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REFINEMENT OF SOME BEREZIN NUMBER INEQUALITIES

MOHAMED AMINE IGHACHANE! AND MOHAMED AKKOUCHI?

ABSTRACT. In this work, we obtain a generalization and refinement of some Berezin num-
ber inequalities obtained by A. Taghavi et al., in this paper [Some upper bounds for the
Berezin number of Hilbert space operators, Filomat 33(14) (2019), 4353-4360]. Among
other things, some inequalities for f-connection of operators are also provided.

1. INTRODUCTION

Let B(H) denote the C*—Algebra of all bounded linear operators on a complex Hilbert
space H. An operator A € B(H) is called positive, denoted as A > 0 if (Az,x) > 0 for
all z € H. The set of all positive operators is denoted by B(H)™, and it is called positive
definite denoted as A > 0 if (Az,z) > 0 for all nonzero x € H. The numerical range of A
is defined by

W(A) .= {(Az,x) : z € H, ||z|| = 1}.
The numerical radius of A is defined as
w(A) =sup{|z|, z € W(A)}.

It is well-known that w(.) defines a norm on H, and is equivalent to the usual operator
norm ||Al| = sup{||Az||, x € H,||z|| = 1}. And for every A € B(H) we have

1
S]] < w(4) < 14

Let © be a nonempty set. A functional Hilbert space H = H(Q2) is a Hilbert space of
complex valued functions, which has the property that point evaluations are continuous
i.e. for each A € Q the map f +— f()) is a continuous linear functional on H. The Riesz
representation theorem ensues that for each A € () there exists a unique element k) € H
such that f(X) = (f, ky) for all f € H. The collection {ky} : A € Q is called the reproducing
kernel of H. If {e,} is an orthonormal basis for a functional Hilbert space H, then the
reproducing kernel of H is given by kx(z) = X, €n(N)en(2); (we can see [5, Problem 37]).

For A\ € Q, let ky := IIIZiH be the normalized reproducing kernel of H. For a bounded
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linear operator A on 3, the function A, defined on Q by A()\) := (Aky, ky), is the Berezin
symbol of A, which firstly have been introduced by Berezin. ([2,3]). The Berezin set and
the Berezin number of the operator A are defined by
Ber(A) :={A\),\ € Q}, and ber(A) := sup{|A\)|,\ € Q}.

Clearly, the Berezin symbol A is a bounded function on € whose values lie in the numerical
range of the operator A, and hence

Ber(A) CW(A), and ber(A) < w(A).
The Berezin norm of an operator A is given by

HAHber = Sup{‘(Aif)\l,if)\QH AL A € Q}

Let A,B € B(H) be positive invertible operators and « € [0,1]. The a—weighted
operators geometric mean of A and B, denoted by Af,B, is defined as

A4, B = A/ (A*1/2BA*1/2)04A1/2.

2. PREREQUISITES

To prove our Berezin number inequalities, we need the following results concerning
Young’s inequality.

The well-known Young’s inequality, for scalars asserts that for all positive real numbers
a,band 0 < a <1,

a®d' ™ < aa + (1 — a)b.

F. Kittaneh, and Y. Al- Manasrah [12], gave the following refinement of Young inequality
as

a®b = + ro(va — Vb)? < aa+ (1 — a)b, (2.1)

where g = min{a, 1 — a}.
Recently, Manasrah and Kittaneh gave the following generalization refinement of Young’s
inequality as follows

Theorem 2.1. Let a and b be two positive numbers and 0 < a < 1. Then for all positive
integer m, we have

m

(aablfa)m + " (a% - b%)2 < (aa +(1- a)b) , (2.2)
where ro = min{a, 1 — a}.

