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FABER POLYNOMIAL COEFFICIENT ESTIMATION OF SUBCLASS OF

BI-SUBORDINATE UNIVALENT FUNCTIONS

S.A. SALEH1, ALAA H. EL-QADEEM2, AND MOHAMED A. MAMON3

Abstract. In this paper, a comprehensive subclass of bi-univalent functions class are in-
troduced and investigated. Using the Faber polynomials, estimation of the coefficients |an|
and certain Fekete-Szegö inequality of Maclaurin expansion of functions in this subclass
are concluded. Finally, some earlier results are pointed out and improved.

1. Introduction

Let A denote the class of analytic functions of the form

f(z) = z +
∞
∑

n=2

anzn, (1.1)

normalized by the conditions f(0) = 0 and f
′

(0) = 1 defined in the open unit disk

U = {z ∈ C : |z| < 1} .

Let S be the subclass of A consisting of all functions of the form (1.1) which are univalent

in U . Let ϕ be an analytic univalent function in U with positive real part and ϕ(U) be

symmetric with respect to the real axis, starlike with respect to ϕ(0) = 1 and ϕ
′

(0) >

0. Ma and Minda [17] gave a unified presentation of various subclasses of starlike and

convex functions by introducing the classes S
∗(ϕ) and K(ϕ) of functions f ∈ S satisfying

(zf
′

(z)/f(z)) ≺ ϕ(z) and 1 + (zf
′′

(z)/f
′

(z)) ≺ ϕ(z) respectively, which includes several

well-known classes as special case. For example, when ϕ(z) = (1 + Az)/(1 + Bz) with a

condition (−1 ≤ B < A ≤ 1), the classes S
∗(ϕ) and K(ϕ) converted to the class S∗[A, B]

and K[A, B], respectively, introduced by Janowski [15]. Although, for a special choose of the

value of A = 1 − 2β, B = −1 (0 ≤ β < 1), the classes S∗[A, B] and K[A, B] reduced to the

classes S∗(β) and K(β), respectively, which are the class of starlike and convex functions of

order β. For anther choose of the function ϕ(z) = ((1 + z)/(1 − z))α, we obtain the classes
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S∗
α and Kα which are the class of strongly starlike and strongly convex functions of order

α (0 < α ≤ 1).

The Koebe one quarter theorem [8] ensures that the image of U under every univalent

function f ∈ S contains a disk of radius 1
4 . Thus every univalent function f has an inverse

f−1 satisfying

f−1(f(z)) = z, (z ∈ U) and f(f−1(w)) = w (|w| < r0(f), r0(f) ≤ 1

4
).

A function f ∈ S is said to be bi-univalent in U if both f and f−1 are univalent in U. Let

Σ denote the class of all bi-univalent functions defined in the unit disk U . Since f ∈ Σ has

the Maclaurin series expansion given by (1.1), a simple calculation shows that its inverse

g = f−1 has the series expansion

g(w) = f−1(w)

= w − a2w2 + (2a2
2 − a3)w3 − ....

Examples of functions in the class Σ are

z

1 − z
, − log (1 − z) and

1

2
log

(

1 + z

1 − z

)

,

and so on. However, the familiar Koebe function is not a member of Σ.

Other common examples of functions in S such as

z − z2

2
and

z

1 − z2

are also not members of Σ (see [20]).

Many papers concerning bi-univalent functions have been published recently (for men-

tioned but a few, [5, 6, 9, 11]). A function f ∈ Σ is in the class S∗
Σ(β) of bi-starlike function

of order β(0 ≤ β < 1), or KΣ(β) of bi-convex function of order β if both f and f−1 are

respectively starlike or convex functions of order β. For 0 < α ≤ 1, the function f ∈ Σ is

strongly bi-starlike function of order α if both the functions f and f−1 are strongly starlike

functions of order α. The class of all such functions is denoted by S∗
Σ,α. These classes were

introduced by Brannan and Taha [5]. They obtained estimates on the initial coefficients

|a2| and |a3| for functions in these classes. The research into Σ was started by Lewin [16].

He focused on problems connected with coefficients and showed that |a2| < 1.51. Subse-

quently, Brannan and Clunie [4] conjectured that |a2| <
√

2. Netanyahu [19] concluded that

max |a2| = 4
3 .

The coefficient estimate problem for each of the following Taylor Maclaurin coefficients

|an|, n ∈ {2, 3, · · · } is presumably still an open problem. This is because the bi-univalency

requirement makes the behavior of the coefficients of the function f and f−1 unpredictable.

