Turkish Journal of INEQUALITIES

Available online at www.tjinequality.com

CERTAIN RESULTS ON RUSCHEWEYH OPERATOR

PARDEEP KAUR¹ AND SUKHWINDER SINGH BILLING²

ABSTRACT. In the present paper, we find certain results on Ruscheweyh operator using differential subordination. We derive certain results for starlike, convex and close-to-convex functions as particular cases to our main result.

1. INTRODUCTION

Let \mathcal{H} denote the class of functions f, analytic in the open unit disk $\mathbb{E} = \{z \in \mathbb{C} : |z| < 1\}$ in the complex plane \mathbb{C} . Let \mathcal{A}_n be the subclass of \mathcal{H} , consisting functions f of the form

$$f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k$$
, for $n \in \mathbb{N} = \{1, 2, 3, \dots\},\$

in \mathbb{E} . A function $f \in \mathcal{A}_n$ is said to be starlike of order α if and only if

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > \alpha, \ 0 \le \alpha < 1, \ z \in \mathbb{E}.$$

The class of such functions is denoted by $S_n^*(\alpha)$. A function $f \in \mathcal{A}_n$ is said to be convex of order α in \mathbb{E} , if and only if

$$\Re\left(1+\frac{zf''(z)}{f'(z)}\right) > \alpha, \ 0 \le \alpha < 1, \ z \in \mathbb{E}.$$

Let $\mathcal{K}_n(\alpha)$, denote the class of all functions $f \in \mathcal{A}_n$ that are convex of order α in \mathbb{E} . A function $f \in \mathcal{A}_n$ is said to be in the class $\mathcal{C}(\alpha)$ of close-to-convex of order α in \mathbb{E} if it satisfies

$$\Re\left(\frac{zf'(z)}{g(z)}\right) > \alpha, \ z \in \mathbb{E}; \ 0 \le \alpha < 1 \text{ and where } g \in \mathbb{S}_n^*.$$

Note that $S_1^*(\alpha) = S^*(\alpha)$, $\mathcal{K}_1(\alpha) = \mathcal{K}(\alpha)$ and $\mathcal{C}_1(\alpha) = \mathcal{C}(\alpha)$, $0 \le \alpha < 1$ are the usual classes of univalent starlike, convex and close-to-convex of order α respectively. Also note that $\mathcal{A}_1 = \mathcal{A}$.

Let f and g be two analytic functions in open unit disk \mathbb{E} . Then we say f is subordinate to g in \mathbb{E} , denoted by $f \prec g$, if there exist a Schwarz function w analytic in \mathbb{E} , with w(0) = 0

Key words and phrases. Analytic function, convex function, Ruscheweyh operator, starlike function. 2010 Mathematics Subject Classification. Primary: 30C80. Secondary: 30C45.

and |w(z)| < 1, $z \in \mathbb{E}$ such that f(z) = g(w(z)), $z \in \mathbb{E}$. In case the function g is univalent, then $f \prec g$ if and only if f(0) = g(0) and $f(\mathbb{E}) \subset g(\mathbb{E})$. The Taylor's series expansions of $f, g \in \mathcal{A}$ are given as

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$
 and $g(z) = z + \sum_{k=2}^{\infty} b_k z^k$.

Then the Hadamard product or convolution of f and g is denoted by f * g and defined as

$$(f * g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k.$$

For $f \in \mathcal{A}$, Ruscheweyh [5] defined

$$R^{\lambda}f(z) = \frac{z}{(1-z)^{\lambda+1}} * f(z), \ \lambda \ge -1, \ z \in \mathbb{E}.$$
 (1.1)

