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ON REFINEMENT OF JENSEN’S INEQUALITY FOR 3-CONVEX
FUNCTION AT A POINT

TASADDUQ NIAZ1, KHURAM ALI KHAN2, AND JOSIP PEČARIĆ3

Abstract. In this paper, the refinement of Jensen’s inequality for convex function given
in [5] used to establish the inequalities for classes of 3-convex function at a point. Some
new improvements of these new inequalities are also given.

1. Introduction and Preliminary Results

Convex function played a vital role in optimization. Also many important inequalities
are due to convexity of the function. One of them is Jensen’s inequality because the notion
of convex function widely use as classical Jensen’s inequality and refinement of Jensen’s
inequality and it has remain source of valuable results in the literature for many decades.
In [8, p. 43] discrete version of Jensen’s inequality is given as follows:
Let f : I → R, where I be an interval in R, is convex, for n ≥ 2 suppose (x1, . . . , xn) ∈ In
and (p1, . . . , pn) is a positive n-tuple and for k = 1, . . . , n let Pk :=

∑k
i=1 pi, then

f

(
1
Pn

n∑
i=1

pixi

)
≤ 1
Pn

n∑
i=1

pif(xi).

For refinements and interpolations of Jensen’s inequality for the class of convex functions,
we refer [4–7] and references there in.

Divided difference is a helpful tool when we are dealing with the functions that have
different degrees of smoothness. In [8, p. 14] the divided difference is given as follows.

Definition 1.1. Let g be real valued function defined on [α, β]. For r + 1 distinct points
u0, u1, . . . , ur, the r-th order divided difference is defined recursively by

[ui; g] = g(ui) i = 0, 1, . . . , r,

and
[u0, u1, . . . , ur; g] = [u1, u2, . . . , ur; g]− [u0, u1, . . . , ur−1; g]

ur − u0
.
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This is equivalent to

[u0, u1, . . . , ur; g] =
r∑
j=0

g(xj)
w′(xj)

,

where
w(x) =

r∏
j=0

(x− xj).

The r-convex function is characterized by the rth-order divided difference as follows (see
[8, p. 14]).

Definition 1.2. A function g : [α, β] → R is called r-convex function (r ≥ 0) on [α, β] if
and only if

[u0, u1, . . . , ur; g] ≥ 0 (1.1)

for all (r + 1) distinct choices on [α, β].
If the inequality is reversed then g is n-concave on [α, β].

In [5] L. Horváth and J. Pečarić give a refinement of Jensen’s inequality for convex
function. They define some essential tools to prove the refinement given as follows:
Let X be a set, and:
P (X) :=Power set of X,
|X|:= Number of elements of X,
N:= Set of natural numbers with 0. Consider q ≥ 1 and r ≥ 2 be fixed integers. Define the
functions

Fr,s : {1, . . . , q}r → {1, . . . , q}r−1 1 ≤ s ≤ r

Fr : {1, . . . , q}r → P
(
{1, . . . , q}r−1

)
and

Tr : P ({1, . . . , q}r)→ P
(
{1, . . . , q}r−1

)
by

Fr,s(i1, . . . , ir) := (i1, i2, . . . , is−1, is+1, . . . , ir) 1 ≤ s ≤ r

Fr(i1, . . . , ir) :=
s⋃
r=1
{Fr,s(i1, . . . , ir)}

and

Tr(I) =

 φ, I = φ;⋃
(i1,...,ir)∈I

Fr(i1, . . . , ir), I 6= φ. (1.2)

Next let the function

αr,i; {1, . . . , q}r → N 1 ≤ i ≤ q (1.3)
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defined by

αr,i(i1, . . . , ir) = number of occurences of i in the sequence (i1, . . . , ir).

For each I ∈ P ({1, . . . , q}r) let

αI,i :=
∑

(i1,...,ir)∈I
αr,i(i1, . . . , ir) 1 ≤ i ≤ r.