The Faber polynomials play an important role in various areas of mathematical sciences,

especially in geometric function theory. The recent publications [12,13] applying the Faber

polynomial expansions to meromorphic bi-univalent functions motivated us to apply this

technique to classes of analytic bi-univalent functions. In the literature, there are only a few

works determining the general coefficient bounds |an| for the analytic bi-univalent functions

given by (1.1) using Faber polynomial expansions.
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In this present work, we use the Faber polynomials in obtaining bounds of Maclaurin

coefficients |an|, n ∈ N 1 and bounds for the Fekete-Szegö functional |a3 − 2a2
2| of a new

defined subclass of Σ to generalize some earlier results.

2. Construction of the subclass HΣ(τ, λ, δ; ϕ)

Throughout this section, let us assume that ϕ be an analytic function with positive real

part in the unit disc U satisfying ϕ(0) = 1, ϕ′(0) > 0 and ϕ(U) is symmetric with respect

to the real axis. Such a function has a series expansion of the form

ϕ(z) = 1 + B1z + B2z2 + B3z3 + · · · (B1 > 0). (2.1)

where Bn ∈ R, for all n = 2, 3, ....

Using the Faber polynomial [1,2] expansion of the functions f ∈ Σ of the form (1.1), the

inverse function g = f−1 may be expressed as

g(w) = f−1(w) = w +
∞
∑

n=2

Anwn, (2.2)

where

An =
1

n
K

−n
n−1(a2, a3, ..., an). (2.3)

Now, for any p ∈ Z := {0, ±1, ±2, · · · }, the expansion of Kp
n is given by

K
p
n = pan +

p!

(p − 2)!2!
D2

n +
p!

(p − 3)!3!
D3

n + · · · +
p!

(p − n)!n!
Dn

n, (2.4)

where

Dm
n = Dm

n (a1, a2, ..., an),

=
∞
∑

n=2

m!

µ1!µ2!µ3! · · · µn!
aµ1

1 aµ2

2 aµ3

3 · · · aµn

n , (2.5)

while a1 = 1 and the sum is taken over all non-negative integers µ1, µ2, µ3, ..., µn satisfying

µ1 + µ2 + µ3 + · · · + µn = m, µ1 + 2µ2 + · · · + nµn = n.

It is observed that

Dn
n(a1, a3, ..., an) = an

1 .

Thus, from equation (2.4) together with (2.5) we get an expression of K−n
n−1 as

K
−n
n−1(a2, a3, ..., an) = (−n)!

(−2n+1)!(n−1)! a
n−1
2 + (−n)!

(2(−n+1))!(n−3)! a
n−3
2 a3

+
(−n)!

(−2n + 3))!(n − 4)!
an−4

2 a4

+
(−n)!

(2(−n + 2))!(n − 5)!
an−5

2

(

a5 + (−n + 2)a2
3

)

+
(−n)!

(−2n + 5))!(n − 6)!
an−6

2 (a6 + (−2n + 5)a3a4)

+
∑

j≥7

an−j
2 Vj ,



26 S.A. SALEH, ALAA H. EL-QADEEM, AND MOHAMED A. MAMON

where such expressions as (−n)! are to be interpreted by

(−n)! := Γ(1 − n) = (−n)(−n − 1)(−n − 2) · · · ( n ∈ N0 := N ∪ {0} ),

and Vj (7 ≤ j ≤ n) is a homogeneous polynomial in the variables a2, a3, ..., an. In particular,

in case of n = 2, 3, 4 the expression of K−n
n−1 is reduced to

K
−2
1 = −2a2, K

−3
2 = 3(2a2

2 − a3), K
−4
3 = −4(5a3

2 − 5a2a3 + a4).

Definition 2.1. Let λ ≥ 1, τ ∈ C
∗ = C − {0}, 0 ≤ δ ≤ 1 and f, g ∈ Σ given by (1.1) and

(2.2) respectively, then f is said to be in the class HΣ(τ, λ, δ; ϕ) if

1 +
1

τ

(

(1 − λ)
f(z)

z
+ λf

′

(z) + δzf
′′

(z) − 1

)

≺ ϕ(z), (2.6)

and

1 +
1

τ

(

(1 − λ)
g(w)

w
+ λg

′

(w) + δzg
′′

(w) − 1

)

≺ ϕ(w), (2.7)

where z, w ∈ U and ϕ(z) is given by (2.1).

