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SOME INTEGRAL INEQUALITIES FOR FUNCTIONS WHOSE
ABSOLUTE VALUES OF THE THIRD DERIVATIVE IS CONCAVE
AND r—CONVEX

BAHTIYAR BAYRAKTAR

ABSTRACT. In this paper, parameterized integral inequalities of the Hadamard and Simp-
son type are obtained for concave and r— convex functions. For some values of r, these
inequalities are obtained by using special tools for positive real numbers. It should be
noted that in special cases, some estimates are in the same order as the estimates existing
in the literature.

1. INTRODUCTION

It is known that the theory of convexity occupies an important place in optimization
problems. In recent years, much more attention has been paid to the refinements and
generalizations of the results obtained for classical convexity.

Hermite-Hadamard’s integral inequality has a very important place in the theory of
convexity. This double inequality is stated as follows in the literature (see [14]):

Let f: I C R — R be a convex function and let a,b € I, with a < b. The following

double inequality
f(a+b)< 1 /abf(ac)dxﬁw-

2 “b—a 2

For this reason, the absolute majority of studies in convexity theory are devoted to finding
the upper bound for this inequality for various classes of convex functions. These estimates
were obtained mainly by using the properties of convex functions, the classical Hélder and
power mean inequalities, and through fractional integrals (e.g. [2—6,9, 11,12, 17,20,22, 20,
29,34] and the references therein).

Along with the inequality Hermite-Hadamard type, well known Simpson type inequality,
which is provided in the literature as follows:
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If f:[a,b] — Risa four times continuously differentiable function on (a,b) and |f®* |, :=
sup ‘f(‘l ‘ < 00, then

z€(a,b)
[P o (5] -5 [ o < B

Few papers are devoted to the refinements and generalizations of Simpson—type inequali-

- 2880

ties for the different classes convex functions (e.g. [10,16,19,27,28,30,31] and the references
therein).

The integral version of Jensen’s inequality in the literature (see [23] inequality (7.15) page
10) is given as follows:

2t b
¢< f o ) [ o) < [ ot7@aota) (11)

Jensen inequality are true for all convex ¢ and f € L(a,b) and o a non—negative measure.
If the ¢ function is concave, then the inequality is reversed.

The literature studies various classes of convex functions. One of them is the class of
r—convex functions. The idea of the r—convex function is based on concepts that were
introduced independently by Martos in [21] and Avriel in [1].

The following definitions are well known in the literature:

Definition 1.1. [13] Let ¢ : [a,b] — R*. If for all £ € [0,1] and of positive numbers z,y
€ [a, b] inequality

s < 7RSO A

is true, then we say that ¢ is r—convex function.

Remark 1.1. Obviously, for » = 0, we have log—convex functions, and for » = 1, we have
ordinary convex functions. In addition, if ¢ is r— convex in [a,b], then ¢" is a convex
function (r > 0).

The concept of r—convexity plays a very important role in mathematical programming [1].
A number of refinements of the estimates of the Hermite-Hadamard inequality for »—convex
functions can be found in some papers [7,8,15,18,24,25,32,33,35] and the references therein.

In the literature, there are studies in which functlons are considered whose absolute values
of the third derivatives are convex (for example, [16,17,20,34]).

In [34] S. Wu et al. formulated the lemma:

Lemma 1.1. Letv € R and let f : I C R — R be a thrice differentiable function on I°(I°
is interior of 1) and a,b € I with a <b. If f"" € L|a,b], then

— ) fla v b —a
d-uf@reroie 1 [ tade -2 o) - - o) (13)

_ (b I2a)3 /01 H(1 — £)(2t — v) f" (ta + (1 — t)b)dt.
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Based on this lemma, parameterized Hermite-Hadamard type inequalities are obtained
for quasi—convex functions.

In this study, by introducing a parameter in the integration interval, several new para-
metric Hermite-Hadamard inequalities and Simpson—type inequalities are obtained for func-
tions, such that the absolute values of their third derivative are concave and r-convex func-
tions.

2. PRELIMINARY RESULTS

The results obtained are based on the lemmas below.

Lemma 2.1. Let f : I C R — R be a thrice differentiable function on I°(I° is interior of
I)anda,bel with0 <a<b<oo. If f € L|a,b] and h € (0,1] then we have

MO0 L [ papte + "= 170) - /) (21)

= (61—22/)3 /Oh t(h B t)(?t _ h)f’”(ta + (1 _ t)b)dt,

where ¢ = ha + (1 — h)b.

