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INEQUALITIES WITH INFINITE CONVEX COMBINATIONS

ZLATKO PAVIĆ

Abstract. The aim of the paper is to extend the discrete form of Jensen’s inequality to
infinite convex combinations and sequences of convex combinations. As the complement,
the most interesting results are applied to the well known discrete and integral inequalities.

1. Introduction

The primary concept of convexity is based on a bounded closed interval of real numbers,

its convex combinations, and corresponding convex function. Let [a, b] be a closed interval

with a < b. A combination αx+βy of points x, y ∈ [a, b] and coefficients α, β ∈ [0, 1] is said

to be convex if α+ β = 1. A function f : [a, b] → R is said to be convex if the inequality

f(αx+ βy) ≤ αf(x) + βf(y) (1.1)

holds for every convex combination αx + βy of points x, y ∈ [a, b]. The convex function f

is bounded by two lines. A support line h1 at an interior point x0 ∈ (a, b) with a slope

coefficient k ∈ [f ′(x0−), f ′(x0+)] expressed by

h1(x) = k(x− x0) + f(x0)

is the lower bound of f . The secant line h2 at the endpoints a and b expressed by

h2(x) =
b− x

b− a
f(a) +

x− a

b− a
f(b)

is the upper bound of f . So, the double inequality

h1(x) ≤ f(x) ≤ h2(x) (1.2)

holds for every point x ∈ [a, b]. This initial inequality can be upgraded as follows.

Given a positive integer n, let
∑n
i=1 λixi be an n-membered convex combination (λi ∈

[0, 1] and
∑n
i=1 λi = 1) of points xi ∈ [a, b]. If αa+βb is the convex combination of endpoints
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a and b that satisfies αa+βb =
∑n
i=1 λixi, then each convex function f : [a, b] → R satisfies

the double inequality

f(αa+ βb) ≤
n

∑

i=1

λif(xi) ≤ αf(a) + βf(b). (1.3)

This fundamental convex function inequality expresses the nature of growth of a convex

function. The convex function values, taken in the forms of convex combinations, grow

from the center to the ends. Its version, with
∑n
i=1 λixi instead of αa+ βb on the left side,

represents the extended discrete form of Jensen’s inequality. We want to replace n with

infinity.

For more details on convex sets and functions, see books [9] and [10].

2. Main results

Let X be a vector space over the field R. Without employing any convergence in the

space X, we formally define the notion of an infinite convex combination which contains

the infinite number of space points. We only assume that the coefficients sum converges to

number 1 in the field R.

Definition 2.1. An infinite linear combination
∑

∞

i=1 λixi of points xi ∈ X is said to be

convex if coefficients λi ∈ [0, 1] and
∑

∞

i=1 λi = 1.

Infinite convex combinations are prone to convergence, which is best illustrated in the

next lemma and corollary.

Lemma 2.1. An infinite convex combination
∑

∞

i=1 λiti of points ti ∈ [0, 1] converges in

[0, 1].

Proof. The nth partial sum τn =
∑n
i=1 λiti is within the bounds

0 ≤
n

∑

i=1

λiti ≤
n

∑

i=1

λi ≤ 1.

Furthermore, the partial sums τn and τn+1 maintain the order

τn =
n

∑

i=1

λiti ≤
n+1
∑

i=1

λiti = τn+1.

So, the sequence (τn)∞

n=1 is bounded and nondecreasing, which ensures that it converges to

some number t ∈ [0, 1]. Written down as the series, it stands as
∞

∑

i=1

λiti = t ∈ [0, 1],

which completes the proof. �

The above initial lemma also applies to any real bounded closed interval.

Corollary 2.1. An infinite convex combination
∑

∞

i=1 λixi of points xi ∈ [a, b] converges in

[a, b].
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Proof. Since a ≤ xi ≤ b, then

0 ≤
xi − a

b− a
≤ 1.

By applying Lemma 2.1 to the numbers ti = (xi − a)/(b − a), it follows that

∞
∑

i=1

λi
xi − a

b− a
= t ∈ [0, 1],

and consequently
∞

∑

i=1

λixi = (1 − t)a+ tb ∈ [a, b],

which ends the proof. �

In terms of functions, in the proof of the above corollary, we utilized the affine function

x 7→ (x− a)/(b− a) mapping the interval [a, b] onto the unit interval [0, 1].

