 n7n n
T =) B T —nt )i —2)"t g
p' n—3 Bn—2
—n—+2)n—3)! 1

T ool Pp

p! n—>5 ( Bn74 Bn3)

— 4
LY, (2.17)
j=6

where X; is a homogeneous polynomial of degree j in the variables p1, p2, ..., pp.

Now, comparing the coefficients in both sides of equations (2.13) and (2.14) after substi-
tuting about p(u(z)) and ¢(v(w)) from equations (2.15) and (2.16), we have

1+ (n—1)(A+nod)

ap = —Bﬂ(;il(cl, ey Cn—13 Bl, cesy Bn—l)y (218)
T
1 —1)(A o
+ (n )( T )An == _le;il(dla ...,dnfl; Bl, ceey anl)- (219)
T

Since a, =0 (2 < k <n —1), then from equation (2.3) it is easy to conclude
Ay = —an. (2.20)
Therefore, equations (2.18) and (2.19) reduced to
1+ (n—1)(A 4+ nd)

14 (n—1)(A +nd)

- an = Bidy_1. (2.22)
.

Ay = Blcn_l, (2.21)

By subtracting equation (2.22) from equation (2.21) obtained

By7(cp—1 — dp—1)
2(1+ (n—=1)(A+nd))

Applying Lemma 2.1 for the coefficients ¢,,—1 and d,,—1 in equation (2.23) which reduced to

an = (2.23)

the desired estimation. The proof is completed. ]
By putting 7 =1 — (0 < @ < 1) and ¢(z) = 112 (B; = 2) in Theorem 2.1, we conclude
Corollary 2.1. [6, Theorem 2] Let f € Nx(a, A,0) and ap =0 (2 <k <n-—1), then

2(1 —«)

Let us put A = 1 in Corollary 2.2, we have
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Corollary 2.2. [21, Theorem 1] Let us consider f € N(Ea’)‘) and ap, =0 (2<k<n-1),
then

2(1 —a)
Atom—1y =%

Let us put = 0 in Corollary 2.2, we obtain

|an| <
n

Corollary 2.3. [14, Theorem 1] If f € D(a,\) and ap =0 (2 <k <n-—1), then

2(1 — «)
<= > 4).
ol < T ey 29
Theorem 2.2. Let f € Hx (1, A, ;) and By > |Bs|, then
B1v/Bulr| if B By + By <
/B2I7|(142A+66)+(B1+ B2) (1+-A+25)? if By <0,B1+ 5, <0
|as| < : (2.24)
B1vBilr| if By>0,B, — By <0

/ B2|7|(14+2X+68)+(B1—B2) (1+A+26)2

By : Bl > ‘BQ‘

1+2)+65
las| < : (2.25)
[Bor| .
1+2>2\+65 ; B < |By
and
Bilr] .
1+21/\+66 ; Bi > | By
laz — 2a3] < : (2.26)
[Bor| .
1+2)2\+66 ; Bi < |B?|
Proof. Lets us set n = 2,n = 3 in the equations (2.18) and (2.19), we deduce
14+ A+2
At = By, (2.27)
1+ X+20
A~ Bid,, (2.28)
142X+ 60
Lag = Bico + BQC%, (2.29)
and \es
142 6
g@a% — a3) = Bidy + BQd% (230)
-
From equations (2.27) and (2.28), we deduce
Ccl = —dl, (231)
and B
1617
= —. 2.32
TN T (2:32)
Now, adding equation (2.29) to (2.30) obtains
B dy) + By(cf + di
= (Bi(ez +dg) + Ba(ci +4d7)) | (2.33)
2(1 42X\ +60)
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2 Bl 2 92 2 2
- - 4+ == + + == . 2.34
“27 901 + 2x + 69) [(CQ Blcl) (d2 Bldl)] (234

Firstly, let By < 0(n = % < 0, By + B > 0) and applying Lemma 2.2 with using
equation (2.31), we obtain

BT B + B2
2<71{1—<17) 2]. 2.35
o2 < T T B )l (2:35)
By substituting of ¢; from equation (2.32), we conclude
2B3
Jas]? < 7”51 (2.36)

B2|7|(1 4+ 2\ + 65) + (B1 + Ba)(1 + A +26)2°
Taking the square root of the both side of inequality (2.36), we have

|T| B1v B1
V/BHTI(L 42X+ 66) + (By + Ba)(1+ A +20)?

las] < (2.37)

Second, let By > 0(n = B2 >0, Bl — By > 0) and applying Lemma 2.2 with using

B
equation (2.31), then
BlT B1 — BQ
3= e | ()l (2.38)
By substituting of ¢; from equation (2.32), we conclude
2 T[> B}
as|® < . 2.39
jaaf < B2|7|(1 42X\ + 63) + (B1 — Ba)(1 + A + 26)? (2:39)
Taking the square root of the both side of inequality (2.40), we have
B1v/B
lag| < 7|1V By (2.40)

B2|7|(1 + 2\ + 68) + (B — Ba)(1 + X+ 26)2°
Combining the last inequality with inequality (2.37), we obtain the desired estimate on the
coefficient |as| which given by (2.24).

