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EXISTENCE AND STABILITY OF FRACTIONAL PANTOGRAPH
DIFFERENTIAL EQUATIONS WITH CAPUTO-HADAMARD TYPE
DERIVATIVE

MOHAMED HOUAS!

ABSTRACT. Recently, many studies on fractional pantograph equations, involving differ-
ent fractional derivatives have appeared during the past several years. In this work, we
study existence, uniqueness and Ulam-Hyers stability of solutions of Caputo-Hadamard
type fractional pantograph differential equations with nonlocal boundary conditions. The
Banach contraction principle is used for proving the existence and uniqueness results. We
also derive the Ulam-Hyers stability and the generalized Ulam-Hyers stability of solution.
Finally, we give some illustrative examples.

1. INTRODUCTION AND PRELIMINARIES

Fractional calculus and its applications has importance in various areas of engineering
sciences, mathematical and physical [1,5,17,20,22,23]. The pantograph equations is a kind
of delay differential equations and arise in many applications such as electrodynamics, astro-
physics, nonlinear dynamical systems, probability theory on algebraic structures, quantum
mechanics and cell growth, etc. The name pantograph originated from the work of Ockendon
and Taylor [21] on the collection of current by the pantograph head of an electric locomotive.
For further information and applications, see [6, 13-15,19]. Recently, pantograph differen-
tial equations of fractional order have been studied by many researchers, for example, we
refer the reader to [3,7,9,11] and the references cited therein. Moreover, some authors have
established the existence and uniqueness of solutions for some fractional pantograph differ-
ential equations with different fractional derivative, for example, see [3,9, 11,25, 26]. The
Ulam-Hyers stability problems have been attracted by many researchers, see [2,8,12,14,18]
and references therein. The stability of fractional pantograph differential equations has
been investigated by many authors, we refer the reader to the papers [10,25,27].
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In this work, we study existence, uniqueness and Ulam-Hyers stability of solutions for
Caputo-Hadamard type pantograph differential equations of fractional order:

{ GD () = @ (t,u(t),u(\t)),t € [1,T],0 <a <1,0 < X < 1,

(1.1)
u(l)=u; —0(u), u; €R,

where %DO‘ denote the Caputo-Hadamard type fractional derivative of order o and ¢ :
[1,LT] x RxR — R, 6 : C([1,T],R) — R are given continuous functions. The Hadamard

fractional integral [1,15] of order « for a continuous function ¢ : [1,4+00) — R is defined by
A0
gl%(t) = ﬁ/l (log E) . ds,a >0,
with T (@) = [5° e“u® 'du. The Caputo-Hadamard fractional derivative [1,15] of order «

for a continuous function ¢ : [1,+00) — R is defined by

t n—a—1 d
7D%(t) = o /1 (log ;) 5%(8);8 = gl"" " (5"p) (1),

where n = [a] + 1 and 6" = (t d)n.

@t
Lemma 1.1. [I15] Let u € AC§ ([a,b] ,R). Then
n—1
al® (GD%u) (1) = u(t) = Y cillogt)’,¢; € R,
=0

where ACY ([a,b],R) = {h : [a,b] = R : 6" 1h € AC ([a,b],R)}.

We denote by X = C ([1,7],R) the Banach space of all continuous functions from [1, 7]
to R endowed with the norm defined by ||u|| = sup {|u (¢)| : t € [1,T]}.

In what follows, we present four types of the Ulam stability for the fractional problem
(1.1). Let o a positive real numbers and the function h € X, we consider the following
fractional differential inequalities:

gDO‘v(t)—gp(t,v(t),v()\t))’ < o,te(1,T], (1.2)

G0y () = Ly () y )| < h(t), teT], (1.3)
and

G0 (1) = f (ty (£) .y ()| S oh(t), t € [1,T]. (1.4)

Definition 1.1. The fractional boundary value problem (1.1) is Ulam-Hyers stable if there
exists a real number 7, > 0 such that for each o > 0 and for each solution v € X of the
inequality (1.2), there exists a solution u € X of fractional boundary value problem (1.1)
with

v (t) —u(t) < 1po, te[1,T].