Ighachane and Akkouchi [7], gave a new generalization refinement of Young’s inequality
as

Theorem 2.2. Let a and b be two positive numbers and 0 < o < 1. Then for all positive
integer m, we have
bm+1 o am+1

(ot -8 < (=

— (m+ 1)(ab)%) < (aa +(1- a)b)m - (a“bl‘“)m7

where ro = min{a, 1 — a}.
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Later, the same authors in [3], gave a further refinement of Young’s inequality as follows

Theorem 2.3. Let a and b be two positive numbers and 0 < o < 1. Then for all positive
integer m we have

(ao‘bl’a)m + ry(w—(mﬂ)(abﬁ)
+ 7 (((@B)F = 5% )Px0,1(0) + (@) T —a%)’x(1 (@)

where 1o = min{a, 1 —a}, rp, = min{(m+1)ry", (1—ro)" —ri'} and xr(c) the characteristic
Junction.
We know from [6] that for a € [0,1] and r > 1,
aa+ (1 —a)b < (aa” + (1 —a)b")/". (2.3)

It follows from (2.3) and Theorem 2.2 that
oo m " bm+1 _am+1
(a b ) + 7 <—b .
where rg = min{«, 1 — a}. In particular, for a = %,
m +1 m+1
SUATEN S S GRYA R Iy LAl il

(a'/2'72) 52%((1 +7) 2m( —

E

—(m+1)(@)¥) < (aa” +(1-a)t") ", (2.4)
we get

— (m+1)(ab) 7). (2.5)

We need also the following basic lemmas:
In 1952, Kato [9] showed the mixed Schwarz inequality, which asserts

Lemma 2.1. Let A € B(H) and a € (0,1). Then
[(Az, )P < (| AP, ) (|AT Py, y), (2.6)
for all x,y € H.

The next lemma is a generalization of the mixed Schwarz inequality, this lemma is proved
by F. Kittaneh [11].

Lemma 2.2. Let A € B(H) and let f and g be non-negative continuous functions on
[0,400) such that f(t)g(t) =t for all t € [0,400). Then

[(Az,y)[* < |IF(|AD/l[lg(| A Dyl (2.7)
for all x,y € H.
The third Lemma follows from spectral theorem for positive operators and Jensen’s in-

equality, this lemma is proved in [13].

Lemma 2.3. (McCarthy inequality) Let A € B(H) A > 0 and let x € H be any unit vector.
Then

(a) (Az,z)P < (APx,z) for p>1,
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(b) (APx,z) < (Az,x)P for 0 <p<1.

Dragomir in [4] obtained an useful extension for four operators of the Schwarz inequality
as following.

Theorem 2.4. [1] Let A,B,C,D € B(H), then for all z,y € H we have the following
inequality

(DCBAz,y)|* < (A*|B]* Az, z)(D|C*|* Dy, y).

3. REFINEMENT OF SOME BEREZIN NUMBER INEQUALITIES

In this section we provide some improvements to some inequalities for the Berezin number
due to Ali Taghavi, Tahere Azimi Roushan, and Vahid Darvish [15].
Our first main result in this section is the following Theorem.

Theorem 3.1. Let A, B, X € B(H) be such that A, B are positive definite, and o € (0,1).
Then form =1,2,..., and p > 2m, we have

berp((AﬁaB)X) < ber(a(X*AX)ﬁ +(1 - a)(AﬁQGB)M({%a))m

- /{2&((1()\)4'(2()\)),
where
o ( (Ao BYTT0 iy oy )™ H1 — (X* AX) 2o oy, ey ™+
at = e — et
((Af2a B)20=m ky, k) — (X*AX)20m ky, ky)
—(m 4 D[((X* AX) T oy, k) (Afpe B) F0-3 oy, 15))]%),
and
G(\) =
P~ ~ N SN ~ m __ b A ~ m 2
o] (X" AX) 77 oy, o) (At BT by, )] — (At B) T iy ) ¥
XX(oé](Oé)

~ A ~ ~ m ~ ~ m 2
+ (X AX) T oy, o) { (Ao B) T by, b )% — (X*AX) T oy, ) )
X))

where 7o = min{a, 1 — a}, 7, = min{(m + )rg*, (1 —ro)™ — 7'}
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Proof. We have

|<A1/2(A71/2BA71/2)04A1/2X]%)\,]%A>|p
(X*AX by, ba) 5 (AY2(A12 BAV2Y20 4112, )5
(by Theorem 2.4)
X*AX]C)\ kj>\ T <A1/2(A—1/QBA—1/2)2aA1/2]%)\’ ]%)\>%)m

(A8 B) Xex, kn)|P

IN

by Lemma 2.3 (a))
(X" AX) 7 oy, ) { (Ao B) T oy ) )
y Lemma 2.3 (a)).

