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EXISTENCE AND STABILITY OF FRACTIONAL PANTOGRAPH

DIFFERENTIAL EQUATIONS WITH CAPUTO-HADAMARD TYPE

DERIVATIVE

MOHAMED HOUAS1

Abstract. Recently, many studies on fractional pantograph equations, involving differ-
ent fractional derivatives have appeared during the past several years. In this work, we
study existence, uniqueness and Ulam-Hyers stability of solutions of Caputo-Hadamard
type fractional pantograph differential equations with nonlocal boundary conditions. The
Banach contraction principle is used for proving the existence and uniqueness results. We
also derive the Ulam-Hyers stability and the generalized Ulam-Hyers stability of solution.
Finally, we give some illustrative examples.

1. Introduction and preliminaries

Fractional calculus and its applications has importance in various areas of engineering

sciences, mathematical and physical [4,5,17,20,22,23]. The pantograph equations is a kind

of delay differential equations and arise in many applications such as electrodynamics, astro-

physics, nonlinear dynamical systems, probability theory on algebraic structures, quantum

mechanics and cell growth, etc. The name pantograph originated from the work of Ockendon

and Taylor [21] on the collection of current by the pantograph head of an electric locomotive.

For further information and applications, see [6, 13–15, 19]. Recently, pantograph differen-

tial equations of fractional order have been studied by many researchers, for example, we

refer the reader to [3,7,9,11] and the references cited therein. Moreover, some authors have

established the existence and uniqueness of solutions for some fractional pantograph differ-

ential equations with different fractional derivative, for example, see [3, 9, 11, 25, 26]. The

Ulam-Hyers stability problems have been attracted by many researchers, see [2,8,12,14,18]

and references therein. The stability of fractional pantograph differential equations has

been investigated by many authors, we refer the reader to the papers [10,25,27].

Key words and phrases. Caputo-Hadamard derivative, fixed point, existence, pantograph equations, Ulam-
Hyers stability.
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In this work, we study existence, uniqueness and Ulam-Hyers stability of solutions for

Caputo-Hadamard type pantograph differential equations of fractional order:






C
HD

αu (t) = ϕ (t, u (t) , u (λt)) , t ∈ [1, T ], 0 < α ≤ 1, 0 < λ < 1,

u (1) = u1 − θ (u) , u1 ∈ R,

(1.1)

where C
HD

α denote the Caputo-Hadamard type fractional derivative of order α and ϕ :

[1, T ] × R × R → R, θ : C ([1, T ],R) → R are given continuous functions. The Hadamard

fractional integral [1,15] of order α for a continuous function ϕ : [1,+∞) → R is defined by

HI
αϕ (t) = 1

Γ(α)

∫ t

1

(

log
t

s

)α−1 ϕ (s)

s
ds, α > 0,

with Γ (α) =
∫

∞

0 euuα−1du. The Caputo-Hadamard fractional derivative [1, 15] of order α

for a continuous function ϕ : [1,+∞) → R is defined by

C
HD

αϕ(t) = 1
Γ(n−α)

∫ t

1

(

log
t

s

)n−α−1

δnϕ(s)
ds

s
= HI

n−α (δnϕ) (t) ,

where n = [α] + 1 and δn =
(

t d
dt

)n
.

Lemma 1.1. [15] Let u ∈ ACn
δ ([a, b] ,R) . Then

HI
α

(

C
HD

αu
)

(t) = u(t) −
n−1
∑

i=0

ci(log t)i, ci ∈ R,

where ACn
δ ([a, b] ,R) =

{

h : [a, b] → R : δn−1h ∈ AC ([a, b] ,R)
}

.

We denote by X = C ([1, T ] ,R) the Banach space of all continuous functions from [1, T ]

to R endowed with the norm defined by ‖u‖ = sup {|u (t)| : t ∈ [1, T ]}.