—c
12

Proof. 1t’s obvious that
h h
/ t(h — £)(26 — h) f"(ta + (1 — t)b)dt — / (=263 + 31t — B20) f" (ta + (1 — D)b)dt.
0 0
By integrating this integral by parts thrice, we get:

h
/ (—2t% 4 3ht* — 2t) f" (ta + (1 — t)b)dt
0

1 h

i /0 (=6t + 61t — h2) f" (ta + (1 — t)b)dt
h? , , 1 h /

A ORRACI R m/o (—12¢ + 6h) f'(ta + (1 — t)b)dt
h? 6h

=~ VO - FEl + gl @+ f)

12 h
If we make the change of variables at + (1 — ¢)b = z, then we can write:
h
/ (=213 + 3ht* — R%t) f" (ta + (1 — t)b)dt
0

’ b
= —(aﬁib)Z[f'(b) ] + %[f(c) + f(b)] — ﬁ/c f(@)dz.

By dividing both sides of this equation by the expression (b;;f?g and taking into account the

fact that h = 2:—2, we get (2.1). The proof is completed. O

Remark 2.1. If we take the value of v parameters in identity (1.3) and h parameters in
identity (2.1) as 1, these two identities are equal.
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Corollary 2.1. Under the conditions of Lemma 2.1, the following inequality holds:

‘f(c) O [ < PEE ) - o) (2:2)

(b—a’
121

+ (1] + |12]),

where
%
= / (26 — 3he? + h21) | " (ta + (1 - 0)b) d,
0

h
11| = [l (=263 4 302 — B20)|f" (ta + (1 — £)b)|dt.

2

Proof. From Lemma 2.1 and triangle inequality, we obtain
b 1 b b
‘f(c)+f< ) _ b_c/ Fo)de| <

b—a
12h /’t —t)(2t = B)[ [f" (ta + (1 — t)b)| dt.

17 ®) - 1) (2.3)

Since the expression t(t — h)(2t — h) is positive for ¢t € (0, %) and negative for t € (£, h),
the last integral in (2.3) will have the form:

/Oh [t(t — h)(2t — h)| | f" (ta+ (1 = t)b)| dt = I1 + I,

h
where || = /2 (2t3 — 3ht* + h2t) |f" (ta + (1 —t)b)| dt,
0

h
| = _ﬁ (26 — 8h% + B2t) | " (ta + (1 — £)b)]dr.
2
The proof is completed. O

Lemma 2.2. Let f : I CR — R be a thrice differentiable function on I° and a,b € I with
0<a<b<oo. If f€ L[a,b] and h € (0,1], then we have

e oA oy ()] o,

—c
where

¢ = ha + (1 - h)b,

h

L= /0 22t — h) f" (ta + (1 — )b)dt,

h
-,

(2t — h) (b —t)* f"(ta + (1 — t)b)dt.

vl



SOME HERMITE-HADAMARD AND SIMPSON TYPE INEQUALITIES 63

Proof. By integrating the first integral by parts thrice, we get:
h

= /0 132t — B) f" (ta + (1 — t)b)dt = —

a—b /0_ (6'52 - 2ht) f"(ta+ (1 —t)b)at

h? , b—a 1 L /
:_m‘f <b_ 2 h>+(a_b)2/0 (12t —2h) f'(ta + (1 — t)b)dt

- < b)zf/< )+ g () ¢

® fta+ (1 — t)b)dt.

a—b3 0

So as

b b
. i2b)3 /0 fta+ (1 —t)b)dt = G i2a)4 /bb-Tah f(x)dz,

h b—a 4h b—a
I = h —fb- h
! (a—b)2f< 2 )+(a—b)3f< 2 )
12 b
dx.
s 0+ G [ RICLE
Similarly, for the second integral, we get

oo (550w O e (-5

12 [b-t5th

we get

I =

By summing these two integrals and taking into account that b — bg—“h = %b, we obtain

ho+ k=~ 2 [0+ 50+ 40 (0)| 4 s [ e

(b—a)?
By dividing both sides of this equation by the expression (bg}?)a and taking into account
the fact that h = 2=¢, we get (2.4). The proof is completed. O

Corollary 2.2. Under the conditions of Lemma 2.2, the following inequality holds:

/f {f()+f() 2f<c+b)]|§(b a)’ (Ll 1L, 25)

| b—c 2 12h

where

[Ny

1| g/o £2 (h — 20) | " (ta + (1 — £)b)]dt,

11| <A (2t — h) (h— )2 " (ta+ (1 — £)b)]| dt.