Remark 2.1. For special choices of the parameters λ, τ, δ and the function ϕ(z), the class

HΣ(τ, λ, δ; ϕ) reduced to the following subclasses:

1. HΣ (τ, 1, γ; ϕ) = Σ(τ, γ, ϕ) which introduced by A.E. Tudor [23] and recently studied

by H.M. Srivastava and Deepak Bansal [22].

2. HΣ (1, 1, 0; ϕ) = Hσ(ϕ) which defined and studied by Rosihan M. Ali et al. [3].

3. HΣ

(

1, 1, β;
(

1+z
1−z

)α)

= HΣ(α, β) which introduced by B.A. Frasin [11].

4. HΣ

(

1, 1, 0;
(

1+z
1−z

)α)

= Hα
Σ which introduced by H.M. Srivastava et al. [20].

5. HΣ

(

1, λ, 0;
(

1+z
1−z

)α)

= BΣ(α, λ) which is introduced by B.A. Frasin and M.K. Aouf

[10], and recently studied by H.M. Srivastava et al. [21].

6. HΣ

(

1 − γ, 1, β; 1+z
1−z

)

= HΣ(γ, β) which introduced by B.A. Frasin [11].

7. HΣ

(

1 − α, λ, δ; 1+z
1−z

)

= NΣ(α, λ, δ) which introduced by S. Bulut [6].

8. HΣ

(

1 − β, 1, 0; 1+z
1−z

)

= HΣ(β) which introduced by H.M. Srivastava et al. [20].

9. HΣ

(

1 − β, λ, 0; 1+z
1−z

)

= BΣ(β, λ) which introduced by B.A. Frasin and M.A. Aouf

[10] and recently studied by J.M. Jahangiri and S.G. Hamidi [14].

10. HΣ

(

τ, 1, γ; 1+Az
1+Bz

)

= Rτ
γ,σ(A, B) which introduced by A.E. Tudor [23].

Lemma 2.1. [18] Let u(z) be analytic function in the unit disc U with u(0) = 0 and

|u(z)| < 1 for all z ∈ U with the power series expansion

u(z) =
∞
∑

n=1

cnzn ,

then |cn| ≤ 1 for all n = 1, 2, 3, .... Furthermore, |cn| = 1 for some n = 1, 2, 3, ... if and only

if

u(z) = eiθzn, θ ∈ R.
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Lemma 2.2. [7] Let the function p(z) = 1 +
∑∞

n=1 pnzn be so that ℜ(p(z)) > 0 for z ∈ U .

Then for −∞ < α < ∞,

∣

∣

∣p2 − αp2
1

∣

∣

∣ ≤







2 − α|p1|2 ; α < 1
2

2 − (1 − α)|p1|2 ; α ≥ 1
2

. (2.8)

Let ϕ(z) =
∑∞

n=1 anzn be a Schwarz function so that |ϕ(z)| < 1, z ∈ U . Set p(z) = 1+ϕ(z)
1−ϕ(z)

where p(z) = 1+
∑∞

n=1 pnzn is so that ℜ(p(z)) > 0 for z ∈ U . Comparing the corresponding

coefficients of powers of z yields p1 = 2ϕ1 and p2 = 2(ϕ2 + ϕ2
1). Now, substituting for p1

and p2 and letting η = 1 − 2α in (2.8), we obtain

∣

∣

∣ϕ2 + ηϕ2
1

∣

∣

∣ ≤







1 − (1 − η)|ϕ1|2 ; η > 0

1 − (1 + η)|ϕ1|2 ; η < 0
. (2.9)

2.1. Coefficient bounds of members of HΣ(τ, λ, δ; ϕ).

Unless otherwise mentioned, let us assume in the reminder of this section that z ∈ U ,

λ ≥ 1, 0 ≤ δ ≤ 1 and τ ∈ C − {0}.

Theorem 2.1. Let f defined by (1.1) belong to the class HΣ(τ, λ, δ; ϕ) and ak = 0 (2 ≤
k ≤ n − 1), then

|an| ≤ B1|τ |
1 + (n − 1)(λ + nδ)

( n ≥ 4 ). (2.10)

Proof. Since f ∈ HΣ(τ, λ, δ; ϕ), then we have

1 +
1

τ

(

(1 − λ)
f(z)

z
+ λf

′

(z) + δzf
′′

(z) − 1

)

= 1 +
∞
∑

n=2

(

1 + (n − 1)(λ + nδ)

τ

)

anzn−1,

(2.11)

and since the inverse map g = f−1 represented by (2.2) also belonging to the same subclass,

then

1 +
1

τ

(

(1 − λ)
g(w)

w
+ λg

′

(w) + δzg
′′

(w) − 1

)

= 1 +
∞
∑

n=2

(

1 + (n − 1)(λ + nδ)

τ

)

Anwn−1.