In what follows, we present four types of the Ulam stability for the fractional problem

(1.1). Let σ a positive real numbers and the function h ∈ X, we consider the following

fractional differential inequalities:
∣

∣

∣

C
HD

αv (t) − ϕ (t, v (t) , v (λt))
∣

∣

∣ ≤ σ, t ∈ [1, T ] , (1.2)
∣

∣

∣

C
HD

αy (t) − f (t, y (t) , y (λt))
∣

∣

∣ ≤ h (t) , t ∈ [1, T ] , (1.3)

and
∣

∣

∣

C
HD

αy (t) − f (t, y (t) , y (λt))
∣

∣

∣ ≤ σh (t) , t ∈ [1, T ] . (1.4)

Definition 1.1. The fractional boundary value problem (1.1) is Ulam-Hyers stable if there

exists a real number τϕ > 0 such that for each σ > 0 and for each solution v ∈ X of the

inequality (1.2), there exists a solution u ∈ X of fractional boundary value problem (1.1)

with

|v (t) − u (t)| ≤ τϕσ, t ∈ [1, T ] .

Definition 1.2. The fractional boundary value problem (1.1) is generalized Ulam-Hyers

stable if there exists ψϕ ∈ C(R+,R+), ψϕ (0) = 0, such that for each solution v ∈ X of the
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inequality (1.2), there exists a solution u ∈ X of the fractional boundary value problem

(1.1) with

|v (t) − u (t)| ≤ ψϕ (σ) , t ∈ [1, T ] .

Definition 1.3. The fractional boundary value problem (1.1) is Ulam-Hyers-Rassias stable

with respect to h ∈ X if there exists a real number τϕ > 0 such that for each σ > 0 and for

each solution v ∈ X of the inequality (1.4), there exists a solution u ∈ X of problem (1.1)

with

|v (t) − u (t)| ≤ τϕσh (t) , t ∈ [1, T ] .

Definition 1.4. The fractional boundary value problem (1.1) is generalized Ulam-Hyers-

Rassias stable with respect to h ∈ X if there exists a real number τϕ,h > 0 such that for

each solution v ∈ X of the inequality (1.3), there exists a solution x ∈ X of problem (1.1)

with

|v (t) − u (t)| ≤ τϕ,hh (t) , t ∈ [1, T ] .

Remark 1.1. A function v ∈ X is a solution of the inequality (1.2) if and only if there exists

a function f : [1, T ] → R such that

(1): : |f (t)| ≤ σ, t ∈ [1, T ] .

(2): : C
HD

αv (t) = ϕ (t, v (t) , v (λt)) + f (t), t ∈ [1, T ] , 0 < λ < 1.

2. Existence and uniqueness of solution

Lemma 2.1. Suppose that g (t) ∈ C ([1, T ] ,R) and consider the fractional problem

C
HD

αu (t) = g (t) , t ∈ [1, T ] , 0 < α < 1, (2.1)

with the condition

u (1) = u1 − θ (u) . (2.2)

Then, we have

u (t) =
1

Γ (α)

∫ t

1

(

log
t

s

)α−1

g (s)
ds

s
+ θ (u) − u1. (2.3)

Proof. Using Lemma 1.1, we obtain

u (t) =
1

Γ (α)

∫ t

1

(

log
t

s

)α−1

g (s)
ds

s
− c0 (2.4)

where c0 ∈ R.

Thanks to (2.2), we get c0 = θ (u) − u1.

Substituting the value of c0 in (2.4) yields the solution (2.3).This completes the proof. �

In view of Lemma 2.1, we define an operator O : X → X as

Ou (t) =
1

Γ (α)

∫ t

1

(

log
t

s

)α−1

ϕ (s, u (s) , u (λs))
ds

s
+ θ (u) − u1. (2.5)

Observe that the existence of a fixed point for the operator O implies the existence of a

solution for the fractional boundary value problem (1.1).
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Theorem 2.1. Let ϕ : [1, T ] × R × R → R be a continuous function. Assume that:

(H1) : There exists a constant ω > 0 such that

|ϕ (t, u1, u2) − ϕ (t, v1, v2)| ≤ ω (|u1 − v1| + |u2 − v2|) , t ∈ [1, T ] , ui, vi ∈ R, i = 1, 2.