(H1) Let n,m be fixed positive integers such that n ≥ 1, m ≥ 2 and let Im be a subset of
{1, . . . , n}m such that

αIm,i ≥ 1 1 ≤ i ≤ n.
Introduce the sets Il ⊂ {1, . . . , n}l(m− 1 ≥ l ≥ 1) inductively by

Il−1 := Tl(Il) m ≥ l ≥ 2.

Obviously, I1 = {1, . . . , n} by (H1) and this insures that αI1 = 1(1 ≤ i ≤ n). From (1.3) we
have αIl,i ≥ 1(m − 1 ≥ l ≥ 1, 1 ≤ i ≤ n). For m ≥ l ≥ 2, and for any (j1, . . . , jl−1) ∈ Il−1.
Let

HIl
(j1, . . . , jl−1) := {((i1, . . . , il), k)× {1, . . . , l}|Fl,k(i1, . . . , il) = (j1, . . . , jl−1)}

With the help of these sets they defined the function ηIm,l : Il → N(m ≥ l ≥ 1) by

ηIm,m(i1, . . . , im) := 1 (i1, . . . , im) ∈ Im;

ηIm,l−1(j1, . . . , jl−1) :=
∑

((i1,...,il),k)∈HIl
(j1,...,jl−1)

ηIm,l(i1, . . . , il).

And they define some special expressions as follows for m ≤ l ≤ 1, as follows

Am,l(Im,x,p, f) = Am,l(Im, x1, . . . , xn, p1, . . . , pn; f) := (m− 1)!
(l − 1)!

∑
(i1,...,il)∈Il

ηIm,l(i1, . . . , il)

 l∑
j=1

pij
αIm,ij

 f


n∑
j=1

pij

αIm,ij
xij

l∑
j=1

pij

αIm,ij

 .(1.4)
Theorem 1.1. Let f : C → R be a convex function where C be a convex subset of real
vector space X. Let p1, p2, . . . , pn are positive real numbers such that

n∑
i=1

pi = 1, then

f

(
n∑
s=1

psxs

)
≤ Am,m ≤ Am,m−1 ≤ . . . ≤ Am,2 ≤ Am,1 =

n∑
s=1

psf (xs) . (1.5)

In [2], I. A. Baloch et al. introduced the new classes of functions that are Ka
1(I) and

Ka
2(I) given in the following definition.

Definition 1.3. Let f : I → R and a ∈ I◦ (I◦ denote the interior of I). Consider the
classes

Ka
1(I) :=

{
f : their exist a real number B such thatf(x)− B

2 x
2is concave on

I ∩ (−∞, a]and convex onI ∩ [a,∞)}
(1.6)
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and

Ka
2(I) :=

{
f : their exist a real number B such thatf(x)− B

2 x
2is convex on

I ∩ (−∞, a]and concave onI ∩ [a,∞)} .
(1.7)

The function f ∈ Ka
1(I) is called 3-convex function at a point and if f ∈ Ka

2(I)) is 3-concave
function at a point.

They also show that the Ka
1(I)(Ka

2(I)) is larger class of function than the class of all
3-convex(3-concave) functions in the following result (see [2], Theorem 2.4).

Theorem 1.2. If g ∈ Ka
1(I)(g ∈ Ka

2(I)) for every a ∈ I, then g is 3-convex (3-concave).

It was also noted that the converse of Theorem 1.2 is not valid in general. For instance
t4 ∈ Ka

2(−1, 3) but t4 is not 3-convex at (−1, 3).
The Levinson inequality was generalized by replacing with weaker assumption by A. Mercer
et al. [10]. After that A. Witkowski et al. [11] gave further weaker assumption than Mercer
to prove Levinson inequality. Then I. A. Baloch et al. [2] generalized the result of Mercer
and Witkowski by defining a larger class of function that is Ka

1(I) and Ka
2(I). After that S.

