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AN EFFICIENT ITERATIVE METHOD AND ITS APPLICATIONS TO
A NONLINEAR INTEGRAL EQUATION AND A DELAY
DIFFERENTIAL EQUATION IN BANACH SPACES
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ABSTRACT. In this paper, a multi-step iterative method is introduced for contraction
mappings. We prove that our new iterative method converges at a rate faster than some
of the leading iterative schemes in the existing literature which have been used recently
to obtain the solutions of a mixed type Volterra—Fredholm functional nonlinear integral
equation and a delay differential equation. A numerical example is also used to show that
our new iterative scheme converges at a rate faster than a number of existing iterative
schemes for contraction mappings. As some applications, we prove that our new iterative
method converges strongly to the unique solutions of a mixed type Volterra—Fredholm
functional nonlinear integral equation and a delay differential equation. In addition, we
give data dependence result for the solution of the nonlinear integral equation we are
considering with the help of our new iterative scheme. Our results improve, generalize and
unify some well known results in the existing literature.

1. INTRODUCTION

Fixed point theory has fascinated several authors since 1922 with the celebrated Banach
fixed point theorem. There exists a vast literature on the topic field and this is very active
field of research at present. Fixed point theorems are very useful tools for proving the
existence and uniqueness of the solutions of various mathematical models (integral equa-
tions, partial differential equations, ordinary differential equations, variational inequalities,
etc.,) see [27]. For example, it can be applied to variational inequalities, optimization, ap-
proximation theory, successive approximation, game theory, optimal control, economics and
several others. The fixed point theory has been continually studied by many authors (see
for example, [1,2,27,57] and the references there in). It is well known that the contraction
conditions are very indispensable in the study of fixed point theory. The first important
result on fixed point for contraction mapping is the celebrated Banach-Caccioppoli theorem
which was published in 1922 in [13] and also appeared in [19].
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A wide range of problems of applied science and engineering are often transformed into
functional equations. Operator equations representing phenomena occurring in different
area of studies such as chemical reactions, neutron transport theory, economic theory and
epidemics, often require appropriate and adequate solutions. Thus, the process of obtaining
solutions to these equations is to locate the fixed point and approximate it value. On the
other hand, if the existence of the fixed point is guaranteed, then it is always desirable
to construct an efficient method which can be employed to approximate the fixed point
operators. Since the failure of Picard iterative method to converge to the fixed point of
nonexpansive mappings even when the existence of the unique fixed point is guaranteed in a
complete metric space, many authors have come up with different kind of iterative schemes
for approximating the fixed point of the class of nonexpansive mappings and other classes
of mappings which are more general than the class of nonexpansive mappings. Some well

known iterative schemes in the existing literature includes: Picard [54], Kransnosel’kii [14],
Mann [46], Ishikawa [11], Argawal et al. [10], Abbas and Nazir [3] and so on.
For some recent literature on iterative algorithms, we refer the reader to [4,5,11,26]. Many

problems in science and engineering are modeled by differential and integral equations, in
most cases, delay differential equations and Volterra-Fredholm functional nonlinear integral
equations.

Delay differential equations play an important role in applied science and have many
applications in biological sciences as follows: they have been used in primary infections,

epidemiology, tumor growth and neutral network, etc. (see for example [21], [63] and the
references there in). Delay differential equations are also used in statistical analysis, ecology
data (see [(1]) for the effects in the population dynamics of many species.

On the other hand, many problems of mathematical physics, applied mathematics, and
engineering are reduced to Volterra-Fredholm integral equations (see for example [6], [7]
and the references there in).

There exists several methods in the literature for solving delay differential equations
and nonlinear integral equations (see for example, [7,17,18,22 /24,27 30,31,34,17] and the
references there in).

As part of the beauty of fixed point theory, many researchers in nonlinear analysis have
introduced and studied several iteration schemes for solving delay different equations and
functional nonlinear integral equations.

