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MONOTONICITY AND INEQUALITIES RELATED TO THE k-GAMMA
AND k-DIGAMMA FUNCTIONS

HUI WEN YIN1 AND LI YIN2

Abstract. In this paper, we mainly present some monotonicity and inequalities related
to the k-gamma and k-digamma functions.

1. Introduction

The Euler gamma function is defined all positive real numbers x by

Γ(x) =
∫ ∞

0
tx−1e−tdt.

The logarithmic derivative of Γ(x) is called the psi or digamma function. That is

ψ(x) = d

dx
ln Γ(x) = Γ′(x)

Γ(x) = −γ − 1
x

+
∞∑
n=1

x

n(n+ x) ,

where γ = 0.5772 . . . is the Euler-Mascheroni constant. The polygamma functions ψ(m)(x)
for m ∈ N are defined by

ψ(m)(x) = dm

dxm
ψ(x) = (−1)mm!

∞∑
n=0

1
(n+ x)m+1 , x > 0.

The gamma, digamma and polygamma functions play an important role in the theory
of special functions, and are closely related to factorial, fractional differential equations,
mathematical physics and crops up in many unexpected place in analysis. The reader may
see reference ([3]). Some of the work about origin, history, the complete monotonicity, and
inequalities of these special functions can be found in ([11], [18, 19]) and the references
therein.

In 2007, Díaz and Pariguan [4] defined the k−analogue of the gamma function for k > 0
and x > 0 as

Γk(x) =
∫ ∞

0
tx−1e−

tk

k dt = lim
n→∞

n!kn(nk)
x
k
−1

x(x+ k) · · · (x+ (n− 1)k) ,
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where limk→1 Γk(x) = Γ(x). Similarly, we may define the k−analogue of the digamma and
polygamma functions as

ψk(x) = d

dx
ln Γk(x) and ψ

(m)
k (x) = dm

dxm
ψk(x).

It is well known that the k−analogues of the digamma and polygamma functions satisfy
the following recursive formula and series identities (See [4, 12–14,20]).

Γk(x+ k) = xΓk(x), x > 0, (1.1)

ψk(x) = ln k−γ
k − 1

x +
∑∞
n=1

x
nk(nk+x)

= ln k−γ
k +

∫∞
0

e−kt−e−xt

1−e−kt dt,

= ln k−γ
k +

∫ 1
0
tk−1−tx−1

1−tk dt,

(1.2)

and
ψ

(m)
k (x) = (−1)m+1m!

∑∞
n=0

1
(nk+x)m+1

= (−1)m+1 ∫∞
0

1
1−e−kt t

me−xtdt.
(1.3)

In particular, more properties of the functions ψk(x) and ψ(m)
k (x) can be found in [14,20]. It’s

worth noting that many mathematicians have studied k-generalizations look like the above
form, such as k-hypergeometric function, k-hypergeometric differential equations, Appell
k-series, k-functions, Kummar k-confluent hypergeometric function, Riemann-Liouville k-
and Hadamard k-fractional derivatives, (k, ρ)-fractional integral operator et. al. The readers
may refer to references [6–10,15–17].

The following recurrence and asymptotic formulas are often encountered in the literature:

ψk
(m)(x+ k) = ψk

(m)(x) + (−1)m m!
xm+1 (x > 0,m = 0, 1 . . . . . .). (1.4)

In [2], Alzer obtained some inequalities for the gamma and polygamma functions. Later,
in [1], Alzer proved the following extension of this result. Let M [r]

n (xj , pj) be the weighted
power mean of x1, . . . , xn of order r. The inequality

Γ
(
M [r]
n (xj , pj)

)
≤M [r]

n (Γ(xj), pj)

holds for all xj > 0 and pj > 0, j = 1, 2 . . . , n, n ≥ 2 with
n∑
j=1

pj = 1 if and only if

0.01317 . . . ≤ r ≤ 11.29416 . . . . It is natural to look for an extension of these results to
k-gamma and k-digamma functions. This is the main object of this paper.

2. Lemmas

Lemma 2.1. Let gk(x) = kxψk(kx)− x log(k) and let γ = 0.57721... be Euler-Mascheroni
constant.