I. Butt et al. [12] generalized Popoviciu inequality for Ka
1(I) and Ka

2(I) classes. These work
motivates us and give an idea to generalize refinement of Jensen’s inequality for Ka

1(I) and
Ka

2(I) classes.
M. Adeel et al. [1] later generalized the Levinson inequality for higher order convex function.
Butt et al. [3] gave some applications to information theory by finding some new bounds
for Shannon, relative and Mandelbrot entropies by using discrete and cyclic refinement of
Jensen’s inequality, and similar type of application to information theory can be find in [9].

2. Main Results

In this section, we use the refinement of Jensen’s inequality for convex function given
in (1.5) and establish the inequalities for classes of functions Ka

1(I) and Ka
2(I) instead of

convex function f . We also improve these inequalities.
For this first we define the functional by the differences of refinement of Jensen’s inequality

given in (1.5) as follows:

Θ1(f) = Am,r − f
(

n∑
s=1

psxs

)
, r = 1, . . . ,m, (2.1)

Θ2(f) = Am,r −Am,k, 1 ≤ r < k ≤ m. (2.2)

Remark 2.1. Under the assumption of Theorem 1.1, we have

Θi(f) ≥ 0, i = 1, 2. (2.3)

And the inequalities (2.3) are reversed if f is concave on C.

Note. In the rest of paper we consider r < k.
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Theorem 2.1. Assume (H1), let I = [α, β] be an interval. Consider x = (x1, . . . , xs) ∈
[α, β]s and y = (y1, . . . , ys) ∈ [α, β]s. Also let there exists a ∈ I such that

max
i
xi ≤ a ≤ min

j
yj .

Suppose p = (p1, . . . , ps) ∈ (0,∞)s, q = (q1, . . . , qs) ∈ (0,∞)s such that
s∑
j=1

pj =
s∑
i=1

qi = 1

and

Am,r(Im,x,p, id2)−Am,k(Im,x,p, id2) =
Am,r(Im,y, q, id2)−Am,k(Im,y, q, id2). (2.4)

If f ∈ Ka
1(I), then

Am,r(Im,x,p, f)−Am,k(x,p, f) ≤ Am,r(y, q, f)−Am,k(y, q, f) (2.5)

holds.

Proof. Since H1(x) := f(x)− B
2 x

2 is concave on I ∩ [α, a], therefore from Remark 2.1, we
have

0 ≥ Am,r(x,p, H1)−Am,k(x,p, H1)

= Am,r(x,p, f)−Am,k(x,p, f)− B

2

[
Am,r(x,p, id2)

− Am,k(x,p, id2)
]
. (2.6)

As H2(y) := f(y)− B
2 y

2 is convex on [a, β], therefore from Remark 2.1, we get

0 ≤ Am,r(y,p, H2)−Am,k(y,p, H2)

= Am,r(y,p, f)−Am,k(y,p, f)− B

2

[
Am,r(y,p, id2)

− Am,k(y,p, id2)
]
. (2.7)

From (2.6) and (2.7), we have

Am,r(x,p, f)−Am,k(x,p, f)− B

2

[
Am,r(x,p, id2)−Am,k(x,p, id2)

]
≤ Am,r(y,p, f)−Am,k(y,p, f)− B

2

[
Am,r(y,p, id2)−Am,k(y,p, id2)

]
.

Using the assumption (2.4), we get (2.5). �

Corollary 2.1. Assume (H1), let I = [0, 2a] be an interval, x = (x1, . . . , xs) ∈ [0, a]s,
y = (y1, . . . , ys) ∈ [a, 2a]s and p = (p1, . . . , ps) be positive n-tuple such that

s∑
j=1

pj = 1, If

f ∈ Ka
1(I), then the inequality (2.5) holds for n = m and p = q and x1 + y1 = . . . =

xs + ys = 2a.
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Proof. Note that

id2


k∑
j=1

pijyij

k∑
j=1

pij

 = id2


k∑
j=1

pij (c− xij )

k∑
j=1

pij

 (2.8)

= c2 − 2c

k∑
j=1

pijxij

k∑
j=1

pij

+


k∑
j=1

pijxij

k∑
j=1

pij


2

. (2.9)

We can observe that

Am,r(x,p, id2)−Am,k(x,p, id2) = Am,r(y,p, id2)−Am,k(y,p, id2).

