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NEW GENERALIZATIONS FOR s−CONVEX FUNCTIONS VIA
CONFORMABLE FRACTIONAL INTEGRALS

ALPER EKINCI1 AND NAZLICAN EROĞLU2

Abstract. In this paper, we have obtained integral inequalities containing conformable
fractional integral operators for s−convex functions by separating the [a, b] interval to j
equal sub-intervals. These inequalities are the generalizations that vary with parameter j.
In this way, we give different examples of inequalities by changing this parameter.

1. Introduction

A function f : [a, b]→ R is said to be convex, if we have

f (αx+ (1− α) y) ≤ αf (x) + (1− α) f (y)

for all x, y ∈ [a, b] and α ∈ [0, 1].

Definition 1.1. [11] A function f : R+ → R, where R+ = [0,∞) , is said to be s−convex
in the first sense if

f(αx+ βy) ≤ αsf(x) + βsf(y)
for all x, y ∈ R+, α, β ≥ 0 with αs + βs = 1 and for some fixed s ∈ (0, 1]. We denote by

K1
s the class of all s−convex functions.

Definition 1.2. [4] A function f : R+ → R, where R+ = [0,∞) , is said to be s−convex in
the second sense if

f(αx+ βy) ≤ αsf(x) + βsf(y)
for all x, y ∈ R+, α, β ≥ 0 with α+ β = 1 and for some fixed s ∈ (0, 1]. We denote by K2

s

the class of all s−convex functions.

If we choose s = 1, both definitions reduced to ordinary concept of convexity.
A motivating inequality of Hadamard type has been proved by Latif and Dragomir in [9]

as following:
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Theorem 1.1. Let f : I ⊂ R→ R be a differentiable function on I◦ such that f ′ ∈ L [a, b] ,
where a, b ∈ I with a < b. If |f ′| is convex on [a, b] then the following inequality holds:∣∣∣∣∣∣
f
(

3a+b
4

)
+ f

(
a+3b

4

)
2 − 1

b− a

b∫
a

f (x) dx

∣∣∣∣∣∣ ≤
(
b− a

96

)[∣∣f ′ (a)
∣∣+ 4

∣∣∣∣f ′ (3a+ b

4

)∣∣∣∣
+2
∣∣∣∣f ′ (a+ b

2

)∣∣∣∣+ 4
∣∣∣∣f ′ (a+ 3b

4

)∣∣∣∣+ ∣∣f ′ (b)∣∣] .
In [12], Özdemir et al. presented the following generalization:

Theorem 1.2. Let f : I ⊂ R → R be a differentiable function on I◦ where a, b ∈ I with
a < b. If |f ′| is convex on [a, b] then the following inequality holds:∣∣∣∣∣∣∣

n−1
2∑

k=0
2f
(
a (n− 2k) + b (2k + 1)

n+ 1

)
− n+ 1
b− a

b∫
a

f (x) dx

∣∣∣∣∣∣∣
≤ b− a

6 (n+ 1)

n−1
2∑

k=0

(
4
∣∣∣∣f ′ (a (n− 2k) + b (2k + 1)

n+ 1

)∣∣∣∣
+
∣∣∣∣f ′ (a (n− 2k + 1) + b (2k)

n+ 1

)∣∣∣∣+ ∣∣∣∣f ′ (a (n− 2k − 1) + b (2k + 2)
n+ 1

)∣∣∣∣)
where n is an odd number.

In [8], Khalil et al. gave a new definition that is called "conformable fractional derivative".
They not only proved further properties of this definitions but also gave the differences
with the other fractional derivatives. Besides, another considerable study have presented by
Abdeljawad to discuss the basic concepts of fractional calculus. Scientists stated that these
definitions of this new fractional derivative and integral are an understandable, feasible
and effective definitions. In [1], Abdeljawad gave the following definitions of right-left
conformable fractional integrals:

Definition 1.3. Let α ∈ (n, n+ 1] , n = 0, 1, 2, ... and set β = α − n. Then the left and
right conformable fractional integral of any order α > 0 is defined by respectively

(Iaαf) (t) = 1
n!

t∫
a

(t− x)n (x− a)β−1 f (x) dx,

and (
bIαf

)
(t) = 1

n!

b∫
t

(x− t)n (b− x)β−1 f (x) dx.