Definition 1.2. The fractional boundary value problem (1.1) is generalized Ulam-Hyers
stable if there exists ¥, € C(Ry,R1), 1, (0) = 0, such that for each solution v € X of the
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inequality (1.2), there exists a solution u € X of the fractional boundary value problem
(1.1) with
v (t) —u(t)| <y (o), t €[1,T].

Definition 1.3. The fractional boundary value problem (1.1) is Ulam-Hyers-Rassias stable
with respect to h € X if there exists a real number 7, > 0 such that for each o > 0 and for
each solution v € X of the inequality (1.4), there exists a solution u € X of problem (1.1)
with

lv(t) —u(t)| < Tpoh(t), te1,T].

Definition 1.4. The fractional boundary value problem (1.1) is generalized Ulam-Hyers-
Rassias stable with respect to h € X if there exists a real number 7,5 > 0 such that for
each solution v € X of the inequality (1.3), there exists a solution x € X of problem (1.1)
with

v (t) —u(t)| < Tponh(t), te[1,T].

Remark 1.1. A function v € X is a solution of the inequality (1.2) if and only if there exists
a function f:[1,7] — R such that

(1): £ 1f (@) <ot € [1,7].

(2): : GD (t) = o (t,v(t), v (M) + f (1), t € [1,T],0 < A < 1.

2. EXISTENCE AND UNIQUENESS OF SOLUTION

Lemma 2.1. Suppose that g (t) € C ([1,T],R) and consider the fractional problem

D% (t) =g (t),t€[1,T],0<a <1, (2.1)
with the condition
u(l)=uy —0(u). (2.2)
Then, we have
1 t AN ds
= — log — — —uy. 2.
w) = 7y [ (or ) 9S00 - (23)
Proof. Using Lemma 1.1, we obtain
1 t AN ds
= — log — — — 2.4
w) = (082) 905 - (24)

where ¢y € R.
Thanks to (2.2), we get ¢g = 0 (u) — u;.
Substituting the value of ¢y in (2.4) yields the solution (2.3).This completes the proof. [

In view of Lemma 2.1, we define an operator O : X — X as
0u®) = s [ (102 D) " e (s u ) L+ w) 2
u =T b 0g p (s u(s),u(rs)) — u) —uq. .

Observe that the existence of a fixed point for the operator O implies the existence of a
solution for the fractional boundary value problem (1.1).
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Theorem 2.1. Let ¢ : [1,T] x R x R — R be a continuous function. Assume that:
(Hy) : There exists a constant w > 0 such that

lo (t,ur,u2) — @ (t,v1,v2)| < w (Jug —v1| + Jug —v2]) ,t € [1,T],ui,v; € Ryi=1,2.
(H3) : There exists a constant w > 0 such that
10 (u) —6 ()| <w|u—2v|, u,veC(1,T],R).
If the inequality
2w (logt)* < (1—w@) T (a+1), (2.6)
is valid, then problem (1.1) has a unique solution on [1,T].
Proof. Let us define M = sup,c(o 11| (¢,0,0)] and N = [|6 (0)]| . Setting

M + N + |uq]
T 1-Quw+tw)’
we show that OB, C B,, where B, = {u € X : ||u]| <r}.
For x € B,, we find the following estimates based on the hypothesis (H;) and (Hs) :

o (tu(t),u (M) < Jo(tu(t),u(Mt)) —¢(s,0,0)] + | (s,0,0)]