And for $\lambda = n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$ where $\mathbb{N} = \{1, 2, 3, ...\}$, he observed that

$$R^n f(z) = \frac{z(z^{n-1}f(z))^{(n)}}{n!}, \ z \in \mathbb{E}.$$

This symbol R^{λ} , $\lambda \in \mathbb{N}_0$ was named as Ruscheweyh derivative of f of order λ by Al-Amiri [3]. Lecko et al. [1] observed that for $\lambda \geq -1$, the expression given in (1.1) becomes

$$R^{\lambda}f(z) = z + \sum_{k=2}^{\infty} \frac{(\lambda+1)(\lambda+2)\dots(\lambda+k-1)}{(k-1)!} a_k z^k, \ z \in \mathbb{E}$$

and for every $\lambda > -1$

$$R^{1}R^{\lambda}f(z) = z(R^{\lambda}f)'(z) = z\left(\frac{z}{(1-z)^{\lambda+1}} * f(z)\right)'$$

$$= \frac{z}{(1-z)^{\lambda+1}} * (zf'(z)) = R^{\lambda}(zf'(z)) = R^{\lambda}R^{1}f(z), \ z \in \mathbb{E}.$$
(1.2)

We notice that

$$R^{-1}f(z) = z, \ R^0f(z) = f(z), \ R^1f(z) = zf'(z) \text{ and } R^2f(z) = zf'(z) + \frac{z^2}{2}f''(z),$$

and so on. For $\lambda \in \mathbb{N}_0$ and for $z \in \mathbb{E}$, we have

$$z(R^{\lambda}f)'(z) = (\lambda+1)R^{\lambda+1}f(z) - \lambda R^{\lambda}f(z).$$
(1.3)

Note that, this identity also holds for $\lambda = -1$. In 2006, Wang et al. [7] studied the class $Q(\alpha, \beta, \gamma)$ defined as:

 $Q(\alpha, \beta, \gamma) = \{ f \in \mathcal{A} : \Re[\alpha(f(z)/z) + \beta f'(z)] > \gamma, \ (\alpha, \beta) > 0, \ 0 \le \gamma < \alpha + \beta \le 1; \ z \in \mathbb{E} \}.$

They provided the extreme points and radius of univalence for the members of this class. Then in 2007, Gao et al. [2] studied the following subclass of \mathcal{A} :

$$R(\beta, \alpha) = \{ f \in \mathcal{A} : \Re(f'(z) + \alpha z f''(z)) > \beta, \ z \in \mathbb{E} \},\$$

where $\beta < 1$, $\alpha > 0$. They determined the extreme points of $R(\beta, \alpha)$ and obtain sharp bounds for $\Re(f'(z))$ and $\Re(f(z)/z)$. They also determined the number $\beta(\alpha)$ such that $R(\beta, \alpha) \subset S^*$, for certain fixed number α in $[1, \infty)$. Recently, Shams et al. [6] studied the Ruscheweyh derivative operator for $f \in \mathcal{A}_n$ that satisfies the inequality given below:

$$\left| \left(1 - \alpha + \alpha(\lambda + 2) \frac{R^{\lambda + 2} f(z)}{R^{\lambda + 1} f(z)} \right) \left(\frac{R^{\lambda + 1} f(z)}{R^{\lambda} f(z)} \right)^{\mu} - \alpha(\lambda + 1) \left(\frac{R^{\lambda + 1} f(z)}{R^{\lambda} f(z)} \right)^{\mu + 1} - 1 \right| < M,$$

and obtained the values of M, α , δ and μ for which the function had become starlike of order δ . In the present paper, we study the following operator for $f \in \mathcal{A}$ given below as:

$$\frac{R^{\lambda+1}f(z)}{R^{\lambda}f(z)} \left[1 - \alpha + \alpha \left((\lambda+2)\frac{R^{\lambda+2}f(z)}{R^{\lambda+1}f(z)} - (\lambda+1)\frac{R^{\lambda+1}f(z)}{R^{\lambda}f(z)} \right) \right],$$

where α is a non-zero complex number and $\lambda \in \mathbb{N}_1 = \mathbb{N} \cup \{0, -1\}$, where $\mathbb{N} = \{1, 2, 3, ...\}$, and obtain certain conditions for starlikeness, convexity and close-to-convexity.

2. Preliminary

To prove our main result, we shall make use of the following lemma of Miller Mocanu [4].

