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MAJORIZATION TYPE INEQUALITIES FOR STRONGLY CONVEX
FUNCTIONS

MUHAMMAD ADIL KHAN!, FAYAZ ALAM?, AND SYED ZAHEER ULLAH?®

ABSTRACT. In this paper, we present several discrete majorization type inequalities for
strongly convex functions on rectangles. Our results are the generalization and improve-
ment of the earlier results.

1. INTRODUCTION

Convex functions has many important rule in optimization theory and have several ap-
plications in mathematics, statistics, physics and engineering. Convex functions is defined
as [34]:

Definition 1.1. Suppose ¢ : I — R is said to be convex, if

o(Cr1+ (1= Qyr) < ¢olxr) + (1 = Q)od(yr), (1.1)
holds for all x1,y; € T and ¢ € [0, 1].

Recently, many extensions, refinements, generalizations and variants for the convexity
can be found in the literature. Some of them are Schur convexity [13-15] quasi-convex [18],
co-ordinate convex function [19], ¢-convex [21], A\-convex [22], approximately convex [25],
midconvex functions [26], pseudo-convex [30], strongly convex [31], h-convex [37], delta-
convex [35] and others [1-3,16,17,27,34,38,39,42] etc.

Strongly convex functions can be defined as:

Definition 1.2. Let ¢ be a real valued functions and ¢ be a positive real number. Then ¢
is said to be strongly convex with modulus c, if

$(Cz1+ (1= Qy) < (o) + (1= )dlyr) — eC(1 = )1 — 1), (1.2)
holds for all z1,y; € I and ¢ € [0, 1].
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If ¢ : I — R is strongly convex with modulus ¢, then

P(x) — d(y) > Violy)(x—y) +c(x—y)*, Vx, yel, (1.3)
where
Voo -y) = (P2 y)
and

¢+ (y) _ <3¢+(Y) 9+ (y) 3¢+(Y))

dy oy Oy2 T Oyn )’

for x = (1,22, ....,2n), ¥ = (Y1,Y2,...,Yn) € L and (.,.) is the ordinary inner product in R".
Adil Khan et al., [6], gave the concept of co-ordinate strongly convex functions, defined

as:

Definition 1.3. Let I; x Iy € R?; a function ¢ : I} x Iy — R, be coordinate strongly
convex if the partial mappings ¢, : I; — R defined as ¢, (u) = ¢(u,y), for all y € Iy and
¢z : Io — R defined as ¢, (v) = ¢(x,v), for all x € I are strongly convex.

Remark 1.1. Adil Khan et al., proved that every strongly convex function defined on rec-
tangle is co-ordinate strongly convex, but the converse is not true in general [6].

In the last of this section, we give some introduction about the theory of majorization.
For fixed n > 2, let a = (a1, a2, ...,a,) and b = (b1, b, ..., b, ) be two n-tuples such that

ap > ap 2 ... 2 ap), by = b = ..o > by
be their ordered arrangement.

Definition 1.4. The n-tuple a is said to majorized by the n-tuple b or b majorizes a, in
symbols a > b, if

k
ap > me fork=1,2,...n—1, (1.4)

-

@
Il
—_
-
|
—_

n n

1=1 i=1

In the literature a well-know theorem of majorization and its proof we refer Marshall and
Olkin [32]. One can also see the paper of Hardy, Littlewood and Pélya [24] and [28].

Theorem 1.1. Let a = (ay,a9,...,a,) and b = (by,bs,...,b,) be two n—tuples such that
a;,b; €I (i =1,2,...,n). Then the inequality

n n

> d(ai) > () (1.6)
i—1

i=1

holds for every ¢ continuous convex function if and only if a - b.