Recently, many authors have employed different iterative schemes for solving the following
mixed type Volterra-Fredholm functional nonlinear integral equation which was considered
by Craciun and Serban [22]:

w(t) :F(t,w(t),/: /m K(t,s,w(s))ds,/:l... :m H(t,s,w(s))ds), (1.1)

m

where [r1; A1] X -+« X [rp; A 18 an interval in R, K, H : [r1; A1] X - X [Fon; Am] X [r15 A\1] X
X [P Am] X R — R continuous functions and F : [r1; A1] X -+ X [Pp; Am] X B2 — R (see
for example, [22,25,30,52]).
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Let C([u,v]) denote the space of all continuous real valued functions on a closed interval
[u,v] endowed with Chebyshev norm. Through out this paper, let I' be a nonempty closed
convex subset of a real Banach space E, i denotes the set of real numbers and let N denote
the set of natural numbers.

As an application of fixed point theory, many authors have introduced several iterative
schemes for solving the following delay differential equations

) = fFlwl),wl —71), €€ [ly,v], (1.2)
with initial condition
w(l) = ¢(0), L € [lo — 7, Lo], (1.3)

where (g,v € R, 7 > 0, f € C([lo,v] x R2,R); and ¥ € C([lo — 7,v],R) (see for example
[20,26,31,37] and the references there in). Specifically, the following iterative schemes which
are known as Normal-S iterative scheme [56], M iterative scheme [62], Gordian and Uddin
iterative scheme [25], Picard-S iterative scheme [31] respectively , have been used by Gursoy
[30], Okeke and Abbas [52], Gordian and Uddin [25], Gursoy and Karakaya [31] respectively,
to approximate the unique solutions of delay differential equations (1.2)-(1.3) and the mixed
type Volterra-Fredholm functional nonlinear integral equation (1.1):

ag €T,
bp = (1 — pp)an + pnGan, Vn > 1; (1.4)
Ap+4+1 = Gbn,
mg €T,
5n — GCn, vn - ]-7 (15)
Mp41 = G6’na
do €T,
Uy, = Gdy,
Yn > 1; 1.6
Upn = (1 - Mn)un + NnGuna "= ( )
dn+1 = G’Un,
ESEY
on = (1 = ) + pn Gy
Vn > 1. 1.7
TYn = (1 - Un)Gnn + 0,Gon, "= ( )
NMn+1 = prna

where p,, and o,, are sequences in (0,1).

It has been shown by several authors that multi-steps iteration processes perform better
than single step and two steps iteration processes respectively. Glowinski and Le-Tallec
[28] used a multi step iterative process to solve elasto-viscoplasticity, liquid crystal and
eigenvalue problems. They established that three-step iterative scheme performs better
than one-step (Mann) and two-step (Ishikawa) iterative schemes. Haubruge et al. [39]
studied the convergence analysis of the three-step iterative processes of Glowinski and Le-
Tallec [28] and used the three-step iteration to obtain some new splitting type algorithms



82 AUSTINE E. OFEM! AND DONATUS I. IGBOKWE?

for solving variational inequalities, separable convex programming and minimization of a
sum of convex functions. They also proved that three-steps iteration processes also lead to
highly parallelized algorithms under certain conditions.

Many researchers have recently been active in constructing multi-steps iteration schemes
to obtain faster rate of convergence (see [11,206,30,49-51,62] and the references there in).
Hence, we see that multi-steps iteration processes play pivotal role in nonlinear analysis and
gives faster convergence rate.

Motivated by the above results, we introduce the following four steps iterative scheme,
called the Al iterative scheme, for approximating the solutions of the delay differential
equation (1.2)-(1.3) and the mixed type Volterra-Fredholm functional nonlinear integral
equation (1.1):

wo €71,

Cn = (1 = pin)wn + G,

Gn = G(p, Vn > 1. (1.8)

Pn = Gan,

Wn+1 = Gpna

It is our purpose in this paper to prove analytically that Al iterative scheme (1.8) converges

faster than the iterative schemes (1.4)-(1.6) for contraction mappings. We also show with a
numerical example that Al iterative scheme has a better speed of convergence than (1.4)-
(1.6). Furthermore, we prove that Al iterative scheme (1.8) converges strongly to the unique
solutions of the delay differential equation (1.2)-(1.3) and the mixed type Volterra-Fredholm
functional nonlinear integral equation (1.1). In addition, we give the data dependence result
for the solution of the equation (1.1) via Al iterative scheme (1.8). Since the iterative
schemes (1.4)-(1.6) have recently been employed to solve the delay differential equation
(1.2)-(1.3) and the mixed type Volterra Fredholm functional nonlinear integral equations
(1.1), hence, our results improve and unify the corresponding results in [20,22,25,30,31,52],
and several others in the existing literature.