Lemma 2.1. Let $F(z) = 1 + b_1 z + b_2 z^2 + ...$ be analytic in \mathbb{E} and h(z) be analytic and convex function in \mathbb{E} with h(0) = 1. If

$$F(z) + \frac{1}{c}zF'(z) \prec h(z), \qquad (2.1)$$

where $c \neq 0$ and $\Re(c) > 0$, then

$$F(z) \prec cz^{-c} \int_0^z t^{c-1} h(t) \, dt,$$

and $cz^{-c}\int_0^z t^{c-1}h(t) dt$ is the best dominant of the differential subordination (2.1).

3. MAIN RESULTS

Theorem 3.1. Let α be a non-zero complex number such that $\Re(\alpha) > 0$ and h be analytic and convex in \mathbb{E} with h(0) = 1. If $f \in \mathcal{A}$ satisfies

$$\frac{R^{\lambda+1}f(z)}{R^{\lambda}f(z)}\left[1-\alpha+\alpha\left((\lambda+2)\frac{R^{\lambda+2}f(z)}{R^{\lambda+1}f(z)}-(\lambda+1)\frac{R^{\lambda+1}f(z)}{R^{\lambda}f(z)}\right)\right]\prec h(z),$$

then

$$\frac{R^{\lambda+1}f(z)}{R^{\lambda}f(z)} \prec \frac{1}{\alpha} \int_0^1 t^{\frac{1}{\alpha}-1}h(zt) \, dt, \ \lambda \in \mathbb{N}_1, \ z \in \mathbb{E}.$$

Proof. Define $u(z) = \frac{R^{\lambda+1}f(z)}{R^{\lambda}f(z)}, \ z \in \mathbb{E}.$ On differentiating logarithmically, we get

$$\frac{zu'(z)}{u(z)} = \frac{z(R^{\lambda+1}f(z))'}{R^{\lambda+1}f(z)} - \frac{z(R^{\lambda}f(z))'}{R^{\lambda}f(z)}.$$

Using the equality (1.3), the above equation reduces to,

$$u(z) + \alpha z u'(z) = \frac{R^{\lambda+1} f(z)}{R^{\lambda} f(z)} \left[1 - \alpha + \alpha \left((\lambda+2) \frac{R^{\lambda+2} f(z)}{R^{\lambda+1} f(z)} - (\lambda+1) \frac{R^{\lambda+1} f(z)}{R^{\lambda} f(z)} \right) \right].$$
(3.1)

Taking $c = \frac{1}{\alpha}$ and using Lemma 2.1, from (3.1), we get

$$\frac{R^{\lambda+1}f(z)}{R^{\lambda}f(z)}\left[1-\alpha+\alpha\left((\lambda+2)\frac{R^{\lambda+2}f(z)}{R^{\lambda+1}f(z)}-(\lambda+1)\frac{R^{\lambda+1}f(z)}{R^{\lambda}f(z)}\right)\right]\prec h(z),$$

then

$$\frac{R^{\lambda+1}f(z)}{R^{\lambda}f(z)} \prec \frac{1}{\alpha} z^{-\frac{1}{c}} \int_0^z t^{\frac{1}{\alpha}-1} h(t) \, dt = \frac{1}{\alpha} \int_0^1 t^{\frac{1}{\alpha}-1} h(zt) \, dt.$$

On selecting $h(z) = \frac{1 + 2z(\alpha - \beta - \alpha\beta) + (2\beta - 1)z^2}{(1 - z)^2}$ in Theorem 3.1, where $0 \le \beta < 1$ and α is same as given in this theorem, we obtain the following result:

Corollary 3.1. Let α be a non-zero complex number such that $\Re(\alpha) > 0$ and let $f \in \mathcal{A}$ satisfies

$$\frac{R^{\lambda+1}f(z)}{R^{\lambda}f(z)} \left[1 - \alpha + \alpha \left((\lambda+2)\frac{R^{\lambda+2}f(z)}{R^{\lambda+1}f(z)} - (\lambda+1)\frac{R^{\lambda+1}f(z)}{R^{\lambda}f(z)} \right) \right] \\ \prec \frac{1 + 2z(\alpha - \beta - \alpha\beta) + (2\beta - 1)z^2}{(1-z)^2}$$

then

$$\frac{R^{\lambda+1}f(z)}{R^{\lambda}f(z)} \prec \frac{1+(1-2\beta)z}{1-z}, \ 0 \le \beta < 1, \ \lambda \in \mathbb{N}_1, \ z \in \mathbb{E}$$