Corollary 2.2. Let X be a nonempty set, let g : X → R be a function with the image in

[a, b], and let
∑

∞

i=1 λig(xi) be an infinite convex combination of points g(xi) with xi ∈ X.

Then the above combination converges in [a, b].

Proof. Applying Lemma 2.1 to the numbers ti = (g(xi) − a)/(b− a), we obtain

∞
∑

i=1

λig(xi) = (1 − t)a+ tb ∈ [a, b],

which proves the assertion of the corollary. �

The above corollaries enable an extension of the inequality in formula (1.3) to infinite

convex combinations.

Theorem 2.1. Let
∑

∞

i=1 λixi be an infinite convex combination of points xi ∈ [a, b], and

let αa+ βb be the convex combination that satisfies αa+ βb =
∑

∞

i=1 λixi.

Then each convex function f : [a, b] → R satisfies the double inequality

f(αa+ βb) ≤
∞

∑

i=1

λif(xi) ≤ αf(a) + βf(b). (2.1)

Proof. Respecting the fact that the convex function f may be discontinuous at the endpoints

a and b, we will discus two cases.

The first case. Suppose that
∑

∞

i=1 λixi = a. Then
∑

∞

i=1 λi(xi − a) = 0 with λi ≥ 0 and

xi − a ≥ 0. Thus λi 6= 0 implies xi = a, and therefore

∞
∑

i=1

λif(xi) =
∞

∑

i=1

λif(a) = f(a).

Thus the trivial double inequality f(a) ≤ f(a) ≤ f(a) represents formula (2.1). A similar

applies if
∑

∞

i=1 λixi = b.
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The second case. Suppose that
∑

∞

i=1 λixi ∈ (a, b). Let n ≥ 2 be an integer, and let

εn = 1 −
∑n−1
i=1 λi be the additional coefficient. Applying the double inequality in formula

(1.3) to the convex combinations equality

αna+ βnb =
n−1
∑

i=1

λixi + εnxn, (2.2)

we obtain

f(αna+ βnb) ≤
n−1
∑

i=1

λif(xi) + εnf(xn) ≤ αnf(a) + βnf(b). (2.3)

Now, we have to consider the reflection moment as n approaches infinity. Applying the

reflection moment to formula (2.2), we get limn→∞ εnxn = 0 and

lim
n→∞

(αna+ βnb) =
∞

∑

i=1

λixi = αa+ βb.

Using this limit, and employing the continuity of the restriction f/(a, b), we obtain

lim
n→∞

f(αna+ βnb) = f
(

lim
n→∞

(αna+ βnb)
)

= f(αa+ βb).

Since limn→∞ εnf(xn) = 0, limn→∞ αn = α and limn→∞ βn = β, the application of the

reflection moment to formula (2.3) results so that it approaches formula (2.1). �

The inequality in formula (2.1) provides the extended discrete form of Jensen’s inequality

(see [3]) for infinite convex combinations.

Corollary 2.3. Let
∑

∞

i=1 λixi be an infinite convex combination of points xi ∈ [a, b], and

let c =
∑

∞

i=1 λixi be its sum.

Then each convex function f : [a, b] → R satisfies the double inequality

f

( ∞
∑

i=1

λixi

)

≤
∞

∑

i=1

λif(xi) ≤
b− c

b− a
f(a) +

c− a

b− a
f(b). (2.4)

Proof. By combining the equalities αa + βb = c and β = 1 − α, it follows that α =

(b− c)/(b − a) and β = (c− a)/(b − a). �

The double inequality in formula (2.4) presents the fundamental convex function inequal-

ity on the bounded closed interval, including its infinite convex combinations.

The double inequality in formula (1.3) can also be extended to sequences of convex

combinations. Because of the possible convergence to the interval endpoints, we have to

use a continuous convex function f .

Theorem 2.2. Let (cn)∞

n=1 be a convergent sequence of convex combinations

cn =
∑mn

i=1 λnixni of points xni ∈ [a, b], and let αa + βb be the convex combination that

satisfies αa+ βb = limn→∞ cn.