In Fuchs [23] gave a weighted version of Theorem 1.1.
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Theorem 1.2. Let a = (a1,a9,...,a,), b = (by,ba,...,b,) be two decreasing n—tuples such
that a;,b; €I (i=1,2,...,n), and p = (p1,p2,....,Pn) be a real n—tuple with

k k
> piai =Y pibi, k=1,2,...,n-1, (1.7)
i=1 i=1

> piai = > pibi. (1.8)
i=1 i=1

Then for every ¢ continuous convez function, the following inequality holds
> pid(ai) = pich(bs). (1.9)
i=1 i=1

Dragomir [20] presented majorization result, by using support line inequality and Cheby-
shev’s inequality.

Theorem 1.3. Let ¢ : I — R be a convex function and a = (a1, az,...,an), b = (b1,ba, ..., by)
be two real n—tuples such that a;,b; € I (i =1,2,...,n) and p = (p1,p2,...,pn) be a non-
negative real n—tuple with P, = Y"1 p; > 0. If a — b and b are monotonic in the same
sense, then

ipzfﬁ(ai) > ipzfﬁ(bi) (1.10)
i=1 i=1

holds. If ¢ is strictly convex and p; > 0 (i = 1,2,...,n), then inequalities (1.10) becomes
equality if and only if a; = b; for all i =1,2,...,n.

Recently, Zaheer Ullah et al., [10] gave the majorization theorem for strongly convex
functions.

Theorem 1.4. Let ¢ : I — R be a strongly convex function with respect to modulus c.
Suppose a = (a1, as, ...,a,) and b= (by,ba,...,b,) are n-tuples, a;,b; € I, i =1,2,....n and
the n-tuple a majorizes b. Then the following inequality holds

S o(ai) =D ¢ (b)) +ed (ai—b). (1.11)
=1 i=1 i=1

For more details of convex functions, co-ordinate convex functions, strongly convex func-
tions, majorization type results and their inequalities we suggest [1—12,33,36,40,41].

In this article, the main attention on the majorization type results for co-ordinate strongly
convex functions. To extend majorization inequality for majorized tuples and establish some
weighted version of majorization inequalities for certain n-tuples. For secure these results,
by using Abel transformation, Chebyshev’s inequality, support line inequality of strongly
convex functions. Furthermore, we give Favard’s type inequalities by using the generalized
majorization types results.

2. MAIN RESULTS

To start this section, first we give majorization inequality for strongly convex functions
defined on rectangles.
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Theorem 2.1. Let a = (a1,as9,...,a,), b= (b1,ba,...,b,) be two n-tuples such that a;,b; €
I ¢t =1,2,..,n) and ¢ = (01,02,..., Cm), d = (dl,dQ,...,dm) be two m-tuples such that
cj,dj € Iz (j = 1,2,...,m), where Iy, Iy be any two intervals in R. If a > b and ¢ > d,
then for every strongly convex function ¢ : Iy x Iy — R, we have the following inequality

m

Zng ai, c;) zZZQs(bi,dj)HZZ{(ai_bi)2+(cj—dj)2}- (2.1)
i=175=1

i=1 j=1 i=1 j=1

Proof. Without loss of generality, assume that a,b,c and d are in decreasing order and
a; # b, ¢j # d; for all 7 and j. Suppose that

k k
Ap=> ai, Bp=>Y b, k=12 ..n, (2.2)
i=1 i=1
l l
Cl:ZCj7 Dl:Zdj, l:1,2,...,m (2.3)
j=1 j=1
and
AO =By = 0, CO = Dy =0. (24)
Then from the definition of majorization, we have
Ap = Bn, Cun=Dy. (2.5)
Let t; ; and s; j be defined by
Cal) — _ )2
tij = VQS(ai, bi: Cj) _ ¢(aza C]) (b(bhcj) C(az bz) ’
a; — bi
Cal) — Cd) — R BV
515 = V(b ¢y dy) = d(bi, cj) — ¢(bi, dj) — ccj — dj) ‘
Cj — dj