In order to deduce the estimation of |ag|, subtracting equation (2.30) from (2.29) with
using equation (2.32), obtains
2 BlT(CQ - dg)

= —_ . 2.41
BT 50 1 20 1 60) (241)
By substituting of a3 from equation (2.33) into (2.41), we conclude

o — T(BlcQ + BQC%)
T 1420+ 60
Taking the modulus of both sides of equation (2.42), we get

Bl|7'| By o
< 2T 22 2| 9.43
sl < T o 6s 2t g (2.43)

By applying Lemma 2.2, let first By < 0(n = g—f < 0), then

Bl|’7'| Bl—BQ 2
1-— ’01’ .
1+2\+60 By

(2.42)

las] < (2.44)
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If By — By > 0, then we must put |c1| by its least value |¢;| = 0. Thus
Bl|’7'|

142\ +66°

If By — By < 0, then we must put |c;| by its maximum value |c¢;| = 1 (using Lemma 2.2).

Thus

|az| < (2.45)

Balr|
142X\ +66
Second, let us put By > 0(n = g—? > 0), then
B B+ B
lag| < 17| 1_ 1+ b2
142X+ 69 By
If By + By > 0, then we must put |c1| by its least value |¢;| = 0. Thus
Bil7|
14+2\+66

If By + By < 0, then we must put |c;| by its maximum value |¢;| = 1 (using Lemma 2.1).
Thus

|ag| < (2.46)

E (2.47)

|as| < (2.48)

—Bal7|
142X +66
By comparing the estimates of |as| in relations from (2.45) to (2.48) which obtain the desired

|as| < (2.49)

estimate given by (2.25). Finally, using equation (2.30), gives
—T(BldQ + Bgd%)

—2a} = 2.50

N N YT (2:50)

Using the same technique in proving the estimate of |ag|, we get the desired estimate given
by (2.26), then we prefer to omit it. O

In case of A =1, Theorem 2.2 becomes
Corollary 2.4. [22, Theorem 1| Let f € X(7,0,¢), then

B1VBil7|
\/3B3|7|(1+20)+4(B1+B2)(1+6)2 By <0 and By + By >0

las] <

B1vV/Bi|7| _
V3B2I7I(1+20)+4(B1— Ba) (110)2 By>0and B, — B 20

B
s32e D1 > | B

laa] < | B2
Bat
st D1 < B2l

1—2z

Let us put ¢(z) = (ﬁ)a, By = 2a and By = 202, and 7 = 1 in Corollary 2.4 we have

Corollary 2.5. [11, Theorem 2.2] Let f € Hx(a,J), then
200
|ag| < ;
V22 +a) +46(a+ 0 —ad +2)
2ae
3(1+20)°

las| <
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By putting 7 =1 — v and ¢(z) = %, By = By = 2, in Corollary 2.4, we obtain

Corollary 2.6. [11, Theorem 3.2] Let f € Hx(y,0), then
2(1 =) 2(1=7)
<= < — &
ol <\ [3aaey 191= 32

In case of 7 =1, 6 = 0 and ¢(z) = (%)a, By = 2o, By = 202, in Theorem 2.2, we

have
Corollary 2.7. [10, Theorem 2.2] Let f € By (a, A), then

Jaz| < 2 el < 2
VI+ A2+ all+2)—N2) 142X

Let us put 7 =1 — and ¢(z) = %, By = By = 2, in Theorem 2.2, we obtain
Corollary 2.8. [6, Theorem 5] Let 0 < a < 1 and f € Nx(v,A,0), then

2(1-7)
< 2
S Sy
2(1 —9)
< —_
sl < T T 6o
and 21 )
-7
-2 < ==
las =203 < T3 16
By putting 6 = 0 in Corollary 2.8, gets
Corollary 2.9. [10, Theorem 3.2] If f belong to Bx(vy,\) and 0 <y < 1, then
2(1 =)
< -~ 7
a2l < /3 72x
2(1 —v)
< — 7
a3l < 57555

Remark 2.2. Some results investigated in Corollaries from 2.4 to 2.9 represented an improve-
ment of the estimate of |ag| of the earlier corresponding results.
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