Then each continuous convex function f : [a, b] → R satisfies the double inequality

f(αa+ βb) ≤ lim
n→∞

mn
∑

i=1

λnif(xni) ≤ αf(a) + βf(b). (2.5)
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Proof. Applying the proof of the second case of Theorem 2.1 to the convex combinations

equality

αna+ βnb =
mn
∑

i=1

λnixni,

and utilizing the continuity of f , we can attain the inequality in formula (2.5). �

In the statement of the above theorem, the continuity of f can not be omitted. It refers

to the left-hand side (containing the left and middle members) of the inequality in formula

(2.5). Using points xn1 = a+ 1/n and xn2 = b− 1/n, let us take the sequence of binomial

convex combinations

cn =
n− 1

n
xn1 +

1

n
xn2

for all sufficiently large integers n, providing that points xn1, xn2 ∈ [a, b]. It is obvious that

limn→∞ cn = a. Let f be a convex function that has a discontinuity at the endpoint a.

Then, as regards formula (2.5), the left member is

f
(

lim
n→∞

cn
)

= f(a),

and the middle member is

lim
n→∞

(

n− 1

n
f(xn1) +

1

n
f(xn2)

)

= f(a+).

Since the function f satisfies f(a) > f(a+), the left member is greater than the middle

member in the observed case.

We point out the next applicable variant of Theorem 2.2 as the extended discrete form

of Jensen’s inequality for convergent sequences of convex combinations. It can be useful in

the creation of integral inequalities.

Corollary 2.4. Let (cn)∞

n=1 be a convergent sequence of convex combinations

cn =
∑mn

i=1 λnixni of points xni ∈ [a, b], and let c = limn→∞ cn be its limit.

Then each continuous convex function f : [a, b] → R satisfies the double inequality

f

(

lim
n→∞

mn
∑

i=1

λnixni

)

≤ lim
n→∞

mn
∑

i=1

λnif(xni) ≤
b− c

b− a
f(a) +

c− a

b− a
f(b). (2.6)

Different forms of Jensen’s inequality were considered in [6] and [8], and the extension of

Jensen’s inequality to affine combinations was demonstrated in [5].

3. Products of convex combinations

In this section, we present the extended discrete form of Jensen’s inequality for the

product of convex combinations. To ensure a cause-effect relationship, we deal with finite

and infinite convex combinations.

The section is based on the fact that the product of convex combinations produces a

convex combination. If
∑n
i=1 λixi is an n-membered convex combination of points xi, and
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if
∑m
j=1 κjyj is an m-membered convex combination of points yj, then their product

( n
∑

i=1

λixi

)( m
∑

j=1

κjyj

)

=
n

∑

i=1

m
∑

j=1

λiκjxiyj (3.1)

is the nm-membered convex combination of points xiyj because the coefficients λiκj are

nonnegative and their sum is equal to
n

∑

i=1

m
∑

j=1

λiκj =

( n
∑

i=1

λi

)( m
∑

j=1

κj

)

= 1 · 1 = 1.

Relying on the product representation in formula (3.1) and the inequality in formula

(1.3), we get the following.

Lemma 3.1. Let
∑n
i=1 λixi and

∑m
j=1 κjyj be convex combinations of real points xi and

yj, let [a, b] be a closed interval containing the products xiyj, and let αa+ βb be the convex

combination that satisfies αa+ βb =
(

∑n
i=1 λixi

)(
∑m
j=1 κjyj

)

.

Then each convex function f : [a, b] → R satisfies the double inequality

f(αa+ βb) ≤
n

∑

i=1

m
∑

j=1

λiκjf(xiyj) ≤ αf(a) + βf(b). (3.2)

The above lemma can be expanded to infinite convex combinations. The product of

infinite convex combinations
∑

∞

i=1 λixi and
∑

∞

j=1 κjyj of points xi and yj as the Cauchy

convolution
( ∞

∑

i=1

λixi

)( ∞
∑

j=1

κjyj

)

=
∞

∑

j=1

j
∑

i=1

λiκj−i+1xiyj−i+1 (3.3)

is the infinite convex combination of points xiyj−i+1 because the coefficients λiκj−i+1 are

nonnegative and their sum is equal to

∞
∑

j=1

j
∑

i=1

λiκj−i+1 =

( ∞
∑

i=1

λi

)( ∞
∑

j=1

κj

)

= 1 · 1 = 1.