2. PRELIMINARIES

The following definitions and Lemmas will be useful in proving our main results.

Definition 2.1. A mapping G : I' — I is called contraction if there exists a constant
¥ € (0,1) such that |Gw — Gp|| < I||w — pl|, Yw,p € T.

Definition 2.2 (see Berinde [15]). Let {l,}32, and {g,}52, be two sequences of real
numbers converging to [ and g respectively. Then we say that {l,,}22, converges faster than
{gntnzo if

ol

n=o0 |lg, — gl B

Definition 2.3 (see Berinde [15]). Let {w,}>2, and {k,}52, be two fixed point iteration
procedure sequences that converge to the same point p. If ||w, — z|| < I, and ||&, — z]| < gn

0. (2.1)

for all n € N, where {l,,}22, and {k, }52, are two sequences of positive numbers (converging
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to zero). Then we say that {wy, }52, converges faster than {x, }52 to z if {1,,}5°, converges
faster than {g,}>2,.

Lemma 2.1 (see [00]). Let {pn} be nonnegative real sequences satisfying the following
inequalities:

Prt1 < (1= 7n)pn, (2.2)
[e.°]
where T, € (0,1) for alln € N, Y 7, = 00, then lim p, = 0.
n=0 n—oo
Lemma 2.2 (see [79]). Let {pn} and {¥,} be two nonnegative real sequences satisfying the
following inequalities:
Pn+1 < (1 - Tn)pn + anna (23)

where 7, € (0,1) for alln € N, > 7, =00 and ¥,, > 0 for all n € N, then
n=0

0 < limsup p, < limsup ¥,. (2.4)
n—o0

n—oo
3. RATE OF CONVERGENCE

In this section, we prove analytically and numerically that the Al iterative process (1.8)
converges at a rate faster than all of Normal-S iterative process (1.4), M iterative process
(1.5), Garodia and Uddin iterative process (1.6) and Picard-S iterative process [31].

Theorem 3.1. Let " be a nonempty closed convex subset of a Banach space E and G : ' = T’
be a contraction mapping with contraction constant ¥ € (0,1) such that F(G) # 0. If {w,}
is the sequence defined by (1.8), then {wy,} converges faster than all the other four processes.

Proof. For any z € F(G), from (1.8) we have

G =2l = (1 — pn)wn + pnGwn — 2|
< (1= pn)llwn = 2[| + pnl|Gwn — 2|
< (1= pn) lwn — 2] + pn?lwn — 2||

(1= (1 =) pn)llwn — 2. (3.1)
Again, from (1.8) and (3.1), we obtain

lgn =2l = GG — 2|
< ¢ — 2|l
< (1= (1 =pn)lwn — 2] (3.2)

Also, from (1.8) and (3.2), we get

1Gan — =||
79”‘]71 - ZH
(1= (1= 0)pan)|wn — 2]|- (33)

Ipn — 2]

IN A
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So, from (1.8) and (3.3), we have

lwnt1 = 2|

Let

|G — 2
Ilpn — 2|

P~ (1= D))l — 2]
P = (1= D))"l — 2].

IN AN IA

hyy = 97"(1 = (1= 9)p)"[|wr — 2]].

Now, from (1.4), we have

1bn = 2] =

IAIN

So,

lant1 — 2|

Let

(L = pn)an + pnGan — 2||

(1 = pn)llan — 2[[ + pnllGay — =||
(1= pin)lan — 21 + ndan — 2]
(1= (1 =D)pn)llan — z]|

= [[Gbn — 2]

Oon — =]

(1 = (1 = D)pn)[|an — =]
(1 = (1 =9)p)"lar — z].