IN

(¢
< (X AX) By, b B (At B)Fr o, o) 155 )
(
(1«
(b

So,
((AfaB) Xy k)P < (a(X*AX) TRy, ) + (1 — @) (Atoa B) 70 by ) )
(G + GN)
(by Theorem 2.3)
< ber(a(X"AX) 7w + (1 - )(AfeaB) 70 )
~(G V) + &)
Taking the supremum over A € €, we deduce the result. O

The following Theorem is proved in [15].

Theorem 3.2. [15] Let A;, B;,T; € B(H) fori = 1,2,3,...n, and let f and g be non-
negative continuous functions on [0,+00) such that f(t)g(t) =t, for all t € [0,400). Then
for p > 1, we have

ber? ( z": AfTiBi) <
i=1

The second main result in this section is generalization and refinement of the above

p—1

ber[ Y- (B (TN B + 42T AD)) |

i=1

Theorem.

Theorem 3.3. Let A;, B;,T; € B(H) fori=1,2,3,...,n, and let f and g be non-negative
continuous functions on [0,400) such that f(t)g(t) = t, for all t € [0,+00). Then for
m=1,2,3,..., and r > m, p > m, we have

n npfm/r n . %
bert (S ATB) < " ber (SUBL TR + (41174 %))
- mbEoy,

AeQ
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where
W BT B by b = (AL (DD ALy )
A) = —— R
W 2m Z( ([BEFA(T ) Bil vk, k) — ([AFg>(ITi) Ail e x, f)
—(m + DA (T Ail o b, k) (B £2 (1T ) Bl kx,bﬂ%)
Proof. We have,
‘<zn:AZ‘Tz‘Bi/%,\J%,\>‘p = ‘zn:(TiBsz,mAiff,Q‘pS [zn:KTiBi]%MAiif)\H}p

i=1 =1 i=1

< (S IA(TDBibslllg(Ty Askall) (by Temma 2.2)
i=1

< (ST Bk, FTNBika) 3 (g(1T7 ) Ask, g(1T7 D Aiker)? )
=1

2
2

<nP” IZ (IT3)Bikx, F(ITi)Bika) % (g(|T5 ) Asker, g(T5 ) Asker) >

by convexity of the function t — ¥

<PV S" (B FA(T) Biba, ) 35 (A5 g (1T ) Aier, ) 20

=1
< S (B AT B b, o) (AT 2T A B o B )
=1
(by Lemma 2.3 (a))
<P VY [UBE AT B b b + (AT (T D AT B )] ™ — €Y
i=1
(by inequality (2.5))
< S (0B PATIDBIE + AT (T DAL . n) =)
=n om/r 2:21 i i JBifm 19 (T AL ™) )k, ka &(

by Lemma 2.3 and concavity of the function ¢ — £ Taking the supremum over A, we
deduce the result. This completes the proof. O

Remark 3.1. Taking m = r = 1, in Theorem 3.4 we obtain a refinement of Theorem 3.2
obtained by Ali Taghavi et al., in [15].

Choosing f(t) = g(t) = V/t, and T; = I for i = 1,2,...,n, in Theorem 3.4 we obtain the
following simpler form.

Corollary 3.1. Let A;, B;,€ B(H) for (i = 1,2,3,...,n). Then for m = 1,2,3,..., and
r,p > m, we have

n p—m/r m - r
beVJ’(;A}kBi) < n2m/r berT(;(]Bi‘% + ’A"%)
— inf £(N),

AeQ
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where
n 22 A~y 2o x> 2
o) = (<\B\w’il@ o) — (A ey )
- m 2p & o~
o= (Bl o, Fa) — (| Asl e, o)

2p A ~ 2p A A m
—(m A DA e, Ba) (| Bil 7 by, B % ).

This theorem is proved in [15].