Using the Cauchy product in formula (3.3), we are expanding Theorem 2.1.

Theorem 3.1. Let
∑

∞

i=1 λixi and
∑

∞

j=1 κjyj be infinite convex combinations of real points xi
and yj such that the sequences (xi)

∞

i=1 and (yj)
∞

j=1 are bounded, let [a, b] be a closed interval

containing the sequence ((xiyj−i+1)ji=1)∞

j=1, and let αa+ βb be the convex combination that

satisfies αa+ βb =
(

∑

∞

i=1 λixi
)(

∑

∞

j=1 κjyj
)

.

Then each convex function f : [a, b] → R satisfies the double inequality

f(αa+ βb) ≤
∞

∑

j=1

j
∑

i=1

λiκj−i+1f(xiyj−i+1) ≤ αf(a) + βf(b). (3.4)

Proof. Suppose that
∑

∞

i=1 λixi converges to x and
∑

∞

j=1 κjyj converges to y. Then the prod-

uct
∑

∞

j=1
∑j
i=1 λiκj−i+1xiyj−i+1 converges to xy = αa + βb because both factors converge

absolutely. This product fits into Theorem 2.1. �
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4. Applications to discrete and integral inequalities

Due to Corollary 2.1, we can consider the quasi-arithmetic means related to infinite

convex combinations. Let (xi)
∞

i=1 be a sequence of points xi ∈ [a, b], let (λi)
∞

i=1 be a

sequence of nonnegative coefficients such that
∑

∞

i=1 λi = 1, and let ϕ : [a, b] → R be a

strictly monotone continuous function. The discrete quasi-arithmetic mean of points xi
with respect to coefficients λi and the function ϕ is the number

Mϕ(xi;λi) = ϕ−1
( ∞

∑

i=1

λiϕ(xi)

)

. (4.1)

The number Mϕ(xi;λi) belongs to the interval [a, b] because the infinite convex combination
∑

∞

i=1 λiϕ(xi) converges in the image of ϕ by Corollary 2.2 (the image of ϕ is the bounded

closed interval).

The framework of quasi-arithmetic means includes a pair of strictly monotone continuous

functions ϕ,ψ : [a, b] → R and the following definition. The function ψ is said to be ϕ-convex

(ϕ-concave) if the composition ψ ◦ ϕ−1 is convex (concave). In the case of infinite convex

combinations, the basic result on quasi-arithmetic means applies as follows.

Lemma 4.1. Let ϕ,ψ : [a, b] → R be strictly monotone continuous functions, and let
∑

∞

i=1 λixi be an infinite convex combination of points xi ∈ [a, b].

If either ψ is increasing and ϕ-convex or ψ is decreasing and ϕ-concave, then

Mϕ(xi;λi) ≤ Mψ(xi;λi). (4.2)

If either ψ is decreasing and ϕ-convex or ψ is increasing and ϕ-concave, then the reverse

inequality is valid in formula (4.2).

Proof. We prove the case that ψ is increasing and ϕ-convex. Using the left-hand side of

the inequality in formula (2.4) with the convex combination
∑

∞

i=1 λiϕ(xi) and the convex

function ψ ◦ ϕ−1, we get

(

ψ ◦ ϕ−1)

( ∞
∑

i=1

λiϕ(xi)

)

≤
∞

∑

i=1

λiψ(xi).

Acting with the increasing function ψ−1 to the above inequality, we obtain the inequality

in formula (4.2). �

The power means are represented by power functions ϕ(x) = xr with x > 0 and r 6= 0

(r = 0 as the limit case) in formula (4.1). Let
∑

∞

i=1 λixi be an infinite convex combination

of positive real numbers xi such that the sequence (xi)
∞

i=1 is bounded. If r 6= 0, then the

power mean of order r is

Mr(xi;λi) =

( ∞
∑

i=1

λix
r
i

)1/r

. (4.3)

Letting r tend to 0, we have the limit case as

M0(xi;λi) = lim
r→0

Mr(xi;λi) = exp

( ∞
∑

i=1

λi lnxi

)

=
∞
∏

i=1

xλi

i . (4.4)
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It can be proved that Mr(xi;λi) ≤ Ms(xi;λi) if r ≤ s. Applying this inequality to the

harmonic mean M−1, geometric mean M0 and arithmetic mean M1, we gain the extension

of the most famous mean inequality to infinite convex combinations.