(2.7)
< 2wlul| + M < 2wr 4+ M,
and
16 ()] <110 (w)] = 6 (0)] + 16 (0)] < @ [|ull + (|6 (0)[} < wr + N. (2.8)
Using these estimates, we get
e < ms [ (08) T I u () O D 0@l 4l @9
u S T 0g - p (s u(s),urs))l — u uy .
< 2wr+MA4wr+N+|z|=Qutw)r+M+N+|u| <r,
which implies that OB, C B,. Now, for u,v € B, and for any t € J, we get
|Ou (t) — Ov ()] (2.10)
L (o) s w09) 50 9), 0 QN & 4 0w~ 0 )
— og — s,u(s),u(As)) —p(s,v(s),v(As))| — u) —6 (v
F(Oc) 1 gs SD Y ) SD Y ) s
(logt)” )
2W—mr—"— —v|l.
< (wr(a+1)+w lu — ]|
Since t € [1,T1], then
(log T)* )
—Ov|| < (2wt — . .
10w Ov||_(2wr(a+1)—|-w lu— o] (2.11)

By (2.9), we see that O is a contractive operator. Consequently, by the Banach fixed point
theorem, has a fixed point which is a solution of (1.1). O
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3. ULAM-HYERS STABILITY

In this section, we will study Ulam’s type stability of the fractional boundary value
problem (1.1).

Theorem 3.1. Assume that ¢ : [1,T] xRXxR — R is a continuous function satisfying (Hy).
If
2w (logT)* < T (a+1), (3.1)

then the fractional boundary value problem (1.1) is Ulam-Hyers stable and consequently,
generalized Ulam-Hyers stable.

Proof. Let v € X be a solution of the inequality (1.2) and let us denote by u € X the
unique solution of the problem

D (t) = f(t,u(t),u(\)),t€J0<a<1,0<A<1,
{ 32)
u(l)=wv(1).

By using Lemma 2.1, we have

u(t) = ﬁ /1t <10g g)al g(s) % +co= gl%g. (1) + co,

(%

and by integration of the inequality (1.2), we obtain

() = al%y () —a| < (log?)® (3.3)

I'(a+1)

TatD) (logT)™.

On the other hand, if u (1) = v (1), then ¢y = ¢;.
For any t € [1,T], we have

v(t)—u(t) =v(t)— al%u(t) —cr+ 5I% (g0 (t) — gu (),
where,

Ju (t) =¥ (t’ u (t) U (At)) and g, (t) = (t’ v (t) U ()‘t)) )
then

HIY (90 (8) = gu (1)) = HI%[p(s,0(s), v (AL)) = p(s, u(s), u (A1))]

Using (Hy), we get

117 (00 () — 90 ()] < oy [ (log 5o~ ],
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This yields that

I(e)
which implies that
00~ u O] < T+ ) Qo8 5 o) — (o) 5
Thus
o 2w (log T)*
Hence
2w (log T)* o
o) = w0l (1= F 20 ) < Fa (3.4)
Then, for each t € [1,T]
1
lu(t) —v(t)] < o+ 1) = 2 (log T)O‘U = T,0. (3.5)

So, the fractional boundary value problem (1.1) is Ulam-Hyers stable. By putting h (o) =
~vo,h (0) = 0 yields that the fractional boundary value problem (1.1) generalized Ulam-Hyers
stable. O

Theorem 3.2. Let ¢ : [1,T] x R x R — R be a continuous function and suppose that (Hy)
holds and (3.1). In addition, the following hypothesis holds
(H3) : There exists an function h € C([1,T],Ry) and there exists n, > 0 such that for
any t € [1,T]
1 t t ds
—— [ (log =)*'h(s)— < mph(t). 3.6
Fay /. 008 D7 h) T < m(r) (36)

S

Then the fractional boundary value problem (1.1) is Ulam-Hyers-Rassias stable.

Proof. Let v € X be a solution of the inequality (1.4) and let us denote by x € X the
unique solution of the problem

GD (t) = f(t,u(t),u(M),t€[1,T],0<a<1,0< <1,
{ u(l)=wv(1).
Thanks to Lemma 2.1, we obtain
u(t) = gl%(t) + co,

and by integration of the inequality (1.4), we obtain

o e [t ! ds
lv(t) — gI%y (t) +c1| < W/l (log g) h(s);.
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By (Hy), we have
() —u@| <[v(t) = 5l () -l