2

Proof. The proof follows from Lemma 2.2 and the inequality of triangles. O
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3. SOME NEwW RESULTS FOR HADAMARD TYPE INEQUALITIES

Theorem 3.1. Let f: I C R — R be a thrice differentiable function on I° and a,b € I
with 0 < a <b<oo. If f€ L{a,b] and |f"]| is a r—convex function on [a,b], then for all
h € (0,1] and for all r € R\{-1,0,1}, we have

where

c=ah+ (1—-h),
() =[O + (1" (@) = "B L,

rk

[p(0) — (L))" T, (1 +ir)

Proof. Due to the fact that |f”| is a positive r—convex function, then

1
T

" (ta+ (1 =) < @+ Q=D [F" O] = e (@)

and in inequality (2.2) for integrals we can write
% 1 h 1
| < / (26% = 382 + B2t) @7 (t)dt, |Io| < —/h (26° — 3ht? + B2t) o7 ()dt.
0 2
By calculating first integral by parts thrice, we get:

h
L] < /2 (26° — 3ht> + ht) 7 (t)dt
0

h

= - ) /5 (612 — 6ht + h2)p T+ (t)dt
0
2
P,
_ h=Py(r) y

[p(1) = (0)] (141
(—3e* 7 (&) - > 0)
1

[p(1) = p(0)] (2+3) 7 (a2t —6h) >

= h2Py(r)

1 h
5(,02+% (5) + @2+%(O):| + 6hP3(7“)(p3+%(0)

— 12Py(r) [so‘”% @) - so4+%<0)] :
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Similarly enrolling, for the second integral, we can write:

1
Bl < 2Pr) [ + 502 (5)

P (h) — P (g)} :

By summing the last two inequalities, we get:

— 6hPy(r)* ¥ (h)

—+ 12P4(7")

0] +1B] <BR) |20+ 2 (5)+ e ]
+6hPy(r) [¢*7 (0) — 7 ()]

h
+12P1() [ 0) - 26 (5) + et ).

65

(3.2)

By taking into account inequalities (3.2) from (2.2), we obtain inequality (3.1). The proof

is completed.

O

Theorem 3.2. Let f: I C R — R be a thrice differentiable function on I° and a,b € I with
0<a<b<oo. If f" € L[a,b] and |f"| is a r—convex function on [a,b], then with r =0

and |f"()] # |f"(a)| for all h € (0,1], we have

|f ¢) + f(b) _c/f

. — )2l
< ¢ {!f’(b) @+ ) x F}

(u—v)*

where

u=[f"®)I, v=1[f"a),
F:2A<uh,vh)—6L(u )+3L2( % %)

(3.3)

and A(&,T) = 5‘” L, T) = m are respectively the arithmetic and logarithmic mean

of two distinct posztwe numbers.

Proof. Let R = “ f’"% ;J Since the |f”| is a positive log —convex function (see Remark 1.1),

we have
" (ta+ (L= 1)b)| < | £ ()| | £ ()]~ = |£"(b)| R".

By considering (3.4), for integrals in inequality (2.2), we can write
5
L < |f"®) / (2t° - 3t + h?t) R'dt and
0

h
|| < |f"(b)| / (—2t3 + 3ht? — h2*t)R'dt.
h/2

(3.4)
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By calculating both integrals by parts thrice, we get

h? 6h 12
L] < |f"(b)l anR (1-05R"?) + - (rM? — 1)] ,

m*R In*R
h2
n?R

(Rh + 0.5Rh/2) -

1 Slf”’(b)ll - (Rh_Rhﬂ)].
n

By summing the last two inequalities, we obtain

L] + || < ‘fm(R)‘ h2 (1+Rh) Gh(l_Rh) 412 (Rh/2_1)2]

Given the fact that

B2 (1+Rh) _p2

1+ (%)hl = QUL;A (uh,vh) )

6h(1_Rh)_6_h2 uh—’Uh B 6hL(h h)
InR  wh lnovh —Inuh wb
12 )2 2 RM? _1 _3h2 2 hy2\]2
1 1
= L?
nu—Inv2  (u—0v)2 (u,0),
we can write
RPul" hoh hoh 2(. h
_ /2, h/2
L] + |12 < (u—v)QL (u,v) x [2A(u U ) 6L(u U )+3L (u U )} (3.5)
By taking into account (3.5), from (2.2) we get (3.3). The proof is completed. O

Theorem 3.3. Let f: I C R — R be a thrice differentiable function on I°and a,b € I with
0<a<b<oo. If f € L|a,b|] is a r—convex on [a,b], then withr =1 for all h € (0,1],
we have
fle)+ f( 1 b b c
IO L [ ] < 2E 1) - ) (3.5

(b o)’
384

_l’_

[ f"(@)| + =) |7 @],
where ¢ = ha + (1 — h)b.