On following the same step of Theorem 2.1, we get (2.5). �

Remark 2.2. Using (2.6) and (2.7) from proof of Theorem 2.1, we have

Am,r(x,p, f)−Am,k(x,p, f)

≤ B

2

[
Am,r(x,p, id2)−Am,k(x,p, id2)

]
(2.10)

and
B

2

[
Am,r(y,p, id2)−Am,k(y,p, id2)

]
≤ Am,r(y,p, f)−Am,k(y,p, f). (2.11)

Using (2.10) and (2.11), we have the refinement of (2.5) given by

Am,r(x,p, f)−Am,k(x,p, f) ≤ B

2
[
Am,r(x,p, id2)−Am,k(x,p, id2)

]
(

= B

2
[
Am,r(y,p, id2)−Am,k(y,p, id2)

] )
≤ Am,r(y,p, f)−Am,k(y,p, f).

The next result is the generalization of Theorem 2.1, with weaker assumptions on (2.4).

Theorem 2.2. Assume (H1), let I = [α, β] be an interval, x = (x1, . . . , xs) ∈ [α, β]s,
y = (y1, . . . , ys) ∈ [α, β]s with

max
i
xi ≤ min

j
yj . (2.12)

Also let p = (p1, . . . , ps) ∈ (0,∞)s, q = (q1, . . . , qs) ∈ (0,∞)s such that
s∑
j=1

pj =
s∑
i=1

qi = 1

and f ∈ Ka
1(I) for some a ∈ [max xi,min yj ]. Then if

(i):
f ′′−(max xi) ≥ 0

and

Am,r(x,p, id2)−Am,k(x,p, id2) ≤ Am,r(y, q, id2)−Am,k(y, q, id2)
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(ii):
f ′′+(min yj) ≤ 0

and

Am,r(x,p, id2)−Am,k(x,p, id2) ≥ Am,r(y, q, id2)−Am,k(y, q, id2)

(iii): f ′′−(max xi) < 0 < f ′′+(min yj) and f is 3-convex,
then (2.5) holds.

Proof. Since f ∈ Ka
1[α, β] for some a ∈ [max xi,max yj ], therefore their exists a constant B

such that H1(x) := f(x)− B
2 x

2, is concave on [α, a], such that for x1, . . . , xs ∈ I ∩ [α, a], we
have

0 ≥ Am,r(x,p, H1)−Am,k(x,p, H1),

that is

0 ≥ Am,r(x,p, f)−Am,k(x,p, f)− B

2

[
Am,r(x,p, id2)

− Am,k(x,p, id2)
]
. (2.13)

Also H2(y) := f(y)− B
2 y

2 is convex on [a, β], for y1, . . . , ys ∈ [a, β], we have

0 ≤ Am,r(y,p, H2)−Am,k(y,p, H2),

that is

0 ≥ Am,r(y,p, f)−Am,k(y,p, f)− B

2

[
Am,r(y,p, id2)

− Am,k(y,p, id2)
]
. (2.14)

From (2.13) and (2.14), we have

Am,r(x,p, f)−Am,k(x,p, f)− B

2
[
Am,r(x,p, id2)−Am,k(x,p, id2)

]
≤ Am,r(y,p, f)−Am,k(y,p, f)− B

2
[
Am,r(y,p, id2)−Am,k(y,p, id2)

]
.

