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TWO SUBCLASSES OF ANALYTIC FUNCTIONS ASSOCIATED WITH
POISSON DISTRIBUTION

BASEM FRASIN1

Abstract. In the present paper, we determine necessary and sufficient conditions for two
subclasses of analytic functions with negative coefficients. Further, we consider an integral
operator related to Poisson distribution series.

1. Introduction and definitions

Let A denote the class of the normalized functions of the form

f(z) = z +
∞∑
n=2

anz
n, (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Further, let T be a subclass
of A consisting of functions of the form,

f(z) = z −
∞∑
n=2
|an| zn, z ∈ U. (1.2)

For some 0 ≤ α < 1 and βj > 0, j = 1, 2, · · · , k, and functions of the form (1.2), we let
H(β1, β1, . . . , βk;α) be the subclass of A satisfying the analytic criteria

R

{
f(z)
z

+ β1z(
f(z)
z

)′ + β2z
2(f(z)

z
)′′ + · · ·+ βkz

k(f(z)
z

)(k)
}
> α (z ∈ U), (1.3)

and also, let G(β1, β1, . . . , βk;α) be the subclass of A satisfying the analytic criteria

R
{
f ′(z) + β1zf

′′(z) + β2z
2f ′′′(z) + · · ·+ βkz

kf (k+1)(z)
}
> α (z ∈ U). (1.4)

Also denote HT(β1, β1, . . . , βk;α) = H(β1, β1, . . . , βk;α)∩ T and GT(β1, β1, . . . , βk;α) =
G(β1, β1, . . . , βk;α)∩ T the subclasses of T.

The classes H(β1, β1, . . . , βk;α) and G(β1, β1, . . . , βk;α) were introduced by Frasin [7]. In
particular, the class H(0, 0, . . . , 0;α) = B(α) was studied by Chen [2,3] and Goal [11], and
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the class G(0, 0, . . . , 0;α) = C(α) was studied by Sarangi and Uralegaddi [23], Owa and
Uralegaddi [21], and Srivastava and Owa [24] (see also, [6]).

A function f ∈ A is said to be in the class Rτ (A,B),τ ∈ C\{0}, −1 ≤ B < A ≤ 1, if it
satisfies the inequality ∣∣∣∣ f ′(z)− 1

(A−B)τ −B[f ′(z)− 1]

∣∣∣∣ < 1, z ∈ U.

This class was introduced by Dixit and Pal [5].
The Poisson distribution, derived in 1837 by a French mathematician Siméon Denis

Poisson, is a discrete probability distribution that is used to express the probability of
observing a number of events in a given interval of time or space if these events occur with
a known average rate and independently of the time since the last event.

A variable X is said to be Poisson distributed if it takes the values 0, 1, 2, 3, · · · with
probabilities e−m, m e−m

1! , m2 e−m

2! , m3 e−m

3! , · · · respectively, where m is called the parameter.
Thus

P (X = r) = mre−m

r! , r = 0, 1, 2, 3, · · · .

In [18], Porwal (see also, [15, 17]) introduced a power series whose coefficients are proba-
bilities of Poisson distribution

K(m, z) = z +
∞∑
n=2

mn−1

(n− 1)!e
−mzn, z ∈ U,

where m > 0. By ratio test the radius of convergence of above series is infinity. In [18],
Porwal also defined the series

F(m, z) = 2z −K(m, z) = z −
∞∑
n=2

mn−1

(n− 1)!e
−mzn, z ∈ U.

Using the Hadamard product, Porwal and Kumar [20] introduced a new linear operator
I(m, z) : A→ A defined by

I(m, z)f = K(m, z) ∗ f(z) = z +
∞∑
n=2

mn−1

(n− 1)!e
−manz

n, z ∈ U,

where ∗ denote the convolution or Hadamard product of two series.
Motivated by several earlier results on connections between various subclasses of analytic

and univalent functions by using hypergeometric functions (see for example, [4,10,14,22,25])
and by the recent investigations (see for example, [1, 8, 9], [15]-[20]), we determine the nec-
essary and sufficient condition for F(m, z) to be in the class HT(β1, β1, . . . , βk;α) and for
I(m, z)f to be in the class GT(β1, β1, . . . , βk;α) where f ∈ Rτ (A,B). Finally, we give condi-
tion for the integral operator G(m, z) =

∫ z
0

F(m,t)
t dt to be in the class GT(β1, β1, . . . , βk;α).
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Unless otherwise mentioned, we shall assume in this paper that 0 ≤ α < 1 and βj >
0, j = 1, 2, · · · , k .

2. Preliminary lemmas

To establish our main results, we need the following Lemmas.

Lemma 2.1. [7] A function f ∈ T of the form (1.2) is in the class HT(β1, β1, . . . , βk;α) if
and only if
∞∑
n=2

[1 +β1(n− 1) +β2(n− 1)(n− 2) + · · ·+βk(n− 1)(n− 2) · · · (n−k)] |an| ≤ 1−α . (2.1)

The result (2.1) is sharp.