(VAN VAN VAN

wy = (1 — (1= 9)p)"|ar — 2.

Again, from (1.5), we get

len — 2l =
<
<
And
167 — 2|
So,
[mn41 — 2]

(1 = pn)mp + pnGmy, — 2|

(L = pn)llmn — 2| + pn||Gmen, — 2|
(1 = pn)[[mn = 2[[ + pnd|mn — 2|
(1= =) pn)[[mn — 2.

= [[Gen — 2]

< e -2

< (1= (1= )pn)[mn — 2.
= |G — 2|

< J6n — 2|

< PP = (1= 9)pa)llmn — 2|
< 91— (1= 0))"fma — 2]].

(3.5)
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Set
tn =92 (1— (1= 9)u)"lm1 — z]|.

Now, using (1.6), we get

lup — 2| = ||Gdy — 2]
< dd, — 2]
And
lvn =2l = [[(1 = p)un + pnGuy — 2||
< (1= pn)llun = 2| + pnl|Gup, — 2||
< (1= pn) Jun — 2| + pnd|un — 2||
= (11— =9 un)llun — =]
< 91— (1 —=Fpn)lldn — 2|
So,
|dns1 — 2|l = [|Gv, — 2]
< Hfjvp — 2|
< (1= (1= pn)lldn — 2|
< PP — (1= D)p)™(|dy — 2]
Set

@ =021~ (1= 9)p)"||d1 — 2.
Lastly, from (1.7) we have

11 = pin) 1 + G — 2

(L= pn)llmn = 2l + pnl| Gy — 2|
(1 = )l = 2l + pn 01 — 2|
= (1= QA =un)llnn — 2.

|on — pll

IN A

And

11 = $n) G + 5nGon — 2||

(1= on)Gnn — 2l + onl|Gon — 2|

(1= on)dlmm — 2]l + ondllon — 2|l

(1= on)dnn — 2|l + ond(1 — (1 = D) pn) Inm — |
V(1 = (1 =d)onpn)lnn — /-

[7n = 2

INIA A
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So,

Put
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141 — 2|l |Gy — 2|l
Dlym — 2|
(1= (L= 9)onpn)|nn — |

0" (1= (1= o)™ m — =]

ININ A

€0 = 0°"(1 = (1= Do)l — 2.

Now we compute the rate of convergence of Al iterative scheme (1.8) as follows:

(i)

(iii)

Observe that

ho 91 = (=) lwr = 2| o llwr = 2]
L =" —— 3 0asn — oo.
up, 91— (1 =9)p)"ar — 2| a1 — 2|

Thus, {w,} converges faster to z than {a,}. This implies that, the AI iterative
process (1.8) converges faster to z than the normal S-iterative process (1.4).
Also,

ho _ (0= (=) s — 2
P G ) ) e I [

Thus, {w,} converges faster to z than {m,}. This implies that, the AI iterative
process (1.8) converges faster to z than the M iterative process (1.5).
Also, we see that

ho 9" (1 = (1 =) p)™lwn — 2| _ gnllwr = 2|
T .92n n -
@y 91— (1= I)p)"|di — || |di — 2]

Thus, {w,} converges faster to z than {d,}. This implies that, the AI iterative

— 0 asn— oco.

process (1.8) converges faster to z than Garodia and Uddin iterative process (1.6).
Finally, we have that

by 91— (1= 9)p)" wn — 2|
€n 9 (1 — (1 = D)op)||m — ||
91— (1 = 9)p)"||wn — 2]
(I =1 =)o) lm — 2|

Thus, {w,} converges faster to z than {n,}. This implies that, the AI iterative

process (1.8) converges faster to z than the Picard-S iterative process (1.7). Hence,
our iterative method converges at a rate faster than all of (1.4)-(1.7) in the sense of
Berinde [15]. This completes the prove.