So
B

2
[
Am,r(y,p, id2)−Am,k(y,p, id2)−Am,r(x,p, id2)−Am,k(x,p, id2)

]
≤ Am,r(y,p, f)−Am,k(y,p, f)−Am,r(x,p, f)−Am,k(x,p, f). (2.15)

Now due to concavity of H1 and convexity of H2 for every distinct point x̃j ∈ [α,max xi]
and ỹj ∈ [min yi, β], j = 1, 2, 3, we have

[x̃1, x̃2, x̃3, f ] ≤ B ≤ [ỹ1, ỹ2, ỹ3, f ]. (2.16)

Letting x̃j ↗ max xi and ỹj ↘ min yj , we get the inequalities if derivatives exists

f ′′−(max xi) ≤ B ≤ f ′′+(min yi). (2.17)
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Since from assumption (a), f ′′(max xi) ≥ 0, therefore B ≥ 0, so using the assumption[
Am,r(y,p, id2)−Am,k(y,p, id2)−Am,r(x,p, id2)−Am,k(x,p, id2)

]
≥ 0,

the expression
B

2
[
Am,r(y,p, id2)−Am,k(y,p, id2)−Am,r(x,p, id2)−Am,k(x,p, id2)

]
is non-negative and on using it on left side of (2.15) we have the result (2.5). And similarly
for assumption (b), the inequality f ′′+(min yj) ≤ 0 gives B ≤ 0, so the expression with
assumption of (b) is also non-negative, this gives the result (2.5). Under the assumption of
(c), f ′′− and f ′′+ are both left and right continuous respectively and both are nondecreasing
with f ′′− ≤ f ′′+, so their exists a point ã ∈ [max xi,min yj ] such that f ∈ Kã

1[α, β] with
constant B̃ = 0, and thus we have the inequality (2.5). �

Remark 2.3. From the proof of Theorem 2.2, we have

Am,r(x,p, f)−Am,k(x,p, f) ≤ B

2
[
Am,r(x,p, id2)−Am,k(x,p, id2)

]
and

Am,r(y,p, f)−Am,k(y,p, f) ≥ B

2
[
Am,r(y,p, id2)−Am,k(y,p, id2)

]
.

In Theorem 2.2, B is positive, negative and zero for the assumptions (a), (b) and (c)
respectively as discussed in proof. Therefore, we have the better improvement of (2.5) than
(2.12) given as

Am,r(x,p, f)−Am,k(x,p, f) ≤ B

2
[
Am,r(x,p, id2)−Am,k(x,p, id2)

]
≤ B

2
[
Am,r(y,p, id2)−Am,k(y,p, id2)

]
≤ Am,r(y,p, f)−Am,k(y,p, f).

If the assumptions of Theorem 2.1 with f ∈ Ka
2[α, β], the reverse of inequality (2.5) holds.

The generalization of this result is proven in the following result.

Theorem 2.3. Assume (H1), let I = [α, β] ⊂ R be an interval, x = (x1, . . . , xs) ∈ [α, β]s,
y = (y1, . . . , ys) ∈ [α, β]s with

max
i
xi ≤ min

j
yj . (2.18)

Also let p = (p1, . . . , ps) ∈ (0,∞)s, q = (q1, . . . , qs) ∈ (0,∞)s such that
s∑
j=1

pj = 1 =
s∑
i=1

qi

and f ∈ Ka
2(I) for some a ∈ [max xi,min yj ]. Then if

(i):
f ′′−(max xi) ≤ 0

and

Am,r(x,p, id2)−Am,k(x,p, id2) ≤ Am,r(y, q, id2)−Am,k(y, q, id2)
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(ii):
f ′′+(min yj) ≥ 0

and

Am,r(x,p, id2)−Am,k(x,p, id2) ≥ Am,r(y, q, id2)−Am,k(y, q, id2)

(iii): f ′′−(max xi) < 0 < f ′′+(min yj) and f is 3-concave,
then the inequality

Am,r(x,p, f)−Am,k(x,p, f) ≥ Am,r(y, q, f)−Am,k(y, q, f) (2.19)

holds.