Proof. Since the | f"'] is an ordinary convex function (see Remark 1.1) on [a, b], for integrals
n (2.2), we can write

h/ 2
L] < |f"(a) \/ 2(t — h)(2t — h)dt + | " (b y/ h)(2t — h)(1 — t)dt,
L] <|f"(a) \/ ho—t)(2t — h)dt + | £ (b \/ £)(2t — h)(1 — t)dt.
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By Calculating all the integrals in these inequalities, we get

7h)h* 2315 (30 — 23h)h*
I /// ( /// I < " " b )
nl < 2 @)+ CO TR ) < B g B0 2B,
By summing the last two inequalties, we obtain
h*
] + 18| < 35 (A" (@)l + 2 = W O] - (3.7)
By taking into account (3.7) from (2.2), we get (3.6). The proof is completed. O

Remark 3.1. If h = 1, then from (3.6), we get

a b —a
|f o) + L[ el <220 70) - ) (33
(b /// "
Remark 3.2. If || f""]| o :=sup|f"”(z)| < oo, then from (3.8), we get
z€[a,b]
b 1 b b
HO IO L [ pwan] < P20~ @)+ O

An estimate of the same order was obtained by J. Materano, et al. in [20] ( Theorem 2.2).

Theorem 3.4. Let f : I C R — R be a thrice differentiable function on I°and a,b € I
with 0 < a < b < oo. If f/ € Lla,b] is a r—convex on [a,b], then with r = —1 and
[f"(a)] # | f"(b)] for all h € (0,1], we have

flo+fb) 1 f°
‘ 2 _b—c/cf(x)dxS

(- Gu,0)A(,p)
96h  A%2(u,v) — G*(u,v)

1 m) - o) (3.9)

h? +

+

where

o=@, u=If"®), p=hut(Q—hp, 7= ——
(u—v)

and A(u,v) = 4, G(u,v) = Vou, H(u,v) = gj_—z are respectively the arithmetic,

geometric and harmonic means of two distinct positive numbers.

Proof. Due to the fact that |[f”'| is a positive r—convex function, then with » = —1, we

" i Sl - -
770+ 000 = (g ) = oo

Let 1(t) = v+ (u — v)t, then for integrals in (2.2), we can write:
L] _ /% 25— 30t + W%t . |Dy| /h 263 — 3ht2 + W%t
0 ¥(t) Cou T Jn W(t)

By dividing a polynomial by a polynomial, we calculate both integrals, and then we sum

can write

VU

up the resulting inequalities. After simplification we get:
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vulhu+ (2—h)v] | o  4v[hu+ (1 —h)v], 4v[hu+ (1 — h)v]
I+ 1Bl = ——m =0 [h =02 " Thut@—h)P
_vu(vtp) [, vp o, Avn
= T [P

Given the fact that

vt = 2A(v,,u),
vu(v +p)  LTouA(v, p)

1 wud(o,p) 1 G*u,0)A(v, p)
4(11,—?})2_2(11,—@)2 8(

%) —ou  8A%(u,v) — G?*(u,v)’
G2 (v

dop dop )
2

= i an
(u—v)> (u—v)? A% (u,v) -G d

(u,v)

dop 2o 2 H(v, )
In————=In . =In——"+
(pu+v) ptv o ptv A(v, p)
we get:
1 G ( )A(vhu’) 2 GQ(U’M) H(v,,u)
I I h 1 3.10
B+ 5] < 8 A2(u,v) — G2(u,v) * A2 (u,v) — G?*(u,v) " A(v, ) (3.10)
By taking into account (3.10) from (2.2), we get (3.9). The proof is completed. O

Corollary 3.1. If the conditions of Theorem 3.4 are fulfilled, then with h = 1, we get

b I
|f(a)‘2|'f( )_b_a/a f(z)dz (3.11)
a. . , (b—a)3 G?(u,v)A(u,v)
|f (b) - f (CL)} + 96 X A2(u,v) _ GQ(u,v)
G2 (U, ’U) H(u’ U)

. {1 * A2%(u,v) — G2(u,v) = A(u,v) } ’
where v = | " (a)|, u=|f"(b)|.
Proof. With h =1 from Theorem 3.4, we get (3.11). The proof is completed. 0

Theorem 3.5. Let f: I C R — R be a thrice differentiable function on I° and a,b € I
with 0 < a <b<oo. If f € L[a,b] is a concave on [a,b], then for all h € (0,1], we have

lf“);f“’) o [ rwe <
(b-c? [f,,,<2ha+(5—2h)b>‘+

“170) — 1) (3.12)
o <3ha + (55— 3h)b) ] |

* 144 )

where ¢ = ha + (1 — h)b.