(H2) : There exists a constant ̟ > 0 such that

|θ (u) − θ (v)| ≤ ̟ |u− v| , u, v ∈ C ([1, T ] ,R) .

If the inequality

2ω (log t)α < (1 −̟) Γ (α+ 1) , (2.6)

is valid, then problem (1.1) has a unique solution on [1, T ].

Proof. Let us define M = supt∈[0,T ] |ϕ (t, 0, 0)| and N = ‖θ (0)‖ . Setting

r ≥
M +N + |u1|

1 − (2ω +̟)
,

we show that OBr ⊂ Br, where Br = {u ∈ X : ‖u‖ ≤ r}.

For x ∈ Br, we find the following estimates based on the hypothesis (H1) and (H2) :

|ϕ (t, u (t) , u (λt))| ≤ |ϕ (t, u (t) , u (λt)) − ϕ (s, 0, 0)| + |ϕ (s, 0, 0)|

(2.7)

≤ 2ω ‖u‖ +M ≤ 2ωr +M,

and

|θ (u)| ≤ ||θ (u)| − θ (0)| + |θ (0)| ≤ ̟ ‖u‖ + ‖θ (0)‖ ≤ ̟r +N. (2.8)

Using these estimates, we get

|Ou (t)| ≤
1

Γ (α)

∫ t

1

(

log
t

s

)α−1

|ϕ (s, u (s) , u (λs))|
ds

s
+ |θ (u)| + |u1| (2.9)

≤ 2ωr +M +̟r +N + |x1| = (2ω +̟) r +M +N + |u1| ≤ r,

which implies that OBr ⊂ Br. Now, for u, v ∈ Br and for any t ∈ J, we get

|Ou (t) −Ov (t)| (2.10)

≤
1

Γ (α)

∫ t

1

(

log
t

s

)α−1

|ϕ (s, u (s) , u (λs)) − ϕ (s, v (s) , v (λs))|
ds

s
+ |θ (u) − θ (v)|

≤

(

2ω
(log t)α

Γ (α+ 1)
+̟

)

‖u− v‖ .

Since t ∈ [1, T ], then

‖Ou−Ov‖ ≤

(

2ω
(log T )α

Γ (α+ 1)
+̟

)

‖u− v‖ . (2.11)

By (2.9), we see that O is a contractive operator. Consequently, by the Banach fixed point

theorem, has a fixed point which is a solution of (1.1). �
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3. Ulam-Hyers stability

In this section, we will study Ulam’s type stability of the fractional boundary value

problem (1.1).

Theorem 3.1. Assume that ϕ : [1, T ]×R×R → R is a continuous function satisfying (H1).

If

2ω (log T )α < Γ (α+ 1) , (3.1)

then the fractional boundary value problem (1.1) is Ulam-Hyers stable and consequently,

generalized Ulam-Hyers stable.

Proof. Let v ∈ X be a solution of the inequality (1.2) and let us denote by u ∈ X the

unique solution of the problem






C
HD

αu (t) = f (t, u (t) , u (λt)) , t ∈ J, 0 < α < 1, 0 < λ < 1,

u (1) = v (1) .
(3.2)

By using Lemma 2.1, we have

u(t) =
1

Γ (α)

∫ t

1

(

log
t

s

)α−1

g (s)
ds

s
+ c0 = HI

αgu (t) + c0,

and by integration of the inequality (1.2), we obtain

|v (t) − HI
αgv (t) − c1| ≤

σ

Γ (α+ 1)
(log t)α (3.3)

≤
σ

Γ (α+ 1)
(log T )α .

On the other hand, if u (1) = v (1), then c0 = c1.