Then clearly we see that
d(ai, ;) = dlbi,dy) — o (s = ) + (e — dj)*}

= dlai, c5) — $lbi, c5) + 6(bi, ¢5) — d(bi, dj) — ¢ {(a: = bi)* + (¢; — d;)?}
= ¢lai, ¢;) — d(bi, ) + d(bi, ¢) — b(bi, dj) — clai — b;)* — e(ej — dy)?
:(b(a,,c]) P(bi,cj) — cla; — b) —|—q§(b,,c]) (b(biadj)_c(cj_dj)Q

a;, C & — Ccla; — )2

¢( i Cj) — (b(;);_]i i~ bi) (a; — b;)
L Obircy) — (b(f;’iljc)lj_ c(e; — d;)? (¢; — dj)

=t;j(A; — Ai-1 — B+ B;i_1)
+5i5(Cj — Cj—1— Dj + Dj1).
Taking summations over ¢ and j, we have

i i P(ai, c;) — i i P(bi, d;) — Ci i {(ai —bi)? + (¢ — dj)z}

i=1j=1 i=1j=1 i=175=1
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=3 tij(Ai— A1 —Bi+Bi1) + > Y si;(C; — Cjo1 — Dj + Dj_1)

i=175=1 i=1j=1
= Z {Ztlvj(Ai - BZ) Ztl](Az 1 — B 1)}
j=1ti=1 i=1
—1—2{237]0 - Dj) st j—1— Dj— 1)]
i=1 tj=1
m n—1 n
= Z {Z tij (Ai - Bl) ZtZJ(AZ 1— B 1)]
j=1‘ti=1 i=2
n m—1
+Z{ si,i(Cj — Dj) ZSZJ j—1— Dj— 1)]
i=1 " j=1
m rn—1 n—1
=) { tij(Ai— Bi) = > tiv1(Ai — Bi):|
j=1ti=1 i=1
n m—1 m—1
+ Z { 5i,j(Cj — Dj) — Z i j+1(Cj — Dj)]
i=1 " j=1 j=1
m n—1 n m—1
=S ) (- B+ [T i@ -] @9
j=1"i=1 i=1 " j=1

Since ¢ is a strongly convex function on I x I», therefore ¢ is a co-ordinate strongly convex
function on I; x Io. Therefore, ¢; ; is decreasing with respect to ¢ for each fix j and s; ; is
decreasing with respect to j for each fix 4. Thus ¢; j — t;41,; > 0 for all ¢ € {1,2,..,n — 1}
and s;j — s;j+1 > 0 for all j € {1,2...,m — 1}. From the definition of majorization we get
A;—B;>0foralli € {1,2,..,n—1} and C; — D; > 0 for all j € {1,2...,m — 1}. Therefore,
the right hand side of (2.6) is non-negative, hence we deduced

ZZ (as,¢j) ZZgb b, d;) —cZZ{(ai—bi)Q—l—(cj —dj)2} >0, (2.7)
=1j=1 i=1j=1 i=1j=1
which is equivalent to (2.1). O

Next, we prove some general inequality for strongly convex functions defined on rectan-
gles.

Theorem 2.2. Let I, Iy be any two intervals in R, a = (a1, a, ...,a,) and b = (b1, ba, ..., by)
be two n-tuples such that a;,b; € I (i =1,2,...,n), ¢ = (c1,¢2,...,¢m) and d = (dy, da, ..., dp,)
be two m-tuples such that cj,d;j € I (j = 1,2,..,m), and p = (p1,p2,...,pn) and w =
(w1, wa, ..., wy,) be any positive real n and m-tuples respectively. If ¢ : I1 x Ia — R is a
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strongly convex function, then the inequality

n

Zzple auc] Zzpzw](b bi,d; )

i=1j=1 i=1j=1
n m

EZZpiwjti( +ZZprJSJ —}—CZZpr]{ 2)2—{—(Cj_dj)2}'
i=1j=1 i=1j=1 i=1j=1

(2.8)
holds, where t; is the positive partial derivative of ¢ with respect to first variable at b; (i =
1,2,...,n) and s; is the positive partial derivative of ¢ with respect to second variable at
di (j=1,2,...,m).