5




SOME HERMITE-HADAMARD AND SIMPSON TYPE INEQUALITIES 69

Proof. From Lemma 2.1 and triangle inequality, we can write

flo+f0) 1 °
‘ 5 - /f(ac)dx

3.13
e/ (3.13)

(b—a)?®
12h

/Oh t(h — £)(2t — h) f"(ta + (1 — t)b)dt| .

—C170) - (o) +

Considering that t(h — t)(2t — h) = —t(t — h)?> — t2(t — h), then for the integral on the
right-hand side of last inequality, we can write:

/Oh t(h — 6)(2t — h) f"(ta + (1 — O)b)de| < |1+ I,

where

| = ‘/ F(ta + (1 — t)b)de|,

|12|—‘/ £2(t — h) f"(ta + (1 — £)b)dt|.

For each integral, we use the Jensen inequality (1.1) for concave functions f”’on [a, b]:

</ "t — ny2ar] | <J"oh[at +fo(1 — )bt gdt— h)2dt>‘ (3.14)
and calculate the integrals:
h h4
/0 t(t — h)?dt| = - and

h h 4 3
- e (@ — b)t* + (b — 2ha + 3hb) ¢

_ ' 2ha+(5-2h)b
6 10 ’

By substituting the obtained values of the integrals in the inequality (3.14), we get

ht 2ha + (5 —3h)b
I " . 1
0l < g5 17 (PR (3.15)
Similarly, for the second integral, we can get
h Mat + (1 — t)b]t2(t — h)dt
|I2| < / tz(t _ h)dt f/// fO [a _{'](1 ) ] ( ) (3.16)
0 J#2(t — h)dt

h4
12

o <(3ha + (55 - 3h)b> ‘ |

By taking into account (3.15) and (3.16) from (3.13), we obtain (3.12). The proof is com-
pleted. O
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Corollary 3.2. Let f : I C R — R be a thrice differentiable function on I°and a,b € 1
with 0 < a <b<oo. If f € La,b] and is concave on [a,b], then we have

b 1 b
f(“);f( ) _ b_a/a fl2)da (3.17)
/ / b—a)’ " 2 3b " 3 2b
2150 - 5@+ S [ () | (2.
Proof. With h =1 from (3.12), we obtain (3.17). The proof is completed. O

Remark 3.3. If || f"|| o, :==sup|f” (z)| < oo, then from (3.17), we get
z€(a,b)

fla+fo) 1 b
‘ 2 _b—a/mf(x)dﬂcS

4. SoME NEwW RESULTS FOR SIMPSON TYPE INEQUALITIES

15wy - ) + 8

a)3
LN

Theorem 4.1. Let f: I C R — R be a thrice differentiable function on I° and a,b € I
with 0 < a <b<oo. If f€ L|a,b] and |f"| is a r—convex function on [a,b], then for all
h € (0,1] and for all r € R\{-1,0,1}, we have

‘b_c/ i [f<>—2+f<>+2f(%b)H (4.1)
b—a)? WPy (r) (%)
< Eo il onpy (1) [02470) - o ) ,
~12Py (1) [ (0) — 2047 (B) + ot (1)

where
c=ah+ (1 — h)b,
p(t) =" O + (@] = ")),

rk

[p(0) = ()] Ty (1 + 7).
Proof. Given the fact that |f”| is a positive r—convex function on [a, b], then
(e + (1= 6)D)] < [Uf"@F + 1 =) ")) = o7 (t)

and in inequality (2.5) for integrals, we can write

nis [P 202 etoa (bl< [ o m0- 02t o
By integrating both integrals by parts thrice, we ge%c:
I < @w”% (g) + 21 Ps(r) (2057 (ﬁ) + <p3+%(0)]
+12Py(r) {so‘”% <g) - @4%(0)] :
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h2Py(r 1 [h 1 1 [h
|15 < 22( )902"’% (5) — 2hP5(1) [903"'% (h) —|—2g03+r <§>}

T (h) — o™t (g)] :

By summing the last two inequalities, we get:

01+ 15l < 2R (5) +20m0) [ 0 - S m] @

— 12P4(7")

1 1/h 1
~12Ry(r) |t () - 2047 (5) 46 0)].
By taking into account inequalities (4.2) from (2.5), we obtain inequality (4.1). The proof
is completed. O

Theorem 4.2. Let f: I C R — R be a thrice differentiable function on I°and a,b € I with
0<a<b<oo. If f" € Lla,b] and |f"| is a r—convex function on [a,b] and r = 0, then

for all h € (0,1], we have
/f i~ L1245 (227)) (43

‘b—c

hu 1-h
g X 2Lz(u v) X D,
12h (u—v)

where
c=hat (1= Wb, w=|/"®)], v=If"(),
D:G(uh,vh)+2L(uh ") - 3L2(% v?)

and G, 1) =+¢Er, L&, T) = m are respectively the geometric mean and logarithmic
mean of two distinct positive numbers & and T.