For any t ∈ [1, T ] , we have

v (t) − u (t) = v (t) − HI
αgu (t) − c1 + HI

α (gv (t) − gu (t)) ,

where,

gu (t) = ϕ (t, u (t) , u (λt)) and gv (t) = ϕ (t, v (t) , v (λt)) ,

then

HI
α (gv (t) − gu (t)) = HI

α[ϕ(s, v(s), v (λt)) − ϕ(s, u(s), u (λt))]

=
1

Γ(α)

∫ t

1
(log

t

s
)α−1[ϕ(s, v(s), v (λt)) − ϕ(s, u(s), u (λt))]

ds

s

Using (H1), we get

|HI
α (gv (t) − gu (t))| ≤

2ω

Γ(α)

∫ t

1
(log

t

s
)α−1|v − u|

ds

s
.
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This yields that

|v (t) − u (t)| ≤ |v (t) − HI
αgv (t) − c1|

+
2ω

Γ(α)

∫ t

1
(log

t

s
)α−1|v − u|

ds

s
,

which implies that

|v (t) − u (t)| ≤
σ

Γ (α+ 1)
+

2ω

Γ(α)

∫ t

1
(log

t

s
)α−1 ‖v(s) − u(s)‖

ds

s
.

Thus

|v (t) − u (t)| ≤
σ

Γ (α+ 1)
+

2ω (log T )α

Γ (α+ 1)
‖v(s) − u(s)‖ ,

Hence

‖v(s) − u(s)‖

(

1 −
2ω (log T )α

Γ (α+ 1)

)

≤
σ

Γ (α+ 1)
. (3.4)

Then, for each t ∈ [1, T ]

|u (t) − v (t)| ≤
1

Γ (α+ 1) − 2ω (log T )ασ = τϕσ. (3.5)

So, the fractional boundary value problem (1.1) is Ulam-Hyers stable. By putting h (σ) =

γσ, h (0) = 0 yields that the fractional boundary value problem (1.1) generalized Ulam-Hyers

stable. �

Theorem 3.2. Let ϕ : [1, T ] × R × R → R be a continuous function and suppose that (H1)

holds and (3.1). In addition, the following hypothesis holds

(H3) : There exists an function h ∈ C([1, T ] ,R+) and there exists ηh > 0 such that for

any t ∈ [1, T ]

1

Γ(α)

∫ t

1
(log

t

s
)α−1h(s)

ds

s
≤ ηhh(t). (3.6)

Then the fractional boundary value problem (1.1) is Ulam-Hyers-Rassias stable.

Proof. Let v ∈ X be a solution of the inequality (1.4) and let us denote by x ∈ X the

unique solution of the problem






C
HD

αu (t) = f (t, u (t) , u (λt)) , t ∈ [1, T ] , 0 < α ≤ 1, 0 < λ < 1,

u (1) = v (1) .

Thanks to Lemma 2.1, we obtain

u(t) = HI
αg (t) + c0,

and by integration of the inequality (1.4), we obtain

|v (t) − HI
αgv (t) + c1| ≤

ε

Γ(α)

∫ t

1

(

log
t

s

)α−1

h(s)
ds

s
.
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By (H1), we have

|v (t) − u (t)| ≤ |v (t) − HI
αgv (t) − c1|

+
2ω

Γ(α)

∫ t

1
(log

t

s
)α−1|v − u|

ds

s
.

Using (H3), we can write

|v (t) − u (t)| ≤ σηhh(t) +
2ω

Γ(α)

∫ t

1
(log

t

s
)α−1 ‖v(s) − u(s)‖

ds

s
. (3.7)

Hence, we have

|v (t) − u (t)| ≤ σηhh(t) +
2ω (log T )α

Γ(α+ 1)
‖v(s) − u(s)‖ ,

which implies that

‖v(s) − u(s)‖

(

1 −
2ω (log T )α

Γ(α+ 1)

)

≤ σηhh(t). (3.8)

Then, for each t ∈ [1, T ]

|u (t) − v (t)| ≤
ηh

1 − 2ω(log T )α

Γ(α+1)

σh(t). (3.9)

So, the fractional boundary value problem (1.1) is Ulam-Hyers-Rassias stable. �

4. Examples

To illustrate our main results, we treat the following examples.