Theorem 3.4. [15] Let A;, B;,T; € B(H) for (i =1,2,3,...,n), and let f and g be non-
negative functions on [0, +00) which are continuous and satisfy the relation f(t)g(t) =t for
allt € [0,400). Then for a € [0,1] and r > 2max{«a,1 — a}

n

n
ber? (3 AITB;) < P lber (Y- (alB AT B + (1 - o)[4;g*(1T7))A T )).
i=1 1=1
The third main result in this section is generalization and refinement of Theorem 3.4.
Theorem 3.5. Let A;, B;,T; € B(K) fori=1,2,3,...,n, and let f and g be non-negative

continuous functions on [0,400) such that f(t)g(t) = t, for all t € [0,+00). Then for
m=1,2,3,...,and r > 1, p > 2mmax{a, 1 — a}, we have

ber? ( z": A;‘TiBi)

=1
<0~ Fber® (Y (al B ITN B + (1 - a)[A7 (T ) A7)
=1
— inf €N,
where
e = Totsh BT BT Ry R (A ()AL T by
2SN BT B E b ) — (A7 (T A0 oy, )

— (m + DA 2T AN T o, k) (B £2(1T5 ) B o o, o) 3 ).

Proof. Using similar arguments as used in Theorem 3.2, we have,
n
A A\ P
’< ZAfTiBik,\7/€,\>‘
i=
<P 12 (T Bik, ST ) Bika) g (17 ) ik, 91T Ais) &

P\ L. p-e) \m
=0 12( (B rA(Ti)B ]k)\,k?)\>ﬁ<[A;~kgz(|ﬂ*|)Ai]k;>\,k;A>2m(17a)) .
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So,
‘<ZA?TiBz1%A,EA>’p
i=1
= IZ( (1B P(IT) B mim s, b (AP (T ) AT oy, ) ) "
(by Lemma 2.3)

n —_=

A~ A~ p A~ A~ P
<P S [al(Br AT BT fa, b+ (1= ) (AT ) AT oy, )]
i=1

—£&(A) (by inequality (2.4))

< a5 (@B AT BIFS + (1= AT (T )AL ) o )

i=1
—=£(A)
by Lemma 2.3 and concavity of the function ¢ — £ Taking the supremum over A\ € €,
we get the desired inequality. This completes the proof. ]

Corollary 3.2. Let T; € B(H) for i = 1,2,3,...,n, and let f and g be non-negative
continuous functions on [0,400) such that f(t)g(t) = t, for all t € [0,+00). Then for

m=1,23,..., and r > 1, p > 2mmax{«a,1 — a}, we have

ber?(3°T) < Fber (Y (oL + (1 - a)lg(Ty )T w)) "

i=1 i=1
- R

where

€N - zn:( (1T )] o o, )™ — ([P (T 770 oy, o)™

- m — P~ A
2m = (LT D m kx, ka) — (g2 (1T 70 oy, Fiy)

— (m + DTV o, ) F2T7 DT e, B ).

4. SOME RESULTS FOR f-CONNECTIONS OF OPERATORS

The aim of this section is to give some Berezin number inequalities for the f-connection
of operators.
Let f be a continuous function defined on the real interval J containing the spectrum of the
operator A71/2BA~1Y/2 where B is a self-adjoint operators and A is a positive invertible op-
erator. By using the continuous functional calculus, Tafazoli et al. [14] defined f-connection
oy as follows:

AoyB = AV2f(AY2BATY2) A2,

The first main result of this section and reads as follows.
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Theorem 4.1. Let A, B, X € B(H) be such that A, B are positive definite. Then for all
integer m, and r > 1, we have

ber™ (Ao pB)X) < 27 ber ™ ((X*AV2f2(ATY2BATY2) A2 X )" 4 A7) — inf £(%),
S

where

§(N)

B L(<X*A1/2f2(A—l/QBA—l/Q)Al/QX]%)\,]%>\>m+1 _ (A];: i >m+1
2m (X*AV2f2(A=12BA-Y2)AY2 X ky, ky) — (Aky, k)

)