(1) g′′k is strictly completely monotonic on (0,∞).
(2) g′k is strictly increasing on (0,∞) with g′k(0+) = −γ and lim

x→∞
g
′
k(x) =∞. The only

positive zero of gk is given by r0 = 0.21609....
(3)gk is strictly decreasing on (0, r0] and strictly increasing on [r0,∞) with gk(0+) = −1

and lim
x→∞

gk(x) =∞.The only positive zero of g′k is given by r1 = 1.46163....
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Proof. (1) Applying the series representation

ψ(m)
k

(x) = (−1)m+1m!
∞∑
v=0

1
(kv+x)m+1 , x > 0, k > 0,m = 1, 2 . . . ,

we obtain for x > 0, k > 0 and n ≥ 2:

(−1)n(g′′k (x))(n) = nkn(−1)nψ(n−1)
k (kx)− kn+1(−1)n+1xψ

(n)
k (kx)

= knn!
∞∑
v=0

kv
(kv+kx)n+1 > 0.

(2) We have g′′k (x) > 0 for x > 0 and k > 0, so that g′k is strictly increasing on (0,∞).
Applying the recurrence formulas

ψk(kx) = ψk(kx+ k)− 1
kx

(2.1)

and
ψ
′
k(kx) = ψ

′
k(kx+ k) + 1

(kx)2 ,

we get g′k(x) = kψk(kx+ k) + k2xψ
′
k(kx+ k)− log(k), which leads to

g
′
k(0+) = kψk(k)− log(k) = −γ. Moreover, since ψ′k is positive on (0,∞) and

kψk(kx) = log(k) +O( 1
x

)(x→∞), (2.2)

we have lim
x→∞

g
′
k(x) = lim

x→∞
(kψk(kx+ k) + xψ

′
k(kx+ k)− log(k)) =∞.

(3) The function g′k is negative on (0, r0) and positive on (r0,∞), where r0 = 0.21609... is
the only positive solution of kψk(kx+ k) + xψ

′
k(kx+ k)− log(k) = 0. From (2.1) and (2.2)

we obtain gk(0+) = −1 and lim
x→∞

gk(x) =∞. �

Lemma 2.2. The function

vk(x) = kψk(kx)− log(k)− x(kψk(kx)− log(k))2

is negative on (0, r1) ∪ (r2,∞) and positive on (r1, r2). Here, r1 = 1.46163... is the only
positive solution of kψk(kx) − log(k) = 0, and r2 = 2.08907... is the only positive solution
of x(kψk(kx)− log(k)) = 1.

Proof. Let hk(x) = 1 − x(kψk(kx) − log(k)). From Lemma 2.1, (3) we conclude that hk
is strictly increasing on (0, r0) and strictly decreasing on (r0,∞) with hk(0+) = 2 and
lim
x→∞

hk(x) = −∞. This implies that hk is positive on (0, r2) and negative on (r2,∞). Thus,
we get: if 0 < x < r1 or x > r2, then vk(x) = kψk(kx)− log(k)− x(kψk(kx)− log(k))2 < 0;
and, if r1 < x < r2, then vk(x) = kψk(kx)− log(k)− x(kψk(kx)− log(k))2 > 0. �

Lemma 2.3. Let wk(x) = k2x2ψ
′
k(kx). The function w′′k is strictly completely monotonic

on (0,∞).

Proof. Let x > 0, k > 0 and n ≥ 2. A simple calculation gives

w
(n)
k (x) = n(n− 1)knψ(n−1)

k (kx) + 2nkn+1xψ
(n)
k (kx) + kn+2x2ψ

(n+1)
k (kx).

Using the integral representation
ψ(m)

k
(x) = (−1)m+1 ∫∞

0 e−xt tm

1−e−ktdtx > 0, k > 0,m = 1, 2 . . . ,
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and the convolution theorem for Laplace transforms we obtain
1

kn+2x2 (−1)nw(n)
k (x) =

∫ ∞
0

e−ktxδn,k(t)dt, (2.3)

where

δn,k(t) = n(n− 1)t
∫ t

0

sn−1

1− e−ksds− n(n+ 1)
∫ t

0

sn

1− e−ksds+ tn+1

1− e−kt .