Let us recall the Beta function defined as follows:

B (a, b) = Γ (a) Γ (b)
Γ (a+ b) =

1∫
0

ta−1 (1− t)b−1 dt, a, b > 0,
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where Γ (α) is Gamma function. The incomplete Beta function is defined by

Bx (a, b) =
x∫

0

ta−1 (1− t)b−1 dt.

Based on the above definition, Set and Çelik presented the following identity in [14]:

Lemma 1.1. Assume that a, b ∈ R with a < b and f : [a, b]→ R is a differentiable function
on (a, b) . If f ′ ∈ L [a, b] then the following equality holds:

Ψα (a, b)

= − (b− a)α
16

 1∫
0

Bt (n+ 1, α− n) f ′
(
ta+ (1− t) 3a+ b

4

)
dt

−
1∫

0

B1−t (α− n, n+ 1) f ′
(
t
3a+ b

4 + (1− t) a+ b

2

)
dt

+
1∫

0

Bt (n+ 1, α− n) f ′
(
t
a+ b

2 + (1− t) a+ 3b
4

)
dt

−
1∫

0

B1−t (α− n, n+ 1) f ′
(
t
a+ 3b

4 + (1− t) b
)
dt


for α ∈ (n, n+ 1] , n = 0, 1, 2, ... where Bt (., .) is incompleted beta function and

Ψα (a, b)

= α

4

[
B (n+ 1, α− n)

(
f (a) + f

(
a+ b

2

))
+B (α− n, n+ 1)

(
f

(
a+ b

2

)
+ f (b)

)]
− α4α−1n!

(b− a)α

×
[(

(Iaαf)
(3a+ b

4

)
+
(
I

3a+b
4

α f

)(
a+ b

2

)
+
(
I
a+b

2
α f

)(
a+ 3b

4

)
+
(
I
a+3b

4
α f

)
(b)
)]

.

For the recent studies of inequalities including conformable fractional integrals, we can
refer the papers [2, 3, 6, 10,13,15–19].

The main aim of this paper is to prove a generalization of Lemma 1 and establish some
more general integral inequalities for convex functions by using conformable fractional
integral operators.

2. Main Results

In order to prove the main results, we need the following integral identity that involve
conformable fractional integral operator.
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Lemma 2.1. [7] Let f : [a, b]→ R is a differentiable mapping on (a, b) where a, b ∈ R with
a < b. If f ′ ∈ L [a, b], then the following identity holds:

j−1∑
k=0

1∫
0

[
Bt (n+ 1, α− n) f ′ [tλ (k + 1) + (1− t)λ (k)]

]
dt

= j

b− a

j−1∑
k=0

{
B (n+ 1, α− n) f [λ (k + 1)]− n!

(
j

b− a

)α (
λ(k+1)Iαf

)
(λ (k))

}
for αε (n, n+ 1] , n = 0, 1, 2, ..where j ∈ Z+ and for k ∈ Z, λ (k) = k

j (b− a) + a.

Theorem 2.1. Let f : I ⊂ R→ R be differentiable on I◦ such that f ′ ∈ L [a, b] with a, b ∈ I,
a < b and α > 0. If |f ′| is s−convex on [a, b] in the second sense with s ∈ (0, 1] , then the
following inequality holds for conformable fractional integrals:∣∣∣∣∣∣ j

b− a

j−1∑
k=0

{
B (n+ 1, α− n) f [λ (k + 1)]− n!