Corollary 4.1. Let
∑

∞

i=1 λixi be an infinite convex combination of positive real numbers

xi such that the sequence (xi)
∞

i=1 is bounded.

Then the infinite form of the harmonic-geometric-arithmetic mean inequality stands as
( ∞

∑

i=1

λix
−1
i

)−1

≤
∞
∏

i=1

xλi

i ≤
∞

∑

i=1

λixi. (4.5)

Double inequality in formula (2.6) can be upgraded to the extended integral form of

Jensen’s inequality (see [4]) by using an integrable (including boundedness) function g. For

this purpose, we employ the sequence of convex combinations of points g(xni) that converges

to the integral arithmetic mean of g.

Corollary 4.2. Let g : [u, v] → R be an integrable function with the image in [a, b], and let

c = 1/(v − u)
∫ v
u g(x) dx be the integral arithmetic mean of g.

Then each convex function f : [a, b] → R satisfies the double inequality

f

(

1

v − u

∫ v

u
g(x) dx

)

≤
1

v − u

∫ v

u
f(g(x)) dx ≤

b− c

b− a
f(a) +

c− a

b− a
f(b). (4.6)

Proof. We will observe two cases, depending on the position of c.

The first case. Suppose that c = a. Then the function g is almost everywhere equal to

a, and the trivial double inequality f(a) ≤ f(a) ≤ f(a) represents formula (4.6). A similar

applies if c = b.

The second case. Suppose that c ∈ (a, b). Let n ≥ 2 be an integer, let △ni for i = 1, . . . , n

be members of the partition of the interval [u, v] keeping the same length |△ni| = (v−u)/n,

let λni = 1/n = |△ni|/(v − u) be the coefficients, let xni ∈ △ni be points, and let

cn =
n

∑

i=1

λnig(xni) =
1

v − u

n
∑

i=1

|△ni|g(xni)

be the convex combination of points g(xni) as the nth integral sum of g over v − u. Since

g is integrable, it follows that

lim
n→∞

cn =
1

v − u

∫ v

u
g(x) dx = c.

Let [a1, b1] ⊂ (a, b) be a closed neighbourhood of the point c. If we put mn = n in formula

(2.6), and if we apply that formula to the convergent sequence (cn)∞

n=1 and continuous

convex restriction f/[a1, b1], we get

f

(

lim
n→∞

n
∑

i=1

λnig(xni)

)

≤ lim
n→∞

n
∑

i=1

λnif(g(xni)) ≤
b1−c

b1−a1
f(a1) +

c−a1

b1−a1
f(b1).

Putting the integrals into the above inequality, and using the secant lines inequality

h[a1,b1](c) ≤ h[a,b](c), we reach formula (4.6). �
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It is interesting that the convex function f in formula (4.6) does not have to be continuous,

while in formula (2.6) it must be continuous. The reason is that the value 1/(v−u)
∫ v
u g(x) dx

in formula (4.6) is an integral number, while the value limn→∞

∑mn

i=1 λnixni in formula (2.6)

is a limit number.

The inequality in formula (4.6) is reduced to the Hermite-Hadamard inequality (see [2]

and [1]) if the identity function g : [a, b] → [a, b] as g(x) = x is used. The reason is that the

integral arithmetic mean of g coincides with the interval midpoint, c = (a+ b)/2.

Corollary 4.3. Each convex function f : [a, b] → R satisfies the double inequality

f

(

a+ b

2

)

≤
1

b− a

∫ b

a
f(x) dx ≤

f(a) + f(b)

2
. (4.7)

Generalizations and refinements of the Hermite-Hadamard inequality on the bounded

closed interval can be found in [7].
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