(2.12)

Now, Since f, g ∈ HΣ(τ, λ, δ; ϕ), by the definition 2.1, there exist two Schwarz functions

u(z) =
∑∞

n=1 cnzn and v(w) =
∑∞

n=1 dnwn such that

1 +
1

τ

(

(1 − λ)
f(z)

z
+ λf

′

(z) + δzf
′′

(z) − 1

)

= ϕ(u(z)), (2.13)

1 +
1

τ

(

(1 − λ)
g(w)

w
+ λg

′

(w) + δzg
′′

(w) − 1

)

= ϕ(v(w)), (2.14)

such that

ϕ(u(z)) = 1 −
∞
∑

n=2

B1K
−1
n−1(c1, ..., cn−1; B1, ..., Bn−1)zn−1, (2.15)

ϕ(v(w)) = 1 −
∞
∑

n=2

B1K
−1
n−1(d1, ..., dn−1; B1, ..., Bn−1)wn−1, (2.16)
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where in general Kp
n = Kp

n(ρ1, ..., ρn, B1, ..., Bn) are defined by

K
p
n =

p!

(p − n)!(n)!
ρn

1

Bn

B1
+

p!

(p − n + 1)!(n − 2)!
ρn−2

1 ρ2
Bn−1

B1

+
p!

(p − n + 2)!(n − 3)!
ρn−3

1 ρ3
Bn−2

B1

+
p!

(p − n + 3)!(n − 4)!
ρn−4

1

(

ρ4
Bn−3

B1
+

p − n + 3

2
ρ2

2

Bn−2

B1

)

+
p!

(p − n + 4)!(n − 5)!
ρn−5

1

(

ρ5
Bn−4

B1
+ (p − n + 4)ρ2ρ3

Bn−3

B1

)

+
∑

j≥6

ρn−j
1 Xj , (2.17)

where Xj is a homogeneous polynomial of degree j in the variables ρ1, ρ2, ..., ρn.

Now, comparing the coefficients in both sides of equations (2.13) and (2.14) after substi-

tuting about ϕ(u(z)) and ϕ(v(w)) from equations (2.15) and (2.16), we have

1 + (n − 1)(λ + nδ)

τ
an = −B1K

−1
n−1(c1, ..., cn−1; B1, ..., Bn−1), (2.18)

1 + (n − 1)(λ + nδ)

τ
An = −B1K

−1
n−1(d1, ..., dn−1; B1, ..., Bn−1). (2.19)

Since ak = 0 (2 ≤ k ≤ n − 1), then from equation (2.3) it is easy to conclude

An = −an. (2.20)

Therefore, equations (2.18) and (2.19) reduced to

1 + (n − 1)(λ + nδ)

τ
an = B1cn−1, (2.21)

− 1 + (n − 1)(λ + nδ)

τ
an = B1dn−1. (2.22)

By subtracting equation (2.22) from equation (2.21) obtained

an =
B1τ (cn−1 − dn−1)

2 (1 + (n − 1)(λ + nδ))
. (2.23)

Applying Lemma 2.1 for the coefficients cn−1 and dn−1 in equation (2.23) which reduced to

the desired estimation. The proof is completed. �

By putting τ = 1 − α(0 ≤ α < 1) and ϕ(z) = 1+z
1−z

(B1 = 2) in Theorem 2.1, we conclude

Corollary 2.1. [6, Theorem 2] Let f ∈ NΣ(α, λ, δ) and ak = 0 (2 ≤ k ≤ n − 1), then

|an| ≤ 2(1 − α)

1 + (n − 1)(λ + nδ)
(n ≥ 4).

Let us put λ = 1 in Corollary 2.2, we have
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Corollary 2.2. [21, Theorem 1] Let us consider f ∈ N
(α,λ)
Σ and ak = 0 (2 ≤ k ≤ n − 1),

then

|an| ≤ 2(1 − α)

n(1 + δ(n − 1))
(n ≥ 4).

Let us put δ = 0 in Corollary 2.2, we obtain

Corollary 2.3. [14, Theorem 1] If f ∈ D(α, λ) and ak = 0 (2 ≤ k ≤ n − 1), then

|an| ≤ 2(1 − α)

1 + λ(n − 1)
(n ≥ 4).