Proof. Since f ∈ Ka
2[α, β] for some a ∈ [max xi,max yj ], therefore their exists a constant B

such thatH1(x) = f(x)−B
2 x

2, is convex on I∩(−∞, a], such that for x1, . . . , xs ∈ I∩(−∞, a],
we have

0 ≤ Am,r(x,p, H1)−Am,k(x,p, H1),

that is

0 ≤ Am,r(x,p, f)−Am,k(x,p, f)− C

2

[
Am,r(x,p, id2)

− Am,k(x,p, id2)
]
. (2.20)

Also H2(y) = f(y)− B
2 y

2 is concave on I ∩ [a,∞), for y1, . . . , ys ∈ [a,∞), we have

0 ≥ Am,r(y,p, H2)−Am,k(y,p, H2),

that is

0 ≥ Am,r(y,p, f)−Am,k(y,p, f)− B

2

[
Am,r(y,p, id2)

− Am,k(y,p, id2)
]
. (2.21)

From (2.20) and (2.21), we have

Am,r(x,p, f)−Am,k(x,p, f)− B

2
[
Am,r(x,p, id2)−Am,k(x,p, id2)

]
≥ Am,r(y,p, f)−Am,k(y,p, f)− B

2
[
Am,r(y,p, id2)−Am,k(y,p, id2)

]
.

So
B

2
[
Am,r(y,p, id2)−Am,k(y,p, id2)−Am,r(x,p, id2)−Am,k(x,p, id2)

]
≥ Am,r(y,p, f)−Am,k(y,p, f)−Am,r(x,p, f)−Am,k(x,p, f). (2.22)

Now due to convexity of H1 and concavity of H2 for every distinct point x̃j ∈ [α,max xi]
and ỹj ∈ [min yi, β], j = 1, 2, 3, we have

[x̃1, x̃2, x̃3, f ] ≥ B ≥ [ỹ1, ỹ2, ỹ3, f ]. (2.23)
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Letting x̃j ↗ max xi and ỹj ↘ min yj , we get the inequalities if derivatives exists

f ′′−(max xi) ≥ B ≥ f ′′+(min yi). (2.24)

Since from assumption (a), f ′′(max xi) ≤ 0, therefore B ≥ 0, so using the assumption[
Am,r(y,p, id2)−Am,k(y,p, id2)−Am,r(x,p, id2)−Am,k(x,p, id2)

]
≥ 0

we have
B

2
[
Am,r(y,p, id2)−Am,k(y,p, id2)−Am,r(x,p, id2)−Am,k(x,p, id2)

]
is negative and on using it on left side of (2.22) we have the result (2.5). And similarly
for assumption (b), the inequality f ′′+(min yj) ≥ 0 gives B > 0, so the expression with
assumption of (b) is also positive, this gives the result (2.5). Under the assumption of (c),
f ′′− and f ′′+ are left and right continuous respectively and both are decreasing with f ′′− ≥ f ′′+,
so their exists a point ã ∈ [max xi,min yj ] such that f ∈ Kã

1[α, β] with constant B̃ = 0, and
thus we have the inequality (2.19). �

Remark 2.4. In Theorem 2.3, B is negative or positive or zero under the assumption (i), (ii)
and (iii) respectively as discussed earlier in the proof of the Theorem 2.3. Therefore we get
the improvement of (2.19) as follows.

Am,r(x,p, f)−Am,k(x,p, f) ≥ Am,r(x,p, id2)−Am,k(x,p, id2)
≥ Am,r(y,q, id2)−Am,k(y,q, id2) ≥ Am,r(y,q, f)−Am,k(y,q, f).

Remark 2.5. Theorem 2.1, Remark 2.2, Theorem 2.2, Remark 2.3 and Theorem 2.3 are
also valid for the differences given in (2.1) and (2.2) for r = 1, . . . ,m and 1 ≤ r < k ≤ m

respectively.
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