Taking the dominant $h(z) = 1 + (1 + \alpha)az$, $0 < a \le 1$ and α is same as in Theorem 3.1, we have the following result from this theorem:

Corollary 3.2. Let α be a non-zero complex number such that $\Re(\alpha) > 0$ and let $f \in \mathcal{A}$ satisfy

$$\left|\frac{R^{\lambda+1}f(z)}{R^{\lambda}f(z)}\left[1-\alpha+\alpha\left((\lambda+2)\frac{R^{\lambda+2}f(z)}{R^{\lambda+1}f(z)}-(\lambda+1)\frac{R^{\lambda+1}f(z)}{R^{\lambda}f(z)}\right)\right]-1\right| < (1+\alpha)a$$

$$\left|\frac{R^{\lambda+1}f(z)}{R^{\lambda}f(z)}-1\right| < a, \ 0 < a \le 1, \ \lambda \in \mathbb{N}_1, \ z \in \mathbb{E}.$$

ther

$$\left|\frac{R^{\lambda+1}f(z)}{R^{\lambda}f(z)} - 1\right| < a, \ 0 < a \le 1, \ \lambda \in \mathbb{N}_1, \ z \in \mathbb{E}.$$

In Theorem 3.1, when $h(z) = 1 + \frac{4}{3}(1+\alpha)z + \frac{2}{3}(1+2\alpha)z^2$ is selected as a dominant, where α is same as in this theorem, we get:

Corollary 3.3. Let α be a non-zero complex number such that $\Re(\alpha) > 0$ and let $f \in \mathcal{A}$ satisfy

$$\frac{R^{\lambda+1}f(z)}{R^{\lambda}f(z)} \left[1 - \alpha + \alpha \left((\lambda+2)\frac{R^{\lambda+2}f(z)}{R^{\lambda+1}f(z)} - (\lambda+1)\frac{R^{\lambda+1}f(z)}{R^{\lambda}f(z)} \right) \right] \\ \prec 1 + \frac{4}{3}(1+\alpha)z + \frac{2}{3}(1+2\alpha)z^2$$

then

$$\frac{R^{\lambda+1}f(z)}{R^{\lambda}f(z)} \prec 1 + \frac{4}{3}z + \frac{2}{3}z^2, \ \lambda \in \mathbb{N}_1, \ z \in \mathbb{E}.$$

4. CONDITIONS FOR STARLIKENESS, CONVEXITY AND CLOSE-TO-CONVEXITY Setting $\lambda = -1$ in Corollary 3.1, we obtain:

Corollary 4.1. Let α be a non-zero complex number such that $\Re(\alpha) > 0$. If $f \in \mathcal{A}$ satisfies

$$(1-\alpha)\frac{f(z)}{z} + \alpha f'(z) \prec \frac{1+2z(\alpha-\beta-\alpha\beta)+(2\beta-1)z^2}{(1-z)^2},$$

then

$$\frac{f(z)}{z} \prec \frac{1 + (1 - 2\beta)z}{1 - z}, \ 0 \le \beta < 1, \ z \in \mathbb{E}.$$

For $\lambda = -1$ and replacing f(z) with zf'(z) in Corollary 3.1, we get:

Corollary 4.2. Let α be a non-zero complex number such that $\Re(\alpha) > 0$. If $f \in \mathcal{A}$ satisfies

$$f'(z) + \alpha z f''(z) \prec \frac{1 + 2z(\alpha - \beta - \alpha\beta) + (2\beta - 1)z^2}{(1 - z)^2},$$

then

$$f'(z) \prec \frac{1 + (1 - 2\beta)z}{1 - z}, \ 0 \le \beta < 1, \ z \in \mathbb{E}.$$

Hence $f \in \mathcal{C}(\beta)$.