Proof. Since the |f”'| is a positive log —convex function (see Remark 1.1) by considering
(3.4), for integrals in inequality (2.5), we can write

h
< [0 [ (<26 + he?) Ride,
0
h
L| < |£" ()] [I (26° — 5ht? + 4h?t — h*) Rldt.
2

By calculating both integrals by parts thrice, we get

h? 2h 12
0 <170 |t = o (o 41) 2 (021

2In’ R

h? 2h 12
I < " b Rh/2 Rh 2Rh/2 Rh _Rh/2 )
Ll < [£70) [21112}2 +13R( " ) - ln4R( )
By summing the last two inequalities, we obtain
h
£ O |52 o2 2h (R B 1) 12 h/2 2
I L] <~ |h°R — RY= -1 .
O+ 15l < Smg T TThR 1an( )
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Because of

h/2 2 2
hQRh/Q _ h2 (E) — h_ (u v)h/2 — h_G (uh,vh) s

U ul

Qh(Rh_1) B oR2 b — 2h2L( . h),

InR T WP Inoh —Inuh uh wnv
12 h/2 Rh/2—1 _3h2 h/2 . h/2 2
lnR(R )_12< InR _W[L(“ 'Y )}
1 1
= L*(u,v)

hu—Inv]2  (u—0v)2
we can write

h?ul~" 2 h _h h _h 2 h
e _ /2, h/2
Il—l—I2<(u U)2L(u,v)x[G<u,v)—|—2L<u,v) 3L (u , U )} (4.4)
By taking into account (4.4) from (2.5), we get (4.3). The proof is completed. u

Theorem 4.3. Let f: I C R — R be a thrice differentiable function on I°and a,b € I with
0<a<b<oo. If f € Lla,b] is r—conver on [a,b] and r =1, then for all h € [0,1] we

have
AL dm__[mw(c;b)}‘ w

_(b—o
- 1152
where ¢ = ha + (1 — h)b.

(h‘fl/l(a)‘ ‘fl/l ’)

Proof. Since the | f”’| an ordinary convex function (see Remark 1.1), then in inequality
(2.5) for integrals, we can write

L] < | (a)] /5 £ (h— 2t) dt + | £"(b)| /5 2 (h—20) (1 — t)dt and

|| < |f"(a) \/ h—2t)dt+ |f"(b) \/ h—t)2 (h—2t) (1 — t)dt.
By Calculatlng all integrals, we get
h4(10 3h) h4(10 —7h)
I I/I nmn I /// nmn b )
By summing the last two inequahtles we get
h*
1]+ |T2] < G [P (@)l + (2 = ) |7 (B)]] (4.6)
By taking into account (4.6) from (2.2) we obtain (4.5). The proof is completed. O
Remark 4.1. With h =1 from (4.5), we get
1 b 1 f(a) + f( ) a + b (b " "
- = + 2 .
[ e - [P0 o (L) < O )+ 1 )

This estimate was obtained by S. Hussain and S. Qaisar in [16] ( Theorem 2).
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Theorem 4.4. Let f: I C R — R be a thrice differentiable function on I° and a,b € I

with 0 < a < b < oo. If f € Lla,b] is a r—convex on [a,b], then with r = —1 and
| (a)] # |f"(b)| for all h € [0,1], we have
fle)+ f(b) c+b
o 30 (52

_-@ A ()
— 96h  A%(v,u) — G*(u,v)
A, v) oy K >]

2 1 <2 -
th+ﬁww—mmm”hlv A

where
c=ah+ (1—-h)b, v= |fm(a)|’ U= |f”/(b)|nu =hu+ (1 —h)v

and A(u,v) = HT“, G(u,v) = \J/vu are respectively the arithmetic and geometric means of
two distinct positive numbers.

Proof. Due to the fact that |f"”| is a positive r—convex function, then with r = —1, we
can write
t 1—¢t \ ! VU
"(ta+ (1 —t)b << + ) = —.
Pl Um0 = T * o)~ e

Let ¢(t) = v+ (u — v)t, then in inequality (2.5) for integrals, we get

I 5 o3 4 ht? I hoop3 _ Bhg? 4 A2t — B3
M</2 t+htdand MS/ t oht* +4h*t — h
0 P(t) vu b Y(t)

By dividing a polynomial by v (t), we calculate both integrals, and then we sum the results.