Differentiation yields

δ
′

n,k
(t) = n(n− 1)t

∫ t

0

sn−1

1− e−ksds−
(n− 1)tn(1− e−kt) + tn+1ke−kt

(1− e−kt)2

and
1
k
e2ktt−n(1− e−kt)3δ

′′

n,k
(t) = 2 + kt+ (kt− 2)ekt =

∞∑
v=3

(v − 2)(kt)v

v! .

We have δn,k(0+) = δ
′
n.k(0+) = 0 and δ′′n.k(t) > 0 for t > 0. This implies that δn,k is positive

on (0,∞), so that (2.3) leads to (−1)nw(n)
k (x) > 0 for x > 0 and k > 0. �

Lemma 2.4. Let

fk(x) = kψk(kx)− log(x) + xk2ψ
′
k(kx)

kψk(kx)− log(x)− x(kψk(kx)− log(x))2 ,

and let r0, r1, r2 be defined as in Lemma 2.1 and Lemma 2.2, respectively. Then we have
sup

0<x<r0
fk(x) = 0.01317... and inf

r1<x<r2
fk(x) = 11.29416....

There exists precisely one number x0 ∈ (0, r0) with fk(x0) = sup
0<x<r0

fk(x), and there exists

precisely one number y0 ∈ (r1, r2) with fk(y0) = inf
r1<x<r2

fk(x).

Proof. Let x > 0, k > 0 and c ∈ R, and Qc,k(x) = (1− c)gk(x) + c(gk(x))2 +wk(x) where gk
and wk are defined in Lemma 2.1 and Lemma 2.3, respectively. We distinguish two cases.

Case 1. c = 0.013179 and x ∈ (0, r0). Differentiation gives

Q
′′
c,k(x) = (1− c)g′′

k
(x) + 2c[(g′

k
(x))2 + gk(x)g′′

k
(x)] + w

′′

k
(x) (2.4)

From Lemma 2.1, (1), (3) and Lemma 2.3 we obtain

Q
′′
c,k(x) > [1− c+ 2cgk(x)]g′′

k
(x) > [1− c+ 2cgk(r0)]g′′

k
(x) > 0.95g′′

k
(x) > 0.

Hence, Qc,k is strictly convex on (0, r0). Let x1 = 0.100205 and x2 = 0.100209. We have
Q′c,k(x1) < 0 < Q′c,k(x2). Thus, there exists a number z0 ∈ (x1, x2) such that

Qc,k(x) ≥ Qc,k(z0) (0 < x < r0, k > 0) .

Since
Qc,k(z0) > Qc,k(x1) + (x2 − x1)Q′c,k(x1) = 0.000014...,

we conclude that Qc,k is positive on (0, r0). This leads to

fk(x) < c = 0.013179 (0 < x < r0, k > 0) .
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Since fk(0.100208) = 0.013172..., we obtain

sup
0<x<r0

fk(x) = 0.01317....

Let c0 = sup
0<x<r0

fk(x). We have fk(0+) = fk(r0) = 0, which implies that there exists a

number x0 ∈ (0, r0) with fk(x0) = c0. We assume that there exists a number x∗0 ∈ (0, r0)
such that x∗0 6= x0 and fk(x∗0) = c0. Then we get

Qc0,k(x) ≥ 0 = Qc0,k(x0) = Qc0,k(x∗0) (2.5)

Since c0 ≤ 0.01318 = c′ we obtain from (2.4):

Q
′′

c0,k
(x) > [1− c0 + 2c0gk(r0)]g′′

k
(x) ≥ [1− c′ + 2c′gk(r0)]g′′

k
(x) > 0.95g′′

k
(x) > 0.

Thus, Qc0,k is non-negative and strictly convex on (0, r0), so that (2.5) gives x0 = x∗0.
Case 2. c = 11.29416 and x ∈ (r1, r2). From Lemma 2.1, (1), (3) and Lemma 2.3 we get

Q
′′

c,k
(x) > (1− c)g′′

k
(x) + 2c(g′

k
(x))2 = lc,k(x),

say.
Lemma 2.1 implies that lc,k is strictly increasing on [r0,∞). Hence, we get

Q
′′

c,k
(x) > lc,k(x) > lc,k(1.4616) = 38.58....