Proof. Since ¢ : Iy x Is — R is a strongly convex function, therefore we have
6(z,y) = d(w, 2) > (Vo(w,2), (& —w,y — 2)) + e {(z = w)? + (y - 2)*},
for all (z,y), (w,z) € I x I, that is
¢(z,y) — o(w, 2)

2.9
> 02 (0, 2) (e — )+ 22w, 2y~ 2) + e { (e~ w4 (g - 22} =
Now, applying (2.9) by choosing x — a;, y = ¢j, w — b; and z — d;, we get
0(ai,¢j) = d(bid;) > tilas — ;) +55(c; — dj) + e{(a; = b:)* + (¢ — dj)*} . (210)
Multiplying both sides of (2.10) by p;w; and taking summation twice, we obtain inequality
(2.8). O

To give some majorizations type results with the help of above theorem are given in the
form of the following propositions.

Proposition 2.1. Let all the hypotheses of Theorem 2.2 hold and b, a-b and ¢, c-d be
monotonic in the same sense, such that

> aipi =Y bip; (2.11)
i=1 i=1
and
ZC]'ZU]' = Zdjwj. (212)
j=1 j=1
Then
33 pasolan ) > 33 pisotn ) 30 py {(as =0+ (e — ).
i=1j=1 i=1j=1 i=1j=1

(2.13)

Proof. Since ¢ is a strongly convex function on I; x Iy, therefore ¢ is a co-ordinate strongly
convex function on Iy x Ip. If b is an increasing n-tuple, then (¢, %9, ...,t,) is an increasing
n-tuple, where t; is the positive partial derivative of ¢ with respect to first variable at
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bi (i =1,2,...,n). If b and a-b are increasing n-tuples, then applying Chebyshev’s inequality
to first term on right hand side of (2.8) and using (2.11), we have

izn;]imwjti(ai— = lZPH a; — z]

Similarly, since ¢ is a co-ordinate strongly convex function on Iy x I». If d is an increasing m-

(2.14)

tuple, then (s1, s2, ..., sp,) is an increasing m-tuple, where s; is the positive partial derivative
of ¢ with respect to second variable at d; (j = 1,2,...,m). If d and c-d are increasing m-
tuples, then applying Chebyshev’s inequality to second term on right hand side of (2.8) and
using (2.12), we have

> piwsi(eg —di) =Y _pi | Y wys;le; - di)]
=1 =1 |j=1

=t

- (2.15)
n 1 m m
> pi W > wjs; Y wilej - dj)] =0.
=1 | ™ j=1 j=1
Using (2.14) and (2.15) in (2.8), we get inequality (2.13).
Similarly, we can prove inequality (2.13) in the remaining case. O

Remark 2.1. A strongly convex functions are said to be monotonic increasing, if it is mono-
tonic increasing with respect to its each variable.

Proposition 2.2. Let all the assumptions of Theorem 2.2 hold. Moreover, if ¢ : I; x I3 —>
R is an increasing strongly convex function and b, a-b and d, c-d are monotonic in the
same sense, such that

> aipi > bips (2.16)
=1 i=1
and
Z cjwj Z Z djwj. (217)
j=1 j=1

Then inequality (2.13) holds.

Proof. Since ¢ is an increasing function on I; x Iy, therefore ¢; > 0 (i = 1,2, ...,n), where t;
is the positive partial derivative of ¢ with respect to first variable at b; (i = 1,2, ...,n), thus

n
> piti > 0. (2.18)
=1

Using (2.16) and (2.18) in the right hand side of (2.14), we have

>3 puit(os —b) 2 (219)

i=1j
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Similarly, we have

n m
Z Zpiszj(cj - d]) > 0. (220)
i=1j=1
Using (2.19) and (2.20) in (2.8), we get (2.13).
Similarly, we can prove inequality (2.13) in the remaining cases. O

The following theorem is another weighted discrete version of majorization theorem.