Lemma 2.2. [7] A function f ∈ T of the form (1.2) is in the class GT(β1, β1, . . . , βk;α) if
and only if
∞∑
n=2

n[1+β1(n−1)+β2(n−1)(n−2)+ · · ·+βk(n−1)(n−2) · · · (n−k)] |an| ≤ 1−α . (2.2)

The result (2.2) is sharp.

Lemma 2.3. [5] If f ∈ Rτ (A,B) is of the form (1.1), then

|an| ≤ (A−B) |τ |
n
, n ∈ N− {1}.

The result is sharp for the function

f(z) =
∫ z

0
(1 + (A−B) τtn−1

1 +Btn−1 )dt, (z ∈ U;n ∈ N− {1}).

3. The necessary and sufficient condition

In this section, we obtain the necessary and sufficient conditions for F(m, z) to be in
HT(β1, β1, . . . , βk;α).

Theorem 3.1. If m > 0, then F(m, z) is in HT(β1, β1, . . . , βk;α) if and only if

k∑
j=1

βjm
j ≤ e−m − α. (3.1)

Proof. Since

F(m, z) = z −
∞∑
n=2

mn−1

(n− 1)!e
−mzn (3.2)

in view of Lemma 2.1, it suffices to show that
∞∑
n=2

[1 + β1(n− 1) + β2(n− 1)(n− 2) + · · ·+ βk(n− 1)(n− 2) · · · (n− k)] m
n−1

(n− 1)!e
−m

≤ 1− α. (3.3)
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Making use of the facts that
∞∑
n=2

mn−1

(n− 1)! = em − 1 (3.4)

and ∞∑
n=s

mn−1

(n− s)! = ms−1em, s ≥ 2, (3.5)

we have
∞∑
n=2

[1 + β1(n− 1) + β2(n− 1)(n− 2) + · · ·+ βk(n− 1)(n− 2) · · · (n− k)] m
n−1

(n− 1)!e
−m

= e−m

β1

∞∑
n=2

mn−1

(n− 2)! + β2

∞∑
n=3

mn−1

(n− 3)! + · · ·+ βk

∞∑
n=k+1

mn−1

(n− (k + 1))! +
∞∑
n=2

mn−1

(n− 1)!


= β1m + β2m

2 + · · ·+ βk m
k + 1− e−m.

But this last expression is bounded above by 1− α if and only if (3.1) holds. �

4. Inclusion Properties

Making use of Lemma 2.3, we will study the action of the Poisson distribution series on
the class GT(β1, β1, . . . , βk;α).

Theorem 4.1. If f ∈ Rτ (A,B), then I(m, z)f is in GT(β1, β1, . . . , βk;α) if

(A−B) |τ |

 k∑
j=1

βjm
j + 1− e−m

 ≤ 1− α. (4.1)

Proof. In view of Lemma 2.2, it suffices to show that
∞∑
n=2

n[1 + β1(n− 1) + β2(n− 1)(n− 2) + · · ·+ βk(n− 1)(n− 2) · · · (n− k)] m
n−1

(n− 1)!e
−m |an|

≤ 1− α.

Since f ∈ Rτ (A,B), then by Lemma 2.3, we get

|an| ≤
(A−B) |τ |

n
. (4.2)

Thus, we have
∞∑
n=2

n[1 + β1(n− 1) + β2(n− 1)(n− 2) + · · ·+ βk(n− 1)(n− 2) · · · (n− k)] mn−1

(n−1)!e
−m |an|

≤ (A−B) |τ |
[ ∞∑
n=2

[1 + β1(n− 1) + β2(n− 1)(n− 2) + · · ·+ βk(n− 1)(n− 2) · · · (n− k)]

×
(
mn−1

(n−1)!e
−m
)]

= (A−B) |τ | e−m
[
β1
∞∑
n=2

mn−1

(n−2)! + β2
∞∑
n=3

mn−1

(n−3)! + · · ·+ βk
∞∑

n=k+1

mn−1

(n−(k+1))! +
∞∑
n=2

mn−1

(n−1)!

]
= (A−B) |τ |

[
β1m + β2m

2 + · · ·+ βk m
k + 1− e−m

]
.

But this last expression is bounded by 1− α, if (4.1) holds. This completes the proof of
Theorem 4.1. �
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5. An integral operator

Theorem 5.1. If m > 0, then the integral operator

G(m, z) =
∫ z

0

F(m, t)
t

dt (5.1)

is in GT(β1, β1, . . . , βk;α) if and only if inequality (3.1) is satisfied.

Proof. Since

G(m, z) = z −
∞∑
n=2

e−mmn−1

n! zn,

then by Lemma 2.2, we need only to show that
∞∑
n=2

n[1 + β1(n− 1) + β2(n− 1)(n− 2) + · · ·+ βk(n− 1)(n− 2) · · · (n− k)]m
n−1

n! e−m

≤ 1− α,

or, equivalently
∞∑
n=2

[1 + β1(n− 1) + β2(n− 1)(n− 2) + · · ·+ βk(n− 1)(n− 2) · · · (n− k)] m
n−1

(n− 1)!e
−m

≤ 1− α.

The remaining part of the proof of Theorem 5.1 is similar to that of Theorem 3.1, and so
we omit the details. �
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