We set x∗1 = 1.74747 and x∗2 = 1747471. Then we have Q′
c,k

(x∗1) < 0 < Q
′

c,k
(x∗2). This

implies that there exists a number z∗0 ∈ (x∗1, x∗2) such that Qc,k attains its absolute minimum
at z∗0. The strict convexity of Qc,k yields

Qc,k(z∗0) > Qc,k(x∗1) + (x∗2 − x∗1)Q′
c,k

(x∗1) = 0.0000016....

Hence, Qc,k is positive on (r1, r2). Applying Lemma 2.2 we get

fk(x) > c = 11.29416 (r1 < x < r2, k > 0)

Since fk(1.747471) = 11.294166..., we obtain

inf
r1<x<r2

fk(x) = 11.29416....

Let c1 = inf
r1<x<r2

fk(x). We have fk > 0 on (r1, r2) and fk(r+
1 ) = fk(r−2 ) =∞. This implies

that there exists a number y0 ∈ (r1, r2) with fk(y0) = c1. We suppose that there exists a
number y∗0 ∈ (r1, r2) such that y∗0 6= y0 and fk(y∗0 ) = c1. Then we obtain

Qc1,k(x) ≥ 0 = Qc1,k(y∗0 ) = Qc1,k(y0) (r1 < x < r2, k > 0) (2.6)

We have
Q
′′

c1,k
(x) > (1− c1)g′′

k
(x) + 2c1(g′

k
(x))2 = lc1,k(x) > lc1,k(r∗),

where r∗ = 1.4616. Since (∂/∂t)lt,k(r∗) = −g′′
k
(r∗) + 2(g′

k
(r∗))2 = 3.35..., we conclude from

c1 ≥ c that lc1,k(r∗) ≥ lc,k(r∗) = 38.5... . Therefore, Qc1,k is strictly convex and non-negative
on (r1, r2). From (2.6) we get y∗0 = y0. �

Lemma 2.5. ([5]) Let u ∈ C1(0,∞) with u(1) = 0 and v ∈ C1(0,∞) such that v < 0 on
(0, 1), v > 0 on (1,∞) and v′ > 0 on (0,∞). If u′/v′ is strictly increasing on (0,∞), then
u/v is also strictly increasing on (0,∞).
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3. Main results

In the section, we denote by r0 = 0.21609... the only positive solution of kψk(kx)−log(k)+
xk2ψ

′
k(kx) = 0; r1 = 1.46163... is the only positive zero of ψk, and r2 = 2.08907... is the

only positive solution of kxψk(kx)− x log(k) = 1. Our results read as follows.

Theorem 3.1. Let r be a real number, k > 0 and let n ≥ 2 be an integer. The inequality
1

kMn[r](xj ,pj)−1
Γk(kMn[r](xj , pj)) ≤Mn[r]( 1

kxj−1 Γk(kxj), pj) (3.1)

holds for all positive real numbers xj and pj(j = 1, ..., n) with
n∑
j=1

pj = 1 if and only if

α ≤ r ≤ β, (3.2)

where
M

[r]
n (xj , pj) = (

n∑
j=1

pjx
r
j)1/r (r 6= 0),

and

α = sup
0<x<r0

kψk(kx)− log(k) + xk2ψ
′
k(kx)

kψk(kx)− log(k) + x(kψk(kx)− log(k))2 , (3.3)

β = inf
r1<x<r2

kψk(kx)− log(k) + xk2ψ
′
k(kx)

kψk(kx)− log(k) + x(kψk(kx)− log(k))2 . (3.4)

Let α ≤ r ≤ β; then the sign of equality is valid in (3.1) if and only if x1 = ... = xn.