Theorem 2.3. Let I, I, be two intervals in R and ¢ : I1 x I — R be a strongly convex
function. Also let a = (ay,as,...,ay) and b = (b1, by, ...,b,) be two n-tuples such that
ai, by € Iy (i =1,2,...,n), ¢ = (c1,¢2, ..., ) and d = (dy,ds, ...,dy,) be two m-tuples such
that cj,dj € I3 (j = 1,2,...,m), p = (p1,p2,-..,Pn) and w = (w1, wa, ..., wy) be two any
positive real n and m-tuples respectively, such that

k k

Zaipi > Zbipi for k=1,2,...,n—1, (2.21)
i=1 i=1

k k
chwj > Zdjwj for k=1,2,...m—1 (2.22)
i=1 i=1

and

n n
> aipi = bipi, (2.23)
=1 =1
m m
Z cjwj = Z djwj. (224)
=1 i=1

Then the following statements are true:

e (i) If b and d are decreasing n and m-tuples respectively, then

ZZpiquﬁ(ai,cj) > ZZplw]gb (bi, dj) + cZZplw] { —b;)? + (¢j — dj)2} .

i=1j=1 i=1j=1
(2.25)
e (ii) If a and c are increasing n and m-tuples respectively, then
n n m
Zzpzw]¢ blad > Zzple¢ alac_] + szpzwj { - bi)2 + (Cj - dj)z} :
i=17=1 i=17=1 i=17=1
(2.26)
Proof. For the proof, using Abel’s transformation. Let
k k
Ap = piai, Be=Y pibi, (k=1,2,...n); Ag=DB= (2.27)
i=1 i=1
and
k k
Ck = ijcj, Dk = ijdj, (k’ = 1,2, ...,m); CO = D() =0. (228)

j=1 j=1
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From (2.23) and (2.24), we have
A, = B, Cy, =D, (2.29)

Since ¢ is a strongly convex function on Iy x I, therefore ¢ is a co-ordinate strongly
convex function on I; x I. If b and d are decreasing n and m—tuples respectively, then
(t1,t2,...,ty) and (s1, S2, ..., Spm) are decreasing n and m—tuples respectively, where ¢; is the
positive partial derivative of ¢ with respect to first variable at b;(i = 1,2, ...,n) and s; is the

positive partial derivative of ¢ with respect to second variable at d;(j = 1,2,...,m). Using
(2.8), we have
n m

Zzpzw]¢ al7cj Zzple¢ b27d )

i=1j=1 i=1j=1
m n m

2 Z +ZZples] +cZZple{ )2—|-(Cj_dj)2}
j=1 i=1j=1 i=1j=1

n m

wj{zn;tl Dii — p”}—i-sz{Z (wjej — J)}
i— =1

1

n

Bi‘|’Bi71)} +sz[i«9g Ci—Cio1— D _Difl}
i=1

I
NE
E

M
i:
£>

J=1 i=1 i=1
+ciimwj{<az bi)* + (¢j — d;) }
i=1j=1
= iwj {zn:ti(Ai - B;) - zn:t (Aic1 — B, 1)}
=1 o i=1 =1
+ipi{i8j(ci—Di)—i 5;(Ci—1 — D 1}+czzpzw]{ 2)2+(Cj—dj)2}
=1 =1 j=1 i=1j=1
m n—1 n m—1
= ij[ (ti — tiv1)(As —Bz‘)] +sz[ > (55 — 5j41(Ci — D; )]
S I (2.30)
+szpiwa‘{(az—bz)2 (¢j —dj) }
i=1j=1