2 t t d
+ _w/ (log —)O‘_l\v — u\—s
o) 1 s S

Using (Hs), we can write

2w [t t ds
- < —— | (log—)*1 — —. .
() = u(O)] < omh(t) + s [ lom  o(s) —u(e)) (37)
Hence, we have
2w (log T)*
(0~ u (O] < omh(t) + %5 BT o)~ u(s)]
which implies that
2w (log T)“
- - <
o) = @ (1= 550 ) < om(o) (38)
Then, for each t € [1,T]
Tlh
[u(t) = v ()] < — mgm=oh(b): (3.9)
1- T(a+1)
So, the fractional boundary value problem (1.1) is Ulam-Hyers-Rassias stable. O

4. EXAMPLES

To illustrate our main results, we treat the following examples.

FEzxample 4.1. Consider the Caputo-Hadamard type fractional pantograph equation
1
GDIu(t) = § + = (t) + omru ($t), t€ [1,e],
(4.1)
u(l)=1-Zu(y),1<vy<e.
For this example, we have a = %, A= % and T = e.
On the other hand,

13 3
plbwv) = 7+ st T g

0(u) = 1—9u(7), l<vy<e

For ¢ € [1,2] and (u1,vy), (ug,v2) € R?, we have
3
lp(t, 1, v1) — (t, ug, v2)| < 1668 (lux —ug| + |v1 — val).
Hence the condition (H;) holds with w = 125. Also, for any uy,v; € C ([1,€]), we have

9
_ < Zluy — vy,
lg(u1) — g(v1)| < 10 luy — vy

So, (Ha) is satisfied with @ = 3.
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Thus conditions
2w (log T)™ = 2.526 7 x 1073 < (1—w)l(a+1)=0.79294,

and
(log T)*

~o"7 _—928511x103<1
wF(a—i—l) X <1,

are satisfied. It follows from Theorem 2.1, that the problem (4.1) has a unique solution on
[1,¢], and from Theorem 3.1, the fractional problem (4.1) is Ulam-Hyers stable.

FEzample 4.2. Let us consider the following Caputo-Hadamard type fractional pantograph

equation
1
GDsu(t) =14+ Lcos(t)u(t)+ Hu (%t) , te(l, e,
(4.2)
u(l) = % — ?:1 diu (ti),

where 1 < t) < t9 < ... < t, < e,d;;i = 1,2,...,n are given positive constants with
1
?:1 dz < 5

Consider fractional pantograph equation with o = %, A= %, o (t,u,v) = % =+ 2—11 cos (t) u+
2—111),9 (u) =220 diu (t;) .
For (u1,v1), (ug,v2) € R? and t € [1,¢], we have

1 1
|t ur,v1) = @t uz, v2)| < o feos (B)] [ur — uaf + o7 fvr — w2

1
< 57 (Jur — ua| + |v1 — val).
Hence hypothesis (H;) is satisfied with with w = 2. Also, for any ui,us € C ([1,e]), we
have

g(u1) — g (ug) = D diuy () =Y diug ()] <D diJug — ual.
i=1 i=1 i=1

Hence hypothesis (H») is satisfied with @ = Y7 d; < 1.
We can show that
2w (log T)*

~(0.13332 < 1.
(1-w)l'(a+1)

Let h(t) = t3. Then
1 t o ds _ T'(4) 3
) / (log )" ~*h(9) 7 <~ (Lg)tg = mh (1)

Thus hypothesis (H3) is satisfied with & (t) = 3 and n;, = %.I‘c follows from Theorem
3

2.1 that the fractional problem (4.2) as a unique solution on [1, €], and from Theorem 3.2
problem (4.2) is Ulam-Hyers-Rassias stable.
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5. CONCLUSION

In this paper, we have discussed the existence and Ulam-type stability of solutions for
fractional pantograph differential equations with Caputo-Hadamard derivative. We have
establish the existence and uniqueness results applying the Banach fixed point theorem.
Moreover, the Ulam-Hyers stability and the generalized Ulam-Hyers stability have been
discussed. To illustrate our theoretical results we have given two examples.
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