Proof. First, we assume that r ∈ [α, β], where α and β are given in (3.3) and (3.4), respec-
tively. In order to prove (3.1) we may suppose that

0 <xn ≤ xn−1 ≤ ... ≤ x2 ≤ x1, xn < x1. (3.5)

We define

Fk(x1, ..., xn) =
n∑
j=1

pj(
1

kxj−1 Γk(kxj))
r

− [ 1
kMn[r](xj ,pj)−1

Γk(k
n∑
j=1

pjx
r
j
)1/r)]r

and
Fk,q(x) = Fk(x, ..., x, xq+1, ..., xn) (q ∈ {1, ..., n− 1})

In what follows, we establish that Fk,q is strictly increasing on [xq+1,∞). Since Fk,q−1(xq) =
Fk,q(xq) for q = 2, ..., n− 1, we obtain from (3.5) that

Fk(x1, ..., xn) = Fk,1(1) ≥ Fk,1(2) = Fk,2(2) ≥ Fk,2(3)
≥ ... ≥ Fk,n−1(xn−1) ≥ Fk,n−1(xn) = Fk(xn, ..., xn) = 0 (3.6)

Moreover, since Fk,q is strictly monotonic, we conclude from x1 > xn that at least one of
the inequalities in (3.6) is strict. Hence, we get (3.1) with "<" instead of "≤".

It remains to prove that F ′k,q(x) > 0 for x > xq+1. Let

Gk(x) = x1−r(Γk(kx)
kx−1 )r−1kΓ′

k
(kx)− ln kΓk(kx)

kx−1
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and

y = (xr
p∑
j=1

pj +
n∑

j=p+1
pjx

r
j
)

1
r .

Then we obtain
1
r

(
p∑
j=1

pj)−1x1−rF
′
k,q(x) = Gk(x)−Gk(y). (3.7)

Differentiation gives

xr(Γk(kx)
kx−1 )−rG′

k
(x) = uk(x)− rvk(x) (3.8)

where
uk(x) = kψk(kx)− log(k) + xk2ψ

′

k
(kx)

and
vk(x) = kψk(kx)− log(k)− x(kψk(kx)− log(k))2.

Let fk, x0 and y0 be as in Lemma 2.4. We consider three cases.
Case 1. 0 < x < x0 or x0 < x < r0. Applying Lemma 2.2 and Lemma 2.4 we get

vk(x) < 0 and r ≥ sup
0<t<r0

fk(t) > fk(x) = uk(x)
vk(x) (3.9)

so that (3.9) implies uk(x)− rvk(x) > 0.
Case 2. r0 < x < r1 or x > r2. From Lemma 2.1, (2) and Lemma 2.2 we conclude that

vk(x) < uk(x) = d

dx
(x(kψk(kx)− log(k))).

Hence, we have uk(x)− rvk(x) > 0.
Case 3. r1 < x < y0 or y0 < x < r2. Lemma 2.2 and Lemma 2.4 give

vk(x) > 0 and r ≤ inf
r1<t<r2

fk(t) < fk(x) = uk(x)
vk(x) ,

so that we obtain again uk(x)− rvk(x) > 0.
Thus, we conclude from (3.8) that G′

k
(x) > 0 for x ∈ (0,∞) − {x0, r0, r1, y0, r2}, which

implies that Gk is strictly increasing on (0,∞). Since 0 < xn ≤ xn−1 ≤ ... ≤ xq+1 < x, we
have

y = (xr
q∑
j=1

pj +
n∑

j=q+1
pjx

r
j
)

1
r < x and Gk(y) < Gk(x),

so that (3.7) leads to F ′k,q(x) > 0.
Now, we assume that (3.1) is valid for all xj > 0 and weights pj(j = 1, ..., n). We conclude

that r 6= 0,(see [1, p.2]). We set x1 = x and x2 = ... = xn = y. Then we obtain

k1−[p1xr+(1−p1)yr)]1/r Γk(k(p1x
r + (1− p1)yr)1/r)

≤ [p1(k1−xΓk(kx))r + (1− p1)(k1−yΓk(ky))r]1/r
(3.10)

Let r < 0. If x tends to 0, then (3.10) yields ∞ ≤ (1 − p1)rk1−yΓk(ky). Thus, we have
r > 0. We define for k, x, y > 0:

Hk(x, y) = p1(k1−xΓk(kx))r + (1− p1)(k1−yΓk(ky))r

−[k1−[p1xr+(1−p1)yr)]1/r Γk(k(p1x
r + (1− p1)yr)1/r]r.
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From (3.10) we get Hk(x, y) ≥ 0 = Hk(y, y). Since ∂
∂xHk(x, y)

∣∣∣
x=y

= 0, we obtain

0 ≤ ∂2Hk(x, y)
∂x2

∣∣∣∣∣
x=y

= (1− p1)p1ry
−1(k1−yΓk(ky))r[uk(y)− rvk(y)] (3.11)

We consider two cases.
Case 1. y = x0. Then (3.11) implies

0 ≤ uk(x0)− rvk(x0) = vk(x0)( sup
0<x<r0

fk(x)− r)

Lemma 2.2 yields vk(x0) < 0, so that we get sup
0<x<r0

fk(x) ≤ r.

Case 2. y = y0. Then we conclude from (3.11) that

0 ≤ uk(y0)− rvk(y0) = vk(y0)( inf
r1<x<r2

fk(x)− r)

Since vk(y0) > 0, we obtain r ≤ inf
r1<x<r2

fk(x). This completes the proof of the Theorem. �

Theorem 3.2. The function fk(x) = log(Γk(kx + k)/kx)/(x log(x)) is strictly increasing
on (0,∞).

Proof. We define for x > 0 and k > 0:

uk(x) = 1
x log(Γk(kx+ k)/kx) and v(x) = log(x).

Moreover, let

wk(x) = x2(u
′
k(x)
v′(x) )′ = k2x2ψ

′
k(kx+ k)− kxψk(kx+ k) + log(Γk(kx+ k))

Using the integral representations

ψ
′
k(z) =

∫∞
0 e−zt t

1−e−ktdt, ψ
′′
k (z) = −

∫∞
0 e−zt t2

1−e−ktdt

and
1
z

=
∫ ∞

0
e−ztdt

z > 0, k > 0, and the convolution theorem for Laplace transforms, we obtain for x > 0 and
k > 0:

1
k3x2w

′

k
(x) = 1

kx
ψ
′
k(kx+ k) + ψ

′′
k (kx+ k) =

∫ ∞
0

e−kxthk(t)dt

where
hk(t) =

∫ ∞
0

s

eks − 1 −
t

ekt − 1ds

Since x 7→ x/(ekx − 1) is strictly decreasing on (0,∞), we get hk(t) > 0(t > 0, k > 0),
and, hence, w′

k
(x) > 0 and wk(x) > wk(0) = 0(x > 0, k > 0). This implies that u

′
k

v′
is

strictly increasing on (0,∞). From the Lemma 2.5 we conclude that fk = uk
v is also strictly

increasing on (0,∞). �
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Theorem 3.3. Let n ≥ 0 be an integer and let s ∈ (0, 1), k > 0 be a real number. Then we
have for all real numbers x > 0:

n!(1− s)
[x+ αn,k(s)]n+1 < (−1)n[kn+1ψ

(n)
k (kx+k)−kn+1ψ

(n)
k (kx+ks)] < n!(1− s)

[x+ βn,k(s)]n+1 (3.12)

with the best possible constants

αn,k(s) = ( n!(1−s)
(−1)n[kn+1ψ

(n)
k

(k)−kn+1ψ
(n)
k

(ks)]
)1/(n+1) and βn,k(s) = s

2 . (3.13)

Proof. Let s ∈ (0, 1) be a (fixed) real number. We denote by fn,k the function

fn,k(x) = [ ∆n,k(x)
n!(1− s) ]−1/(n+1) − x

where
∆n,k(x) = (−1)n[kn+1ψ

(n)
k (kx+ k)− kn+1ψ

(n)
k (kx+ ks)]

We shall prove that
lim
x→∞

fn,k(x) = s

2 (3.14)

and that fn,k is strictly decreasing on (0,∞). This implies
s

2 < fn,k(x) < fn,k(0)

(x > 0), which is equivalent to double-inequality (3.12) with αn,k(s) and βn,k(s) given in
(3.13) Moreover, we conclude that these constants are best possible.