W>

SE

—(m+ (X AV HATPBATY) AV Xy k) (Al Ba))
Proof. We have,
(Ao B)Xky, k\)[™ = [(AYV2F(ATV2BATY2) AY2 Xy ey )™
<||f(ATVPBAT2) AV X k||| AY 2Ry
< ((f(A_l/QBA_l/Q)Al/QXl%)\,f(A_l/QBA_l/Q)Al/QXl%))%(Al/le:,\,Al/Q]})\ﬁ)m
(X*A1/2f2 SRBATYRAVEX by by 3 Ak )3 )

m

< (( A1/2f (A_l/QBA_l/Q)Al/QX/%)\,]Af)\y,+ <A/:?)\,]A€)\>r) " —f()\)
( by inequality (2.5))

m

27 (X" A2 FAAT2BAT ) AV XY 4+ ANy Bn)) T =€)
(by Lemma 2.3 (a)).

IN

Taking the supremum over A € €, we deduce the result. O
Taking X = I, in Theorem 4.1, then we have the following corollary

Corollary 4.1. Let A,B € B(H) be such that A, B are positive definite. Then for all
integer m, and r > 1, we have

ber(AoyB) < 27 ber ™ (AV2f2(A12BAY2) A2 4 A7) — inf €(A).
€
where o o
5(}\) - L(<A1/2f2(141/2BA1/2)A1/2]€)\, k}\>m+1 o <Ak)\, k}\>m+1
2m <A1/2f2(A71/2BA71/2)A1/2]%>\, ;;/\> _ (Al%)\, ];/\>

—(m 4+ 1)((AV? PHAT2BATYZ) A2y k) (A, B)) B )

Taking r = 1, X = I, and f(t) = /¢, in Theorem 4.1, we have the following simplified
form.

Corollary 4.2. Let A,B € B(H) be such that A, B are positive definite. Then for all
integer m, we have

ber(AtB) <27 ™ber™(A+ B) — )i\relgf()\),
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where

1 <<B/2:,\,/2:,\>m+1 — (Aky, key)ymt1

s = m (Blex, k) — (Aky, k)

—(m + D)((Aky, b ) (Bhiy, b)) F ).
The second main result of this section and reads as follows.

Theorem 4.2. Let A, B, X € B(H) be such that A, B are positive definite. Then for all
integer m, and r > 1, we have

m

“ (I A2 A2 AT AV X g, + ([ Al )

— f A, A
)\1711126 5( b 2)

H(AO-fB)XHber < 2 "

where
(X*A1/2f2(A_l/QBA_l/Q)Al/QX]%AI, ]%)\1>m+1 _ <A]%)\2’ ]%)\2>m+1
(X*AV2f2(A-12BA-V/2) A2 X k) Ky, ) — (Aky,, k)

£(>‘1’)‘2) = 2%(

—(m (XA A2 BAV) A2 X Ry oy, ) (A, ) ).

Proof. We have,

(Ao y B) Xk, k)™ = (A2 FATV2BATY) AV Xy ey )™
< [(FATVEBATZ) AV Xl AV )™
< ( ATV2BATYR) AV X h (A 1/ZBA_1/2)A1/2X/2:,\1>%<A1/ZI%A2,A1/2]}A2>%)m

[SIE

~ ~ 1 ~ ~ m
((X* A2 (A2 BATY) A2 X Ey, iy, )2 (Al o) ?)
2 (<X A1/2f2( I/QBA71/2)A1/2X]%>\17]%>\1>T + <A]%A27]%A2>T)T _ 5()\1’)\2)
( by inequality (2.5)).
Taking the supremum over Ay, Ay € €2, we deduce the result. O

Letting f(t) = v/t, then for m = 1,2, ..., we have the following corollary.

Corollary 4.3. Let A, B, X € B(H) be such that A, B are positive definite. Then for all
integer m, and r > 1, we have

I(AB) X[, < 27™(|X* BX [y, + [|Allper) ™ — b E(A Ag),
1,260
where

5()‘17 )‘2) -

L(<X*BX7%A1J%,\1>"LH — (Aky,y, iy, )™
2m <X*BX]%)\1, ]%)\1> - <A]%)\2, ]%)\2>

—(m + 1)((Akyy, oy ) (X" BX oy, ) % ).
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