(
j

b− a

)α (
λ(k+1)Iαf

)
(λ (k))

}∣∣∣∣∣∣
≤

j−1∑
k=0

{
B (n+ 1, α− n)−B (n+ s+ 2, α− n)

s+ 1
∣∣f ′ (λ (k + 1))

∣∣}

+B (n+ 1, α− n+ s+ 1)
s+ 1

∣∣f ′ (λ (k))
∣∣} ,

where j ∈ Z+, αε (n, n+ 1] , n = 0, 1, 2, ... and for k ∈ Z, λ (k) = k
j (b− a) + a.

Proof. Using Lemma 2.1 and triangle inequality, we can write∣∣∣∣∣∣ j

b− a

j−1∑
k=0

{
B (n+ 1, α− n) f [λ (k + 1)]− n!

(
j

b− a

)α (
λ(k+1)Iαf

)
(λ (k))

}∣∣∣∣∣∣
≤

j−1∑
k=0

1∫
0

Bt (n+ 1, α− n)
∣∣f ′ [tλ (k + 1) + (1− t)λ (k)]

∣∣ dt.
Since |f ′| is second sense s−convex, then we have

1∫
0

[
Bt (n+ 1, α− n)

∣∣f ′ [tλ (k + 1) + (1− t)λ (k)]
∣∣] dt

≤
1∫

0

Bt (n+ 1, α− n)
[
ts
∣∣f ′ (λ (k + 1))

∣∣+ (1− t)s
∣∣f ′ (λ (k))

∣∣] dt
Using the properties of Beta function and integrating by parts, we obtain;

1∫
0

Bt (n+ 1, α− n) tsdt = Bt (n+ 1, α− n) t
s+1

s+ 1

∣∣∣∣∣
1

0
−

1∫
0

tn (1− t)α−n−1 ts+1

s+ 1dt

= B (n+ 1, α− n)−B (n+ s+ 2, α− n)
s+ 1
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and
1∫

0

Bt (n+ 1, α− n) (1− t)s dt

= Bt (n+ 1, α− n) − (1− t)s+1

s+ 1

∣∣∣∣∣
1

0
−

1∫
0

tn (1− t)α−n−1 − (1− t)s+1

s+ 1 dt

= B (n+ 1, α− n+ s+ 1)
s+ 1 .

We get the desired result. �

Corollary 2.1. Under the conditions of Theorem 2.1, if we choose j = 2, we have

∣∣∣∣ 2
b− a

{
B (n+ 1, α− n)

[
f

(
a+ b

2

)
+ f (b)

]
−n!

( 2
b− a

)α [(
a+b

2 Iαf
)

(a) +
(
bIαf

)(a+ b

2

)]}∣∣∣∣
≤ B (n+ 1, α− n)−B (n+ s+ 2, α− n)

s+ 1

[∣∣∣∣f ′ (a+ b

2

)∣∣∣∣+ ∣∣f ′ (b)∣∣]
+B (n+ 1, α− n+ s+ 1)

s+ 1

[∣∣f ′ (a)
∣∣+ ∣∣∣∣f ′ (a+ b

2

)∣∣∣∣] .
Corollary 2.2. In Theorem 2.1, if we set α = 1 and n = 0, one can obtain∣∣∣∣∣∣∣

j

b− a

j−1∑
k=0

f [λ (k + 1)]− j

b− a

λ(k+1)∫
λ(k)

f (x) dx


∣∣∣∣∣∣∣

≤
j−1∑
k=0

{1−B (s+ 2, 1)
s+ 1

∣∣f ′ (λ (k + 1))
∣∣+ B (1, s+ 2)

s+ 1
∣∣f ′ (λ (k))

∣∣} .
Theorem 2.2. Let f : I ⊂ R→ R be differentiable on I◦ such that f ′ ∈ L [a, b] with a, b ∈ I,
a < b and α > 0. If |f ′|q is s−convex on [a, b] in the second sense with s ∈ (0, 1] and q > 1
then the following inequality holds for conformable fractional integrals:∣∣∣∣∣∣ j

b− a

j−1∑
k=0

{
B (n+ 1, α− n) f [λ (k + 1)]− n!