From the asymptotic formula

kψk(kx) = log(kx)− 1
2x −

1
12x2 +O(x−4)

(x→∞), we get

ψk(kx+ k)− ψk(kx+ ks) = 1− s
x
− s(1− s)

2(x+ s)(x+ 1) +O(x−3) (3.15)

This leads to

f0,k(x) =
1
2sx

2(x+ s)−1(x+ 1)−1 +O(x−1)
1 +O(x−1)

which implies (3.14) for n = 0. Let n ≥ 1; from

kn+1ψ
(n)
k (kx) = (−1)n−1[(n− 1)!x−n + 1

2n!x−n−1 + 1
12(n+ 1)!x−n−2 +O(x−n−3)]

(x→∞), we obtain

xn+1 ∆n,k(x)
n!(1− s) =

1 + 1
2(n− 1)(1 + s) 1

x +O(x−2)
1 + n(1 + s) 1

x +O(x−2)
+

1
2(n+ 1) 1

x +O(x−2)
1 + (n+ 1)(1 + s) 1

x +O(x−2)
+O(x−2)

(3.16)
This implies

fn,k(x) =
(1− s

2(n+ 1) 1
x +O(x−2))−1/n+1 − 1

1/x (3.17)
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From (3.17) we conclude lim
x→∞

fn,k(x) = s
2 , which proves (3.14) for n ≥ 1. It remains to

establish that

(∆n,k(x))
1

n+1 +1f
′
n,k(x) = 1

n+ 1[n!(1− s)]
1

n+1 ∆n+1,k(x)− (∆n,k(x))
1

n+1 +1 < 0 (3.18)

To prove (3.18) for x > 0, k > 0 it suffices to show that the function

gn,k(x) = − log(n!(1− s)) + (n+ 1) log(n+ 1)− (n+ 1) log(∆n+1,k(x)) + (n+ 2) log(∆n,k(x))

is positive on (0,∞). From (3.15) and (3.16) we get for n ≥ 0 :

lim
x→∞

xn+1∆n,k(x) = n!(1− s), (3.19)

which implies lim
x→∞

gn,k(x) = 0. Therefore, it is enough to establish that gn,k is strictly
decreasing on (0,∞). The inequality g′

n,k
(x) < 0 is equivalent to

(n+ 2)(∆n+1,k(x))2 > (n+ 1)∆n+2,k(x)∆n,k(x) (3.20)

We set

uk(t) = e−kst − e−kt

1− e−kt

(t > 0, k > 0) and make use of the integral representation

ψ
(m)
k (z) = (−1)m+1

∫ ∞
0

1
1− e−kt t

me−ztdt

(z > 0, k > 0). Then we get

(∆n+1,k(x))2 = (kn+2 ∫∞
0 e−kxttn+1uk(t)dt)2

= k2n+4 ∫∞
0 e−kxt(tn+1uk(t)) ∗ (tn+1uk(t))dt

where * denotes Laplace convolution. Moreover, we obtain

∆n+2,k(x)∆n,k(x) = k2n+4 ∫∞
0 e−kxttn+2uk(t)dt

∫∞
0 e−kxttnuk(t)dt

= k2n+4 ∫∞
0 e−kxt(tn+2uk(t)) ∗ (tnuk(t))dt

Thus, to prove (3.20) it suffices to show that the following inequality holds for (t > 0, k > 0):

(n+ 2)(tn+1uk(t)) ∗ (tn+1uk(t))− (n+ 1)(tn+2uk(t)) ∗ (tnuk(t))
=
∫ t

0 uk(t− x)uk(x)(t− x)nxn+1[t(n+ 2)− (2n+ 3)x]dx > 0 (3.21)

We denote the integral in (3.21) by Ik(t) and we set Pa,k(y) = uk(a(1− y))uk(a(1 + y)).
Next, we change the variable, x = t

2(1 + y), and take into account that y 7→ P t
2 ,k

(y)(1−
y2)ny is an odd function. Then we get

Ik(t) = ( t2)2n+3 ∫ 1
−1 P t

2 ,k
(y)(1− y2)n[1− 2(n+ 1)y − (2n+ 3)y2]dy

= 2( t2)2n+3 ∫ 1
0 P t

2 ,k
(y)(1− y2)n[1− (2n+ 3)y2]dy
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We shall prove that y 7→ Pa,k(y)(a > 0, k > 0) is strictly decreasing on (0, 1). We set
c = (2n+ 3)−