Theorem 2.2. Let f ∈ HΣ(τ, λ, δ; ϕ) and B1 ≥ |B2|, then

|a2| ≤























B1

√
B1|τ |√

B2

1
|τ |(1+2λ+6δ)+(B1+B2)(1+λ+2δ)2

if B2 < 0, B1 + B2 ≤ 0

B1

√
B1|τ |√

B2

1
|τ |(1+2λ+6δ)+(B1−B2)(1+λ+2δ)2

if B2 > 0, B1 − B2 ≤ 0

, (2.24)

|a3| ≤















B1|τ |
1+2λ+6δ

; B1 > |B2|

|B2τ |
1+2λ+6δ

; B1 < |B2|
, (2.25)

and

|a3 − 2a2
2| ≤















B1|τ |
1+2λ+6δ

; B1 > |B2|

|B2τ |
1+2λ+6δ

; B1 < |B2|
. (2.26)

Proof. Lets us set n = 2, n = 3 in the equations (2.18) and (2.19), we deduce

1 + λ + 2δ

τ
a2 = B1c1, (2.27)

− 1 + λ + 2δ

τ
a2 = B1d1, (2.28)

1 + 2λ + 6δ

τ
a3 = B1c2 + B2c2

1, (2.29)

and
1 + 2λ + 6δ

τ
(2a2

2 − a3) = B1d2 + B2d2
1. (2.30)

From equations (2.27) and (2.28), we deduce

c1 = −d1, (2.31)

and

a2 =
B1c1τ

1 + λ + 2δ
. (2.32)

Now, adding equation (2.29) to (2.30) obtains

a2
2 = τ

(

(B1(c2 + d2) + B2(c2
1 + d2

1))

2(1 + 2λ + 6δ)

)

. (2.33)
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a2
2 =

B1τ

2(1 + 2λ + 6δ)

[(

c2 +
B2

B1
c2

1

)

+

(

d2 +
B2

B1
d2

1

)]

. (2.34)

Firstly, let B2 < 0(η = B2

B1
< 0, B1 + B2 ≥ 0) and applying Lemma 2.2 with using

equation (2.31), we obtain

|a2|2 ≤ B1τ

1 + 2λ + 6δ

[

1 −
(

B1 + B2

B1

)

|c1|2
]

. (2.35)

By substituting of c1 from equation (2.32), we conclude

|a2|2 ≤ |τ |2B3
1

B2
1 |τ |(1 + 2λ + 6δ) + (B1 + B2)(1 + λ + 2δ)2

. (2.36)

Taking the square root of the both side of inequality (2.36), we have

|a2| ≤ |τ |B1

√
B1

√

B2
1 |τ |(1 + 2λ + 6δ) + (B1 + B2)(1 + λ + 2δ)2

. (2.37)

Second, let B2 > 0(η = B2

B1
> 0, B1 − B2 ≥ 0) and applying Lemma 2.2 with using

equation (2.31), then

a2
2 ≤ B1τ

1 + 2λ + 6δ

[

1 −
(

B1 − B2

B1

)

|c1|2
]

. (2.38)

By substituting of c1 from equation (2.32), we conclude

|a2|2 ≤ |τ |2B3
1

B2
1 |τ |(1 + 2λ + 6δ) + (B1 − B2)(1 + λ + 2δ)2

. (2.39)

Taking the square root of the both side of inequality (2.40), we have

|a2| ≤ |τ |B1
√

B1

B2
1 |τ |(1 + 2λ + 6δ) + (B1 − B2)(1 + λ + 2δ)2

. (2.40)

Combining the last inequality with inequality (2.37), we obtain the desired estimate on the

coefficient |a2| which given by (2.24).

In order to deduce the estimation of |a3|, subtracting equation (2.30) from (2.29) with

using equation (2.32), obtains

a3 = a2
2 +

B1τ(c2 − d2)

2(1 + 2λ + 6δ)
. (2.41)

By substituting of a2
2 from equation (2.33) into (2.41), we conclude

a3 =
τ(B1c2 + B2c2

1)

1 + 2λ + 6δ
. (2.42)

Taking the modulus of both sides of equation (2.42), we get

|a3| ≤ B1|τ |
1 + 2λ + 6δ

∣

∣

∣

∣

c2 +
B2

B1
c2

1

∣

∣

∣

∣

. (2.43)

By applying Lemma 2.2, let first B2 < 0(η = B2

B1
< 0), then

|a3| ≤ B1|τ |
1 + 2λ + 6δ

[

1 − B1 − B2

B1
|c1|2

]

. (2.44)
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If B1 − B2 > 0, then we must put |c1| by its least value |c1| = 0. Thus

|a3| ≤ B1|τ |
1 + 2λ + 6δ

. (2.45)

If B1 − B2 < 0, then we must put |c1| by its maximum value |c1| = 1 (using Lemma 2.2).