(
j

b− a

)α (
λ(k+1)Iαf

)
(λ (k))

}∣∣∣∣∣∣
≤

 1∫
0

|Bt (n+ 1, α− n)|p dt


1
p ( 1

s+ 1

) 1
q
j−1∑
k=0

{∣∣f ′ (λ (k + 1))
∣∣q +

∣∣f ′ (λ (k))
∣∣q} 1

q ,

where j ∈ Z+, 1
p + 1

q = 1, αε (n, n+ 1] , n = 0, 1, 2, ... and for k ∈ Z, λ (k) = k
j (b− a) + a.
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Proof. By using Lemma 2.1 and Hölder inequality, we obtain∣∣∣∣∣∣ j

b− a

j−1∑
k=0

{
B (n+ 1, α− n) f [λ (k + 1)]− n!

(
j

b− a

)α (
λ(k+1)Iαf

)
(λ (k))

}∣∣∣∣∣∣(2.1)
≤

j−1∑
k=0

1∫
0

Bt (n+ 1, α− n)
∣∣f ′ [tλ (k + 1) + (1− t)λ (k)]

∣∣ dt
≤

 1∫
0

|Bt (n+ 1, α− n)|p dt


1
p j−1∑
k=0

 1∫
0

∣∣f ′ [tλ (k + 1) + (1− t)λ (k)]
∣∣q dt


1
q

.

Since |f ′|q is second sense s−convex, we can write
1∫

0

∣∣f ′ [tλ (k + 1) + (1− t)λ (k)]
∣∣q dt

≤
1∫

0

[
ts
∣∣f ′ (λ (k + 1))

∣∣q + (1− t)s
∣∣f ′ (λ (k))

∣∣q] dt
= 1

s+ 1
{∣∣f ′ (λ (k + 1))

∣∣q +
∣∣f ′ (λ (k))

∣∣q} .
Writing these results in (2.1) completes the proof. �

Corollary 2.3. Under the conditions of Theorem 2.2, if we choose j = 2, we have

∣∣∣∣ 2
b− a

{
B (n+ 1, α− n)

[
f

(
a+ b

2

)
+ f (b)

]
−n!

( 2
b− a

)α [(
a+b

2 Iαf
)

(a) +
(
bIαf

)(a+ b

2

)]}∣∣∣∣
≤

 1∫
0

|Bt (n+ 1, α− n)|p dt


1
p ( 1

s+ 1

) 1
q

×
{[∣∣∣∣f ′ (a+ b

2

)∣∣∣∣q +
∣∣f ′ (a)

∣∣q] 1
q

+
[∣∣f ′ (b)∣∣q +

∣∣∣∣f ′ (a+ b

2

)∣∣∣∣q] 1
q

}
.

Corollary 2.4. In Theorem 2.2, if we set α = 1 and n = 0, we obtain the following
inequality; ∣∣∣∣∣∣∣

j

b− a

j−1∑
k=0

f [λ (k + 1)]− j

b− a

λ(k+1)∫
λ(k)

f (x) dx


∣∣∣∣∣∣∣

≤
( 1
p+ 1

) 1
p
( 1
s+ 1

) 1
q
j−1∑
k=0

{∣∣f ′ (λ (k + 1))
∣∣q +

∣∣f ′ (λ (k))
∣∣q} 1

q .
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Theorem 2.3. Let f : I ⊂ R→ R be differentiable on I◦ such that f ′ ∈ L [a, b] with a, b ∈ I,
a < b and α > 0. If |f ′|q is s−convex on [a, b] in the second sense with s ∈ (0, 1] and q ≥ 1
then the following inequality holds for conformable fractional integrals:∣∣∣∣∣∣ j

b− a

j−1∑
k=0

{
B (n+ 1, α− n) f [λ (k + 1)]− n!