VU

After simplification, we get:

vutp) (g0 4v? <v+u> Ay ( 24 >
1 I < ———=|3h 1 — 1
Al + 2| 4(u —v)? s (u—v)Qn 20 (u—v)Qn v+
Given the fact that
vu(w+p) 1 G*(u,0)A(p,v) w2 v?
4(u—v)2 8 A%(u,v) — G%(v,u)’ (u—v)2  A2(u,v) — G2(u,v)’
vtp Al 20 op o A u2
20 v wvtp Alv,p) (u—v)2  A2(u,v) — G2(u,v)’
we can write:
1 A 3h2 + v2 In A(Uvu)
’1—1’ + ‘IZ‘ G? ( ) (U, M) AQ(u,g)—G’Q(u,U) v ) (48)

= 8 A2(u,v) — G2(v,u)

_ 1 w
A2 (u0)—G2 (u,v) In A(v,p)

By taking into account (4.8) from (2.5), we get (4.7 ). The proof is completed. O
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Corollary 4.1. If the conditions of Theorem 4.4 are fulfilled, then with h = 1, we get

/f )dz ——[Mmf(‘”b)“ (4.9)

| b—a 2
(b—a)3 G?(u,v)A(u,v)

= % A2(u,v) — G?(u,v)

1

3

8 { - AQ(’U,,U) -
where v ="|f"(a)|, u=|f"(b)|.
Proof. Indeed, with h = 1, from Theorem 4.4, we get (4.9). The proof is completed. O

2
GQ(u,v)[ o v “ nA(u,v)

M 2] u ]}’

Theorem 4.5. Let f: I C R — R be a thrice differentiable function on I°and a,b € I with
0<a<b<oo. If f€ L[a,b] is a concave on [a,b], then for all h € [0,1], we have

\b_c/f 1G] (4.10)
S%(f'"(ghaﬂig 3h)b)‘+ f,,,(7ha+(ig—7h)b)D7

where ¢ = ha + (1 — h)b.

Proof. For each integral in inequality (2.5), we use the Jensen inequality (1.1) for concave
functions f"”'on [a, b]:

h
/2 £2(2t — h)dt
0

and calculate the integrals:

|| <

I (fO% [at + 51 — t)bJt2 (2t — h)dt) | (4.11)
JoZ t2(2t — h)dt

h
2 3h 10 — 3h)b

/2 t2(2t — h)dt = — = and/ lat + (1 — OBE2(2t — hydt = —20F (10 )b

0
By substituting the obtained values of the integrals in the inequality (4.11), we get:
4 10 —
< h 1% <3ha+( 0 3h)b>}‘ (4.12)
96 10

Similarly, for the second integral, we get:

m fg[at + (1 =)o) (2t — h)(h — t)th
d ( f§(2t — h)(h — t)2dt )

|| < (4.13)

ht
96

o <7ha + (ig - 7h)b>} |

h
x A(Qt—h)(h £)2dt| <

2

By taking into account (4.12) and (4.13) from (2.5), we obtain (4.10). The proof is com-
pleted. O
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Corollary 4.2. Let f : I C R — R be a thrice differentiable function on I° and a,b € 1
with 0 < a <b<oo. If f€ L[a,b] and is concave on [a,b] then we have

fla) + f(b) a+b
Lo (]
(b—a)® (|, (3a+Tb [ Ta+ 3b

= 1152 <f < 10 )F / ( 10 >D
Proof. With h =1 from (4.10), we obtain (4.14). The proof is completed. O
Remark 4.2. If || f"|| o == sup|f"”'(z)| < oo, then from (4.14), we obtain

z€(a,b)
f()+f() a+b (b_a)g "
o [ s =g [0 o (450 < B

An estimate of the same order was obtained by S. Hussain and S. Qaisar in [16] (Corollary

7).
5. EXAMPLES OF FUNCTIONS SATISFYING THE CONDITIONS OF THEOREMS 3.1 AND 4.1

Ezample 5.1. Tt is easy to show that a positive definite linear function p(x) = pz+4q, p > 0,
q < 0 1is a 2—convex function.
Really, for r = 2 from inequality

p(at+ (1 —t)y) < [t"(x) + (1 — )" ()],
we get:
tpr+q)+(1—t)py+4q) < [tz +9)>+ (1 —t)(py +)*"? =
(tpz+q)+ (1 —t)py+ 9 < tpz+9)°+ 1 —1t)(py +q)?
t(1—t)[pz —y)]* > 0,vte0,1],Va,y € R.

Given that the third derivative must be r—convex, then from f”(z) = p(x), we get a
polynomial function

:Zakazk, ar € R and a3 <0, aq4 > 0.