0

By supporting the analytical proof of Theorem 3.1 and to illustrate the efficiency of Al

iterative scheme (1.8), we will consider the following numerical example.
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Ezample 3.1. Let E = R and I' = [1,50]. Let G : ' — T be a mapping defined by
Guw = /2w + 4 for all w € T. Clearly, G is a contraction with contractive constant ¢ = 3%/1

and w = 2 is a fixed point of G. Take u, = oy, = %, with an initial value of 30.

By using the above example, we will show that AT iterative scheme (1.8) has better speed

of convergence than iterative schemes (1.4)-(1.7).

PICARD-S

NORMAL-S

30.000000000

30.000000000

2.2481120233

3.3619754068

2.0053436106

2.1228934171

2.0001174560

2.0118603109

2.0000025829

2.0011522593

2.0000000568

2.0001120174

2.0000000012

2.0000108905

2.0000000000

2.0000010588

2.0000000000

2.0000001029

2.0000000000

2.0000000100

2.0000000000

2.0000000010

2.0000000000

2.0000000001

TABLE 1
n | AILITERATION
1 30.000000000
2 2.0336342615
3 2.0000906203
4 2.0000002447
5 2.0000000007
6 2.0000000000
7 2.0000000000
8 2.0000000000
9 2.0000000000
10| 2.0000000000
11| 2.0000000000
12| 2.0000000000
13| 2.0000000000

2.0000000000

2.0000000000

TABLE 1 CONTD.

n | M-ITERATION | GARODIA-UDDIN
1 30.000000000 30.000000000
2 2.2052183845 2.2052183845
3 2.0032795388 2.0032795388
4 | 2.0000531287 2.0000531287
) 2.0000008609 2.0000008609
6 2.0000000139 2.0000000139
7 | 2.0000000002 2.0000000002
8 2.0000000000 2.0000000000
9 2.0000000000 2.0000000000
10 | 2.0000000000 2.0000000000
11 | 2.0000000000 2.0000000000
12| 2.0000000000 2.0000000000
13 | 2.0000000000 2.0000000000
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GRAPHICAL REPRESENTATION OF THE RATE OF CONVERGENCE FOR TABLE 1
T T T T T

PICARD-S
NORMAL-S
M-ITERATION
GARODIA-UDDIN
AI-ITERATION —

4]
T

Sequence (xn)

1.5 1 1 1 1 1
1 1.5 2 25 3 3.5

FIGURE 1 Number of Iterations (n)

It is evident from the table and graph that Al-iteration process (1.8) converges at a better
speed than the iteration processes (1.4)-(1.7).

4. APPLICATION OF Al ITERATIVE METHOD TO A NONLINEAR INTEGRAL EQUATION

In this section, we prove strong convergence theorem of a sequence generated by Al
iteration process for the mixed type Volterra-Fredholm functional nonlinear integral equation
defined by (1.1) in a real Banach space. And also, we give data dependence result for the
solution of the mixed type Volterra-Fredholm functional nonlinear integral equation (1.1)
with the help of our new iterative scheme (1.8).

The following result will be very useful in proving our main results.

Theorem 4.1 (see [22]). We assume that the following conditions are satisfied:

(B1) K, H € C([r1; M] X - X [T Am] X [ris M) X oo X [ Am] X R);
(B2) F € ([ri; M X - X [ro; Am] X R3);
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(B3) there exists nonnegative constants o, 3,7 such that

|F(t, fi,€1,h1) — F(t, fa, €2, h2)| < alfi — fa| + Bler — 2| + v|h1 — hal,

for allt € [ri; A1] X -+ X [ Aml, f1,€1, b, fo2, 62, ho € R
(By) there exist nonnegative constants Lx and Ly such that

|K(t75af) —K(t,S,S)’ é LK|f_5‘a
|H(t,s, ) — H(t,s,)| < Lul|f —el,

forallt,s € [ri; 1] X -+ X [rm; A, fe € R;

<B5) a+ (,BLK + 7LH)()\1 - 7“1) ce (/\m - Tm) < 1.

Then, the nonlinear integral equation (1.1) has a unique solution z € C([ri;A1] X -+ %
[rm; Am])-

Now, we are ready to prove our main results.