(
j

b− a

)α (
λ(k+1)Iαf

)
(λ (k))

}∣∣∣∣∣∣
≤ (B (n+ 1, α− n+ 1))1− 1

q

j−1∑
k=0

{
B (n+ 1, α− n)−B (n+ s+ 2, α− n)

s+ 1
∣∣f ′ (λ (k + 1))

∣∣q
+B (n+ 1, α− n+ s+ 1)

s+ 1
∣∣f ′ (λ (k))

∣∣q} 1
q

,

where j ∈ Z+, αε (n, n+ 1] , n = 0, 1, 2, ... and for k ∈ Z, λ (k) = k
j (b− a) + a.

Proof. By using Lemma 2.1 and power mean inequality, we have∣∣∣∣∣∣ j

b− a

j−1∑
k=0

{
B (n+ 1, α− n) f [λ (k + 1)]− n!

(
j

b− a

)α (
λ(k+1)Iαf

)
(λ (k))

}∣∣∣∣∣∣
≤

j−1∑
k=0

1∫
0

Bt (n+ 1, α− n)
∣∣f ′ [tλ (k + 1) + (1− t)λ (k)]

∣∣ dt
≤

 1∫
0

Bt (n+ 1, α− n) dt

1− 1
q j−1∑
k=0

 1∫
0

Bt (n+ 1, α− n)
∣∣f ′ [tλ (k + 1) + (1− t)λ (k)]

∣∣q dt


1
q

.

By using integrating by parts, we get
1∫

0

Bt (n+ 1, α− n) dt = Bt (n+ 1, α− n) t|10 −
1∫

0

tn+1 (1− t)α−n−1 dt

= B (n+ 1, α− n)−B (n+ 2, α− n)
= B (n+ 1, α− n+ 1)

Since |f ′|q is s−convex in the second sense then we have
1∫

0

Bt (n+ 1, α− n) |f ′ [tλ (k + 1) + (1− t)λ (k)]|q dt

≤
1∫

0

Bt (n+ 1, α− n)
[
ts |f ′ (λ (k + 1))|q + (1− t)s |f ′ (λ (k))|q

]
dt

= B (n+ 1, α− n)−B (n+ s+ 2, α− n)
s+ 1 |f ′ (λ (k + 1))|q + B (n+ 1, α− n+ s+ 1)

s+ 1 |f ′ (λ (k))|q .

Combining these results, the proof is completed. �

Corollary 2.5. Under the conditions of Theorem 2.3, if we choose j = 2 , we have
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∣∣∣∣ 2
b− a

{
B (n+ 1, α− n)

[
f

(
a+ b

2

)
+ f (b)

]
−n!

(
2

b− a

)α [(
a+b

2 Iαf
)

(a) +
(
bIαf

)(a+ b

2

)]}∣∣∣∣
≤ (B (n+ 1, α− n+ 1))1− 1

q

×

{[
B (n+ 1, α− n)−B (n+ s+ 2, α− n)

s+ 1

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q + B (n+ 1, α− n+ s+ 1)
s+ 1 |f ′ (a)|q

] 1
q

+
[
B (n+ 1, α− n)−B (n+ s+ 2, α− n)

s+ 1 |f ′ (b)|q + B (n+ 1, α− n+ s+ 1)
s+ 1

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q]
1
q

}
.

Corollary 2.6. In Theorem 2.3, if we take α = 1 and n = 0, we have∣∣∣∣∣∣∣
j

b− a

j−1∑
k=0

f [λ (k + 1)]− j

b− a

λ(k+1)∫
λ(k)

f (x) dx


∣∣∣∣∣∣∣

≤
(

1
2

)1− 1
q
j−1∑
k=0

{
1−B (s+ 2, 1)

s+ 1 |f ′ (λ (k + 1))|q + B (1, s+ 2)
s+ 1 |f ′ (λ (k))|q

} 1
q

.

3. Conclusion

In this study we give generalizations as in [7] for s−convex functions. Also by using these
generalizations, we give some new inequalities by choosing parameter.
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