Since (ty,tg, ..., t,) and (81, S2, ..., S;,) are decreasing n and m—tuples respectively, therefore
ti—tiz1>0(=1,2,..,n—1)and s;—s511 >0 (j =1,2,..,m—1). Also from assumptions
(2.21) and (2.22), we have A;—B; >0 (i =1,2,...,n—1)and C;—D; > 0(j = 1,2,...,m—1).
Thus

fjwj[nf(tl tiv)( ]+znjpl[mzl j = sim(Ci = Dy)| > 0. (2.31)
j=1 i=1 = J=1

Using (2.31) in (2.30), we get inequality (2.25).
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Similarly, we can prove inequality (2.26) for the remaining cases. O

Now, to present another result for strongly convex functions and for arbitrary monotonic
tuples.

Theorem 2.4. Let all the assumptions of Theorem 2.2 hold. If b and a-b are monotonic
n-tuples in the same sense, and ¢ and c-d are monotonic m-tuples in the same sense. Then

n o m
Zzpiwj¢ al7c_7 Zzple¢ bl7d
i—1 j=1 i—1 j—1
1™
Z 5 Z w;piti sz ai = b) + 55— Zzpzwﬁj Zw] (2.32)
n =14 Wi, i=1j=1

where t; is the positive partial derivative of ¢ with respect to first variable at b;(i=1,2,...,n)
and s; is the partial positive derivative of ¢ with respect to second variable at d;j(j=1,2,...,m).

Proof. Tt follows from the proof of Proposition 2.1 that (¢1, 9, ..., t,) is an increasing n-tuple.
Now if b and a-b are monotonic increasing in mean by the report of p, then applying
Chebyshev’s inequality to first term on right hand side of (2.8), we have

z": ipiwjti(ai —b;) = lZPz i(a; — bi) ]

b)) =
i=1j=1 j=1

iwg[ Zp@ sz @—b] (2.33)

Y

<.
—_

n

Zzw]pzt sz a; —b;)

]:1 =1 =

$|H

Similarly, we have

Zn: ipiszj(cj - Z Z Piw;s; Z w;(c : (2.34)

i=1j=1 i=1j=1

Using (2.33) and (2.34) in (2.8), we get (2.32).
Similarly, we can prove inequality (2.32) in the remaining cases. O

Corollary 2.1. Assume that all the hypotheses of Theorem 2.4 hold. Additionally, if

Z a;p; = Z bipi (2.35)
and

ZC]'ZU]' = Zdjwj. (236)
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Then oo
Z Zp w](b a;, cj
e (2.37)
ZZZ iwid(bi, dj) —i—cZZple{ )2+(c]~—dj)2}.
i=1j=1 i=1j=1
Proof. Using (2.35) and (2.36) on the right hand side of (2.32), we have (2.37). O

In the following result, we obtain majorization inequality by using increasing strongly
convex function.

Corollary 2.2. Let all the assumptions of Theorem 2.4 hold. Moreover, if ¢ : I; xIa — R
s an increasing strongly convex function, such that

Z a;p; = Z bip; (238)

=1
and

ZC]'ZU]' Z Zdjwj. (239)

j=1 j=1
Then inequality (2.37) holds.

Proof. Since ¢ is an increasing function on I; x I, therefore t; > 0 (i = 1,2,...,n), s; >
0(j=1,2,...,n), where t; is positive partial derivative of ¢ with respect to first variable at
b; (1 =1,2,...,n) and s; is positive partial derivative of ¢ with respect to second variable
at d; (j =1,2,...,m), thus

n
> piti >0 (2.40)
and
m
> wjs; >0 (2.41)
Using (2.38), (2.39), (2.40)and (2.41) on the right hand side of (2.32), we have (2.37). O
The following lemma is given in [29].

Lemma 2.1. Let v be a positive real n—tuple. If x is an increasing real n—tuple, then

k n n k
invini < invini, k= 1,2,...,77,. (2.42)
i=1 i=1 i=1 i=1
If x is a decreasing real n—tuple, then the reverse inequality holds in (2.42).
If a = (a1,as,...,a,) and b = (b1, b2, ..., by ), then § = (3+, 32, ..., ).