Ezample 5.2. Taking into account that the function ¢(z) = /pr+¢q, p > 0, ¢ < 0 is
4—convex (the reader can easily verify this himself) using the equality f"”(z) = ¢(x),we
get:

2
(pz+q)"? + Z arz®, ai € R.
k=0

8
1@) = 1553
This function’s on any interval from [0, +00) satisfies the conditions of Theorem’s 3.1 and
4.1, and thus, the inequalities (3.1) and (4.1).
For simplicity of calculations, consider the function f(z) = ”2”—;1, z € [0,1].
The third derivative of this functionf”’(x) = x and this function is a 2—convex.
We calculate the left and right sides of the inequality (3.1) for this function.



76 BAHTIYAR BAYRAKTAR

Since a = 0,b=1,c=ah+ (1 — h)b =1 — h, then for the left side of the (3.1) we get:

o | [0+ (o) 1 b A
L.side = ‘ ; 7b_c/c ﬂdx‘
FO+FQ—h) 1t oat |
2 h khﬂdw *m’(l—h)4(3h+2)_2‘_

For convenience, we write the right-hand side of inequality (3.1) in the form:

bh— 2
R.side = Ry + (b—a) [Ro + R3 + Ry,

12h
where
b—c ., , ho ., , h |1 (1-h)?3 h%h%*—-3h+3)
And, since the ¢(t) = 1 — ¢, then
h h
e0) = 1, ¢(1)=0, ¢ B =1*§ands@(h)=1*h
4h? h\ >
= — |1 1—— 1—h)*®
Ry 15[+( 2) +(1—h) ]
48h
Ry = —[1—(1=h)?3°
3 105[ ( >,
1221 h\ o .
= 1-2(1-= 1—h)*o].
Ry 15-63[ ( 2> + )1

The correctness of the inequality is proved by numerical calculations. The calculation results
are shown in the table

Calculation table for the inequality (3.1)

h L.side R1 R2 R3 R4 R.side [R.side-L.side
0,1 ]0,020457 |0,000376 |0,007062 |0,014099 [0,007043 |0,023879 (0,003422277
0,2 ]0,01948 |0,001356 |0,024969 |0,049559 |0,024685 |0,042694 (0,023214361
0,3 ]0,018107 |0,002738 |0,049826 |0,097786 |0,048427 |0,057193 (0,039085658
0,4 (0,016513 |0,004356 |0,078988 (0,152263 |0,074702 |0,068006 (0,051582409
0,5 10,014844 |0,006076 |0,110928 |0,208368 |0,100808 |0,076094 (0,061249926
06 ]0,013213 |0,0078 |0,145071 |0,263183 |0,124836 |0,08184 [0,068626989
0,7 |0,011707 [0,00946 |0,181617 |0,315268 |0,145596 |0,085945 (0,07423839

0,8 10,01038 |0,011022 |0,221311 |0,364406 |0,162528 |0,088964 (0,078584331
09 10,000257 |0,012488 |0,26514 |0,411298 |0,175605 |0,09138 (0,082123377
1 0,008333 (0,013389 |0,313807 |0,457143 |0,185216 |0,093569 |0,085236082




Using the function f(x)
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at
20>

The results are shown in the table.

L

Calculation table for the inequality (4.1)

calculations are made for Theorem 4.1 in a similar way.

h L.side R1 R2 R3 R.side R.side-L.side

01 3,47222€-08| 0,00234573| 0,00469958| -0,00704| 1,69203€-06| 1,65731F-06
0,2 5,55556€-07| 0,00819662( 0,01651972| -0,02468| 1,31721E-05| 1,26165E-05
03 2,8125€-06| 0,01598669( 0,03259546| -0,04843| 4,31829E-05|  4,03704E-05
0,4 8,88889E-06| 0,02442383| 0,05075426| -0,0747| 9,92244E-05| 9,03355E-05
0,5 2,17014E-05| 0,03247595| 0,06945613| -0,10081| 0,000187411| 0,000165709
0,6 4,5E-05| 0,03935649| 0,0877273| -0,12434| 0,000312276| 0,000267276
0,7 8,33681E-05| 0,04450904( 0,10508923| -0,1456| 0,000476495| (,000393127
0,8 | 0,000142222| 0,04759122| 0,12146862| -0,16253| 0,000680451| 0,000538229
0,9 | 0,000227812| 0,04845744] 0,13709949| -0,17561| 0,000921474| 0,000653661
1 0,000347222| 0,04714045| 0,15238095| -0,18522( 0,001192089| 0,000844867

As can be seen from the tables (the last column), the difference between the right and
left sides of the inequalities (3.1) and (4.1) for all h is positive, i.e. inequalities holds for
any h e (0,1].
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