1
2 ; then we obtain

Ik(t)4n+1t−(2n+3) =
∫ c

0 P t
2 ,k

(y)(1− y2)n[1− (yc )2]dy
+
∫ 1
c P t

2 ,k
(y)(1− y2)n[1− (yc )2]dy

> P t
2 ,k

(c)[
∫ c

0 (1− y2)n[1− (yc )2]dy
+
∫ 1
c (1− y2)n[1− (yc )2]dy]

= P t
2 ,k

(c)[
∫ 1

0 (1− y2)n[1− (2n+ 3)y2]dy
= P t

2 ,k
(c)[y(1− y2)n+1]|10 = 0

It remains to prove that
P
′
a,k(y) < 0 (3.22)

(y ∈ (0, 1)). We set
Qa,k(x) = log(uk(ax));

then we have
P
′
a,k(y) = Pa,k(y)[−Q′

a,k
(1− y) +Q

′

a,k
(1 + y)]

Hence, to establish (3.22) it suffices to show that x 7→ Qa,k(x) is strictly concave on (0,∞).
Elementary calculations reveal that the inequality

Q
′′

a,k
(x) = (a/uk(ax))2[uk(ax)u′′

k
(ax)− (u′

k
(ax))2] < 0

is equivalent to
0 < b2z2 − z1+b − 2(b2 − 1)z − z1−b + b2 = Rb(z) (3.23)

say, where z > 1 and b ∈ (0, 1). From

Rb(1) = R
′

b
(1) = R

′′

b
(1) = 0

and
R
′′′

b
(z) = b(1− b2)z−b−2(z2b − 1) > 0

we conclude the validity of inequality (3.23). This completes the proof of Theorem 3.3. �

Theorem 3.4. For all integers n ≥ 1, we have
1

2(n+ a) ≤ dn,k − C <
1

2(n+ b) , (3.24)

with the best possible constants

a = 1
2(1−C) − 1 = 0.1826... and b =1

6

where dn,k = kψk(kn+ k)− log(kn) + C

Proof. Since
dn,k − C = kψk(kn+ k)− log(kn)

double-inequality (3.24) can be written as

b <
1
2

1
kψk(kn+ k)− log(kn) − n ≤ a (3.25)
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In order to prove (3.25) we define for positive real x:

fk(x) = 1
2

1
kψk(kx+ k)− log(kx) − x

Differentiation yields

f
′

k
(x)[kψk(kx+ k)− log(kx)]2 = 1

2 [ 1
x − k

2ψ
′

k
(kx+ k)]− [kψk(kx+ k)− log(kx)]2

= 1
2 [ 1
x + 1

x2 − k2ψ
′

k
(kx)]− [kψk(kx) + 1

x − log(kx)]2 .

Using the inequalities

kψk(kx) > log(kx)− 1
2x −

1
12x2

and

k2ψ
′

k
(kx) > 1

x
+ 1

2x2 + 1
6x3 −

1
30x5

(x > 0, k > 0), we obtain for x ≥ 2.4:

f
′

k
(x)[kψk(kx+ k)− log(kx)]2 < 1

144x5 (2.4− x) ≤ 0 (3.26)

From (3.26) and fk(1) = 0.182..., fk(2) = 0.177..., fk(3) = 0.174..., we conclude that the
sequence fk(n) = 1

2(dn,k−C) − n(n = 1, 2, ...) is strictly decreasing. This leads to

lim
m→∞

fk(m) < fk(n) ≤ fk(1) = 1
2(1− C) − 1

(n = 1, 2, ...). It remains to prove that

lim
m→∞

fk(m) = 1
6 (3.27)

From the representation

kψk(kx) = log(kx)− 1
2x −

1
12x2 +O(x−4)

(x→∞), we get

fk(x) = (1
6 +O(x−2))/(1 +O(x−1))

which implies (3.27). This completes the proof of Theorem 3.4. �
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