Selecting $\lambda = 0$ in Corollary 3.1, we obtain:

Corollary 4.3. Let α be a non-zero complex number such that $\Re(\alpha) > 0$. If $f \in \mathcal{A}$ satisfies

$$\frac{zf'(z)}{f(z)} \left[1 + \alpha \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right) \right] \prec \frac{1 + 2z(\alpha - \beta - \alpha\beta) + (2\beta - 1)z^2}{(1 - z)^2},$$

$$zf'(z) = 1 + (1 - 2\beta)z$$

then

$$\frac{zf'(z)}{f(z)} \prec \frac{1 + (1 - 2\beta)z}{1 - z}, \ 0 \le \beta < 1, \ z \in \mathbb{E}.$$

 $i.e. \ f \in \mathbb{S}^*(\beta).$

Putting $\lambda = 0$ and replacing f(z) with zf'(z) in Theorem 3.1, we get the following result:

Corollary 4.4. Let α be a non-zero complex number such that $\Re(\alpha) > 0$. If $f \in \mathcal{A}$ satisfies

$$\left(1 + \frac{zf''(z)}{f'(z)}\right) \left[1 + \alpha \left(\frac{2zf''(z) + z^2f'''(z)}{f'(z) + zf''(z)} - \frac{zf''(z)}{f'(z)}\right)\right] \\ \prec \frac{1 + 2z(\alpha - \beta - \alpha\beta) + (2\beta - 1)z^2}{(1 - z)^2},$$

then

$$1 + \frac{zf''(z)}{f'(z)} \prec \frac{1 + (1 - 2\beta)z}{1 - z}, \ 0 \le \beta < 1, \ z \in \mathbb{E}.$$

i.e. $f \in \mathcal{K}(\beta)$.

Selecting $\lambda = -1$ in Corollary 3.2, we have:

Corollary 4.5. Let α be a non-zero complex number such that $\Re(\alpha) > 0$ and let $f \in \mathcal{A}$ satisfy

$$\left| (1-\alpha)\frac{f(z)}{z} + \alpha f'(z) - 1 \right| < (1+\alpha)a$$

then

$$\left| \frac{f(z)}{z} - 1 \right| < a, \ 0 < a \le 1, \ z \in \mathbb{E}.$$

For $\lambda = -1$ and replacing f(z) with zf'(z) in Corollary 3.2, we get:

Corollary 4.6. Let α be a non-zero complex number such that $\Re(\alpha) > 0$. If $f \in \mathcal{A}$ satisfies

$$|f'(z) + \alpha z f''(z) - 1| < (1 + \alpha)a,$$

then

$$|f'(z) - 1| < a, \ 0 < a \le 1, \ z \in \mathbb{E}.$$

Taking $\lambda = 0$ in Corollary 3.2, we obtain:

Corollary 4.7. Let α be a non-zero complex number such that $\Re(\alpha) > 0$. If $f \in \mathcal{A}$ satisfies

$$\left|\frac{zf'(z)}{f(z)}\left[1 + \alpha \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}\right)\right] - 1\right| < (1 + \alpha)a,$$

then

$$\left|\frac{zf'(z)}{f(z)} - 1\right| < a, \ 0 < a \le 1, \ z \in \mathbb{E}.$$

Selecting $\lambda = 0$ and on replacing f(z) with zf'(z) in Corollary 3.2, we get the following result:

Corollary 4.8. Let α be a non-zero complex number such that $\Re(\alpha) > 0$. If $f \in \mathcal{A}$ satisfies

$$\left| \left(1 + \frac{zf''(z)}{f'(z)} \right) \left[1 + \alpha \left(\frac{2zf''(z) + z^2f'''(z)}{f'(z) + zf''(z)} - \frac{zf''(z)}{f'(z)} \right) \right] - 1 \right| < (1 + \alpha)a,$$

$$\left| \frac{zf''(z)}{f'(z)} \right| < a, 0 < a \leq 1, z \in \mathbb{R}$$

then

$$\left|\frac{zf''(z)}{f'(z)}\right| < a, \ 0 < a \le 1, \ z \in \mathbb{E}.$$

Selecting $\lambda = -1$ in Corollary 3.3, we have:

Corollary 4.9. Let α be a non-zero complex number such that $\Re(\alpha) > 0$ and let $f \in \mathcal{A}$ satisfy

$$(1-\alpha)\frac{f(z)}{z} + \alpha f'(z) \prec 1 + \frac{4}{3}(1+\alpha)z + \frac{2}{3}(1+2\alpha)z^2,$$

then

$$\frac{f(z)}{z} \prec 1 + \frac{4}{3}z + \frac{2}{3}z^2, \ z \in \mathbb{E}.$$

For $\lambda = -1$ and replacing f(z) with zf'(z) in Corollary 3.3, we get:

Corollary 4.10. Let α be a non-zero complex number such that $\Re(\alpha) > 0$. If $f \in \mathcal{A}$ satisfies

$$f'(z) + \alpha z f''(z) \prec 1 + \frac{4}{3}(1+\alpha)z + \frac{2}{3}(1+2\alpha)z^2,$$

then

$$f'(z) \prec 1 + \frac{4}{3}z + \frac{2}{3}z^2, \ z \in \mathbb{E}.$$

Hence $f \in \mathcal{C}$.

Taking $\lambda = 0$ in Corollary 3.3, we obtain:

Corollary 4.11. Let α be a non-zero complex number such that $\Re(\alpha) > 0$. If $f \in \mathcal{A}$ satisfies

$$\frac{zf'(z)}{f(z)} \left[1 + \alpha \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right) \right] \prec 1 + \frac{4}{3}(1+\alpha)z + \frac{2}{3}(1+2\alpha)z^2,$$

then

$$\frac{zf'(z)}{f(z)} \prec 1 + \frac{4}{3}z + \frac{2}{3}z^2, \ z \in \mathbb{E}.$$

i.e. $f \in S^*$.

Selecting $\lambda = 0$ and on replacing f(z) with zf'(z) in Corollary 3.3, we get the following result:

Corollary 4.12. Let α be a non-zero complex number such that $\Re(\alpha) > 0$. If $f \in \mathcal{A}$ satisfies

$$\left(1 + \frac{zf''(z)}{f'(z)}\right) \left[1 + \alpha \left(\frac{2zf''(z) + z^2f'''(z)}{f'(z) + zf''(z)} - \frac{zf''(z)}{f'(z)}\right)\right] \prec 1 + \frac{4}{3}(1+\alpha)z + \frac{2}{3}(1+2\alpha)z^2,$$
then

t

$$1 + \frac{zf''(z)}{f'(z)} \prec 1 + \frac{4}{3}z + \frac{2}{3}z^2, \ z \in \mathbb{E}.$$

i.e. $f \in \mathcal{K}$.

Acknowledgements. Authors are thankful to the reviewers for their valuable suggestions.

References

- [1] A. Lecko, M. Lecko and T. Yaguchi, Subclasses of typically real functions defined by Rusheweyh derivative, Demonstr. Math., 41(8) (2008), 823–832.
- [2] C.-Y. Gao and S.-Q. Zhou, Certain subclass of starlike functions, App. Math. and Comp., 187 (2007), 176 - 182.
- [3] H. S. Al-Amiri, On Ruscheweyh derivatives, Ann. Poln. Math., 38 (1980), 87–94.
- [4] S. S. Miller and P. T. Mocanu, Differential Subordinations and univalent functions, Michigan Math. J., **28**(2) (1981), 157–171.
- [5] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109–115.
- [6] S. Shams and P. Arjomandinia, Starlikeness conditions for normalized analytic functions including Ruscheweyh operator, Acta Univ. Apulen., 45 (2016), 97–103.
- [7] Z.-G. Wang, C.-Y. Gao and S.-M. Yuan, On the univalency of certain analytic functions, J. Inequal. Pure Appl. Math., 7(1) (2006), Art. 9.

¹DEPARTMENT OF APPLIED SCIENCES, BABA BANDA SINGH BAHADUR ENGINEERING COLLEGE, FATEHGARH SAHIB-140407, PUNJAB, INDIA. *E-mail address*: aradhitadhiman@gmail.com

²DEPARTMENT OF MATHEMATICS, SRI GURU GRANTH SAHIB WORLD UNIVERSITY, FATEHGARH SAHIB-140407, PUNJAB, INDIA. *E-mail address:* ssbilling@gmail.com