Theorem 4.2. Assume that all the conditions (B1) — (Bs) in Theorem (4.1) are satisfied.
Let {wn} be defined by Al iteration process (1.8) with real sequence p, € [0,1], satisfying

Z tn = 00. Then (1.1) has a unique solution and the Al iteration process (1.8) converges

strongly to the unique solution of the mixed type Volterra—Fredholm functional nonlinear
integral equation (1.1), say z € C([r1; A1] X -+ X [Fm; Am)])-

Proof. We now consider the Banach space E = C([r1;A\1] X -+ X [Tm; Am), || - |lc), where
|- |lc is the Chebyshev’s norm. Let {w,} be the iterative sequence generated by Al iterative
scheme (1.8) for the operator A : E — E define by

A(w)(t) = <t w( / / K(t,s,w(s))ds /)\1 mH t,s,w(s ))ds) .41

Our intention is to prove that w, — z as n — co. Now, by using (1.8), (1.1), (4.1) and the
assumptions (Bq)—(Bs), we have that
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lwnt1 =zl =

lpn — 2|

IN

IN

IN

IN
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”pn - Z”
[A(pn)(t) — A(2)(2))] (4.2)

\F(tpn / / K(t,s,pn(s ds//\1 AmHtspn())d>
_F <t,z(t),/rl /m K(t,s,z(s))ds,/rjl.../rm H(t,s,z(s))d8>|

alpn(t) ~ 20|+ 5] [ ..
/V"LKtspn (s) ds—/yl.../l’mKts z(s))ds|
—1—7]/)\1 )\mH t,s,pn(s)) ds—/)\1 /Am H(t, s, z(s))ds|
alpn(t) — 2( |+B/ / K(t,,pn(s)) — K(t, 5, (5))|ds
A1
—l—’y/ / |H (t,s,pn(s H(t,s,z(s))|ds
alpn(t) — 2(t |+5/ / Liclpn(s) — 2(s)|ds
A Am "
[ [ Lalpats) — 2(s)ds

allpn — 2| + H (Ni = i) Lic|[pn — =]
i=1
m

+v [ = r)Lullpn — 2|

i=1

[+ (BLk + L) H (N — 7)o — 2. (4.3)
=1

[A(gn) (1) — A(2)(t)]

|F<tqn / / K(t,s,qn(s als/Al Htsqn())d>
—F(tz / / K(t, s, z(s ds//\1 AmHtsz))ds)\
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vi
< a\qn(t)—z(t)|+ﬁ\/
I
/mKtsqns ds—/l.../mKtszs )ds|
)\1 )\1
—|—’y[/ / H(t,s,qn(s ds—/ Htsz())ds]
< algut) — =(t |+ﬁ/ / K(t,5,qu(s)) — K(t,5,2(s))|ds
A1
+’y/ / |H (t, s, qn(s H(t,s, z(s))|ds
< algn(t) — 2(t |+ﬁ/ / Li|gn(s) — z(s)|ds
T1 Tm
M Ao
—l—'y/ Ly|gn(s) — z(s)|ds
T1 Tm
< allgn — 2l + B[ (N — 7)) Lillgn — 2|
i=1
+v 116 = ri)Lillgn — =l
i=1
= [+ (BLx + L) [T(Ai = ri)lllan — 2. (4.4)
=1

Substituting (4.4) into (4.3) we have

m
lwnt1 — 2l < ([ + (BLx +vLa) [T = 7)) llgn — 2|/- (4.5)
i=1

lan =2l = [A(G)(t) — A(2)(?)]

— P (t,(n(t),/rjl...LZm K(t,s,{n(s))ds,/rjl...zim H(t,s,(n(s))ds)
_F (t,z(t),/: /m K(t,s,z(s))ds,/:l.../T:n H(t,s,z(s))ds) |
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IN

alCa(t) — 2(1) |+m/”...