Theorem 2.5. Let I, Is be any two intervals in R and ¢ : I; xIa — R be a strongly convex
functions. Also let a = (ay,az,...,a,) and b = (b1, bs,...,b,) be positive n-tuples such that
ai,b; € I1 (i =1,2,...,n), ¢ = (c1,¢2,...,¢p) and d = (dy,ds, ...,dy,) be positive m-tuples
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such that cj,d; € I (j = 1,2,...,m), and p = (p1,p2,....,Dn) and w = (w1, W2, ..., Wy,) be
any positive real n and m-tuples respectively.

If a/b and ¢/d are decreasing n and m-tuples respectively, then the following statements
are true:

e (i) If a is increasing n-tuple and c is increasing m-tuple, then

Zn:ipz'%% e >

i1 bipi g 1 wjd;

ZZZPi%’( nai —, ij , ) (2.43)

i=1DiG; Zj:l W;Cy

2

4 zn: i a; bl ? + Cj dj
Cc pPiw; - -
i=1j=1 B ?:1 piag Z?:l blpl 2_7;1 w;Cy Z;n:l wjdj

e (ii) If b is an decreasing n-tuple and d is an decreasing m-tuple, then

n m Ci
p’lw (b m .
;; ! < 1plal Zjlecj>
d.
> piw; ¢< s ) 9.44
Zzuzl ! 1blpl j=1 Wid; (2:44)

2 2
—|—C§ :E :plw - n + m : - m .
i=1j=1 j{( i=1Pil; Zi:l blpl) (Z]lecj Z]lw]d]> }

If a/b and c/d are increasing n and m-tuples respectively, then we have the following

statements:
e (iii) If b is increasing n-tuple and d is increasing m-tuple, then (2.44) holds.
e (i) If a is an decreasing n-tuple and c is an decreasing m-tuple, then (2.43) holds.

Proof. (i) Let a/b and c¢/d are decreasing n and m—tuples respectively. Then using Lemma
2.1 with
x=a/b, v=pb

we obtain

k n n k
Zaipi Zpibi > Zpiai Zpibi, k=1,2,...,n.
i=1 i=1 i=1 i=1
That is

k
bi
D > p'(i), k=1,2,...,n. 2.45
Z Z( — 1pzaz) ; ' 1 pibi ( )
Again using Lemma 2.1 with
x=c/d, v=dw

we obtain

k n n k
Z CijWj Z djwj > Z W;Cj Z wjdj, k= 1, 2, PR 11
=1 =1 =1 =1
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That is
k o k d.

W m7]> > w.<m7]>, k=1,2,..,m. (2.46)
2 ]<Zj1chj 2 i > e widy

From (2.45) and (2.46), we have

}:m( )=§ém(—7ﬁ——) (2.47)

1 piai/) = i—1DPibi

and

2)%(]1%%) 2)%(]1WM)' (2.48)

If a and c are increasing. Then using Theorem 2.3(i7) and the conditions (2.45) — (2.48) we
obtain inequality (2.43).
Similarly, we can prove the remaining cases. O

Theorem 2.6. Let ¢ : [0,00)x[0,00) — R be a strongly convex function, a = (a1, as, ..., ap)
and b= (b, ba, ..., b,) be positive n-tuples, ¢ = (c1, ¢, ..., ) and d = (dy,ds, ...,dy,) be pos-
itive m-tuples, and p = (p1,p2,...,Pn) and w = (w1, wa, ..., W) be any positive real n and
m-tuples respectively. Then the following statements are true:

e (i) If a is increasing concave n-tuple and c is increasing concave m-tuple, then

non -1 j—1
Zzplw]¢< 1pz(l—1) m . 1))

1=1j=1 jzle(]—
piw;¢ J
i:ljz::l o <Zn 1D Z?Llecj>
2 2
SE"\\Shpe” SEnG 1) T\SEwe  Shwl D