Example 4.1. Consider the Caputo-Hadamard type fractional pantograph equation










C
HD

1

2u (t) = 1
4 + 3

16et+5x (t) + 3
16et+5u

(

1
2 t

)

, t ∈ [1, e] ,

u (1) = 1 − 2
19u (γ) , 1 < γ < e.

(4.1)

For this example, we have α = 1
2 , λ = 1

2 and T = e.

On the other hand,

ϕ (t, u, v) =
1

4
+

3

16et+5
u+

3

16et+5
v,

θ (u) =
2

19
u (γ) , 1 < γ < e.

For t ∈ [1, 2] and (u1, v1) , (u2, v2) ∈ R
2, we have

|ϕ(t, u1, v1) − ϕ(t, u2, v2)| ≤
3

16e5
(|u1 − u2| + |v1 − v2|) .

Hence the condition (H1) holds with ω = 3
16e5 . Also, for any u1, v1 ∈ C ([1, e]) , we have

|g(u1) − g(v1)| ≤
2

19
|u1 − v1| .

So, (H2) is satisfied with ̟ = 2
19 .
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Thus conditions

2ω (log T )α = 2.526 7 × 10−3 < (1 −̟) Γ (α+ 1) = 0.792 94,

and

2ω
(log T )α

Γ (α+ 1)
= 2.851 1 × 10−3 < 1,

are satisfied. It follows from Theorem 2.1, that the problem (4.1) has a unique solution on

[1, e], and from Theorem 3.1, the fractional problem (4.1) is Ulam-Hyers stable.

Example 4.2. Let us consider the following Caputo-Hadamard type fractional pantograph

equation










C
HD

1

3u (t) = 1
2 + 1

21 cos (t)u (t) + 1
21u

(

1
3t

)

, t ∈ [1, e] ,

u (1) = 2
5 −

∑n
i=1 diu (ti) ,

(4.2)

where 1 < t1 < t2 < ... < tn < e, di, i = 1, 2, ..., n are given positive constants with
∑n

i=1 di <
1
5 .

Consider fractional pantograph equation with α = 1
3 , λ = 1

3 , ϕ (t, u, v) = 1
2 + 1

21 cos (t)u+
1
21v, θ (u) =

∑n
i=1 diu (ti) .

For (u1, v1) , (u2, v2) ∈ R
2 and t ∈ [1, e] , we have

|ϕ(t, u1, v1) − ϕ(t, u2, v2)| ≤
1

21
|cos (t)| |u1 − u2| +

1

21
|v1 − v2|

≤
1

21
(|u1 − u2| + |v1 − v2|) .

Hence hypothesis (H1) is satisfied with with ω = 5
21 . Also, for any u1, u2 ∈ C ([1, e]) , we

have

g (u1) − g (u2) =

∣

∣

∣

∣

∣

n
∑

i=1

diu1 (ti) −
n

∑

i=1

diu2 (ti)

∣

∣

∣

∣

∣

≤
n

∑

i=1

di |u1 − u2| .

Hence hypothesis (H2) is satisfied with ̟ =
∑n

i=1 di <
1
5 .

We can show that

2ω (log T )α

(1 −̟) Γ (α+ 1)
≃ 0.133 32 < 1.

Let h (t) = t3. Then

1

Γ(α)

∫ t

1
(log

t

s
)α−1h(s)

ds

s
≤

Γ (4)

Γ
(

13
3

)t3 = ηhh (t) .

Thus hypothesis (H3) is satisfied with h (t) = t3 and ηh = Γ(4)

Γ( 13

3 )
.It follows from Theorem

2.1 that the fractional problem (4.2) as a unique solution on [1, e], and from Theorem 3.2

problem (4.2) is Ulam-Hyers-Rassias stable.
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5. Conclusion

In this paper, we have discussed the existence and Ulam-type stability of solutions for

fractional pantograph differential equations with Caputo-Hadamard derivative. We have

establish the existence and uniqueness results applying the Banach fixed point theorem.

Moreover, the Ulam-Hyers stability and the generalized Ulam-Hyers stability have been

discussed. To illustrate our theoretical results we have given two examples.
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