/ K(t,s,(n(s ds—/ / K(t,s, z(s))ds|
)\1 )\1
+7|/ / H(t,s,(n(s ds—/ / H(t, s, z(s))ds|

alCa(t) — 2(# |+6/ / K(t,5,Cn(s)) — K(t, 5, 2(s))|ds

IN

+7/A1 / (H(t,5,Co(s)) — H(t, 5, 2(s))|ds
lGa(t) — 2(t |+5/ﬁ /m Lic|Ca(s) — 2(s)|ds

A1 Am
—i—’y/r / LalCal(s) — 2(s)|ds

allCn — 2| + 8 H(/\i — 1)Lk ||Gn — 2|

IN

IN

+'YH i) LG — 2|

= [a+ (BLx +~vLm) H (A —r)ISn — =]l (4.6)
=1

Substituting (4.6) into (4.5) we have

m

w1 — 2l < (f+ (BLx +7Lir) [[ = r))?llG = 211 (4.7)
=1
1o =2l < (1= pa)lwa(®) = 2(0)] + pal Alwn) (1) — A()()]
= (1_,un)|wn(t) )‘
A1 Vm

+pn|F ( t, wn(t / / K(t,s,wn(s /UI /r H(t,s,wn(s))ds>
_F<tz / / K(t,s, z(s ds/Al Htsz))ds)]

< (1= p)lwn(t) = 2(8)] + pnalwon(t) = 2(8)] + a3 / o [ Lilen(s)  2(o)lds

A1 Am

ﬂw/r / Larlwn(s) — 2(s)|ds

< (1= (1~ o+ (8L +7Lir) [T — ) eom — =1 (45)

=1

Substituting (4.8) into (4.7) we have
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m
lwnt1 =2l < ([a+ (BLk +~Ln) H

m
}{1 = pn(1 = [+ (BLx +vLp) [T\ = 7)) Hwn — z]I.
=1

(4.9)

m
Since from condition (Bj) we have o + (BLx + vLg) I1 (A — ;) < 1, then it follows that
i=1

([ + (BLx +~vLu) ﬁ (A\; —7i)])® < 1. Hence from (4.9) we have
i=1

m
Jnit — 21 < 11— (1 — [+ (BLi +7Lar) [T = ro)])}eom — 1.
i=1

(4.10)
From (4.10), we have the following inequalities:
lonsr =2l < {L = pa(1 = [a+ (BLx +Lg) [T = r)])Hlwn — 2|
i=1
o — 21 < {1 pinr (1 [a+ (BLi + L) [T — o)) Hlwon—1 — I
i=1
lor =l < {1 = po(L = [a+ (BLx +vLa) [T (N = r)])}Hlwo — 2] (4.11)
=1
From (4.11), we have
lwntr — 2] < ||w0—2\|H{1—Mk <1—[a+ BLk +~Lu) [T\ )}
k=0 i=1
(4.12)

Since pr € [0,1] for all k¥ € N and recalling from assumption (Bs) that [a + (5Lkx +

m
vLi) IT (A\i — 7)) < 1, then we have
i=1

=

1—/Ak(1— [Oz—l—(ﬁLK —|—’)/LH) (Ai—ﬁ) < 1. (413)

7

— =

, thus from (4.12), we have
—(I=[a+(BLr+vLr) TTNi=r)]) D p_ g 1k
lwnt1 —z|| < |lwo — z]le i=1 : (4.14)

We recall the inequality 1 —w < e for all w € [0, 1

Taking the limit of both sides of the above inequalities, we have 1i_)m lwn, — z|| = 0. Hence,
n—oo

(1.8) converges strongly to the unique solution of the mixed type Volterra-Fredholm func-
tional nonlinear integral equation (1.1). O



94 AUSTINE E. OFEM! AND DONATUS I. IGBOKWE?

We now turn our attention to proving the data dependence of the solution for the integral
equation (1.1) with help of AT iteration process (1.8).

Let E be as in the proof of Theorem (4.2) and G, G : E — E be two operators defined by:

G)(t) = F <t,w(t),/: /mm K(t,s,w(s))ds,/:.../rim H(t,s,w(s))ds),
(4.15)

_ vy Um A1 Am
G(w)(t) = F<t,w(t),/r1 / K(t,s,w(s))ds,/m - H(t,s,w(s))ds),

m

(4.16)

where K, K, H and H € C([r1; A\1] X -+« X [Fo; Am] X [r13 1] X -+ X [Tz Am] X R).