(2.49)
e (ii) If a is increasing convex n-tuple with a; = 0 and ¢ is increasing convex m-tuple
with ¢y = 0, then

3 prwye o~
i=1j=1 1p2a2 Zj:l ZU]C]

i—1 j—1
Zizzplw”(z”lpz( )’zgllwm—l))

n o m . 1 2 . 1 2
(073 17— Cj J—
c E E piw; - . + - .
i=1j=1 o { (Z?l pia; Z’anl pl(Z - 1)) (Z;nl w_]C] Z;nzl w](.] - 1)) }




MAJORIZATION TYPE INEQUALITIES FOR STRONGLY CONVEX FUNCTIONS 75

e (iii) If a is decreasing concave n-tuple and c¢ is decreasing concave m-tuple, then
n m . .
PO Y ] (Lt R L

et} n -\ 7 m .
. o — ) S wy(m =)

i J

o )

=1 Pii Dy wic;

2

+ ii < - no >2+< K iidt’ )
c Piw; - . - ‘
=1 =1 o mipiai Yo pi(n — 1) _] 1 WjCy Z;nzl w;(m — j)
(2.51)

e (iv) If a is decreasing convex n-tuple with a, = 0 and ¢ is decreasing convexr m-tuple
with ¢, = 0, then

ZZPw]¢< i1 Pia; chj j )

j=1W;jCj

ZZ piw ]¢< nlnpl_(z ), neJ )

Jj= le(m ])

2

n i i a; n—1 n cj m—7 ?
c piw; - . - .
=1 =1 © ipiai >y pi(n — 1) Z?Lﬂ w;cy Z?:l wj(m —J)

(2.52)

Proof. Let b = (by,bs,...,b,) and d = (dy,ds,...,dy,) be respectively the n- and m-tuples
such that by = € < ai/as,dy = 6 < c1/ca,b; =i —1fori=2,3,..,n,and d; = j — 1 for
j=2,3,...,m. Then a/b and c/d are decreasing n- and m-tuples, respectively. It follows
from Theorem 2.5 that

€ 1)
w B ) m -
P 1¢<6p1 + 2o (i = D)pi w10 + 3770 (f — 1)wj>

o i—1 j—1
+ piw;o T ; R
ZZ ’ <€P1+Zz=2(2—1)l)i w16+2j:2(]_1)wj>

1=2 j=2

non a; Ci ai €
ZZszwj < — >+Cp1w1{< - - —
=1 :

2

1 piai 25wy im1piai - €epr+ o pi(i — 1)

2
+ a 0
j=1 Wicj 5“)1"‘2?1:211)]‘(]'—1)
+szpw a; _ 7 —1
i=2j=2 o i1 Dia; 6p1—|—2?:2pi(i—1)

2
4 Cj _ j -1
Y wic;  dwy + 3Ty wi(m — )

2
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Taking € — 0 and § — 0,we obtain

N i—1 j—1
pono(0.0)+ 2 Zp’wf¢<ep1 I S (R PRI R v 1>wj>

1=2 j=2
2 2

n m
a; Cj al C1
> piw;o ) + cprwy = | t|l=wm——w
;]2 o < im1 Ditli Z?Llec]) i1 Diti D wic;

& a; i—1 ’
+c piw; L — :
;z:; ' J{ (Z?:ﬂ?iai ep1 + 2o pii — 1))

J
2

+ Cj _ ] -1
St wic;  Swr + 3o wi(j — 1)

=zzmwy¢( )

) m
=1 =1 im1 DiGi )i Wicj

2 2

n m . -
a; 1—1 cj 7j—1
+c Piw; - . + - .
Zzljzl ' ]{< im1piai Y pili — 1)) (Z;n1 wic; Y wi(d — 1)) }

This proves(2.49).

Similarly we can use Theorem (2.5) to prove the required result for the remaining cases.
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