Thus

|a3| ≤ B2|τ |
1 + 2λ + 6δ

. (2.46)

Second, let us put B2 > 0(η = B2

B1
> 0), then

|a3| ≤ B1|τ |
1 + 2λ + 6δ

[

1 − B1 + B2

B1
|c1|2

]

. (2.47)

If B1 + B2 > 0, then we must put |c1| by its least value |c1| = 0. Thus

|a3| ≤ B1|τ |
1 + 2λ + 6δ

. (2.48)

If B1 + B2 < 0, then we must put |c1| by its maximum value |c1| = 1 (using Lemma 2.1).

Thus

|a3| ≤ −B2|τ |
1 + 2λ + 6δ

. (2.49)

By comparing the estimates of |a3| in relations from (2.45) to (2.48) which obtain the desired

estimate given by (2.25). Finally, using equation (2.30), gives

a3 − 2a2
2 =

−τ(B1d2 + B2d2
1)

1 + 2λ + 6δ
. (2.50)

Using the same technique in proving the estimate of |a3|, we get the desired estimate given

by (2.26), then we prefer to omit it. �

In case of λ = 1, Theorem 2.2 becomes

Corollary 2.4. [22, Theorem 1] Let f ∈ Σ(τ, δ, ϕ), then

|a2| ≤



















B1

√
B1|τ |√

3B2

1
|τ |(1+2δ)+4(B1+B2)(1+δ)2

B2 < 0 and B1 + B2 ≥ 0

B1

√
B1|τ |√

3B2

1
|τ |(1+2δ)+4(B1−B2)(1+δ)2

B2 > 0 and B1 − B2 ≥ 0

,

|a3| ≤















B1|τ |
3(1+2δ) B1 > |B2|

|B2τ |
3(1+2δ) B1 < |B2|

.

Let us put ϕ(z) =
(

1+z
1−z

)α
, B1 = 2α and B2 = 2α2, and τ = 1 in Corollary 2.4 we have

Corollary 2.5. [11, Theorem 2.2] Let f ∈ HΣ(α, δ), then

|a2| ≤ 2α
√

2(2 + α) + 4δ(α + δ − αδ + 2)
,

|a3| ≤ 2α

3(1 + 2δ)
.
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By putting τ = 1 − γ and ϕ(z) = 1+z
1−z

, B1 = B2 = 2, in Corollary 2.4, we obtain

Corollary 2.6. [11, Theorem 3.2] Let f ∈ HΣ(γ, δ), then

|a2| ≤
√

2(1 − γ)

3(1 + 2δ)
, |a3| ≤ 2(1 − γ)

3(1 + 2δ)
.

In case of τ = 1, δ = 0 and ϕ(z) =
(

1+z
1−z

)α
, B1 = 2α, B2 = 2α2, in Theorem 2.2, we

have

Corollary 2.7. [10, Theorem 2.2] Let f ∈ BΣ(α, λ), then

|a2| ≤ 2α
√

(1 + λ)2 + α(1 + 2λ − λ2)
, |a3| ≤ 2α

1 + 2λ
.

Let us put τ = 1 − γ and ϕ(z) = 1+z
1−z

, B1 = B2 = 2, in Theorem 2.2, we obtain

Corollary 2.8. [6, Theorem 5] Let 0 ≤ α < 1 and f ∈ NΣ(γ, λ, δ), then

|a2| ≤
√

2(1 − γ)

1 + 2λ + 6δ
,

|a3| ≤ 2(1 − γ)

1 + 2λ + 6δ
,

and

|a3 − 2a2
2| ≤ 2(1 − γ)

1 + 2λ + 6δ
.

By putting δ = 0 in Corollary 2.8, gets

Corollary 2.9. [10, Theorem 3.2] If f belong to BΣ(γ, λ) and 0 ≤ γ < 1, then

|a2| ≤
√

2(1 − γ)

1 + 2λ
,

|a3| ≤ 2(1 − γ)

1 + 2λ
,

Remark 2.2. Some results investigated in Corollaries from 2.4 to 2.9 represented an improve-

ment of the estimate of |a3| of the earlier corresponding results.
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