Theorem 4.3. Let F, K and H be as defined in Theorem (4.2). Let {wy,} be an iterative
sequence generated by Al iteration process (1.8) associated with G. Let {.,} be the an
iterative sequence generated by

Wy € F,

Wnt1 = (]— - Hn)WNn + ,Unéujna

Pn = G, Vn > 1. (4.17)
(Zn = qgna

Cn = G"Jna

where E is defined as in the proof of Theorem (4.2) and p, € [0,1] is a real sequence
satisfying
(V1) 3 < pin, for alln > 1;

o0
(Va) > pn = 00. In addition, suppose that;
n=1
(V3) there exist nonnegative constants Ay and Ay such that |K(t,s, f) — K(t,s, f)] < Ay and

|H(t,s, f) — H(t,s, [)] < Aa, forall f € R and t,s € [r1; A\1] X -+ X [Tm; Am]-
If z is the solution of (4.15) and also Z the solution of (4.16), then we have

T(BA1 + vAs2) ﬁ (A —13)

lz — 2| < =1 : (4.18)

m

I —[a+ (BLk +~vLu) il;ll(/\i — ;)]
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Proof. Using (1.8), (4.15), (4.16), (4.17), conditions (V1) — (V3) and assumptions (B1)—(Bs),
we obtain

lont1 = @niall = [1Gpa — Gl

= \F(tpn / / K(t,s,pn(s d:;/Al mlLIt:;pn())d)
_F (t,p;(t),/:.../;’" K(t,s,]fn(s))ds,/:l.../rmm ﬁ(t,s,p;(s))ds>y

< alpa®) - ()| + 6] [
/Vm K (t, 5, pn(s))ds — /Vl . /V'" K (t, 5, p(s))ds|
A1 Am A1 -
+’y|/ / H(t,s,pn(s ds—/ H t,s,Dn(s))ds|
< alpu(t) =0 +8 [ [ K 5. 580) ~ K1, (5D
+K (t,5,n(s)) — K (t, 5,0n(s))|)ds
A1 Am
+’y/ / (|H(t,s,pn(s)) — H(t,s,pn(s))| +
+|H(t,s,pn(s)) — H(t,s,pn(s))|)ds
< alpa(t) ~palt \+ﬁ/ [ o) = (o) + Ay
A1
w0 / (Latlpn(5) — B(s)] + Ao)ds
< allpn = Pull + B(Lic|lpn = Pull + A1) [T (N = 73)
=1
+7(LH”pn _p~n” +A2 H )\ _Tz
=1
= [a+ 6LK+7LH H _Tz |pn_p~n||
=1
+(BAL +yA2) TN — o). (4.19)
=1
Hpn - ﬁn” = HGQn - Gq;l”

= |F<tqn / / K(t,s,qn(s als/Al TmHtsqn())d>
—F(tqn / / K(t,s,qn(s dS//\1 /\mfltsqn())d>|
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< alan(t) = Gu(0)| + ] [
[’” K(t, 5, gn(s))ds — / . /TV’" R (t, s, d(s))ds|
+’y|//\1.../r/\mH t,s,qn(s) ds—//\l.../)\mflt S, qn(s))ds|
< alan) = Gl + 8 [ o [ (b 00(5) — K (b5, d(s)
HE (2, 5,3(s)) — K(t,5,Gu(s))])ds
A1
+7/ / ([H(t, 5,0(5)) — H(L, 5, Gu(s))| +
HH(E, 5, Gn(5)) — A (t, 5, G (5))])ds
< algalt) — Gu(t)] + 8 / / " (Liclan(s) — Gu(s)] + Av)ds
s [ [ arlan(s) — )] + A
< allgn — Gull + B(Lkllgn — gnll + A1) ﬁ()\z’ —7;)
=1
(Latllan — Gl + Ao) [T = 1)
=1

m
= [+ (BLx +vLa) [T = ri)lllan — dall
=1

::13

+(BA1L +vA2) | | (AN —7i). (4.20)

=1

Substituting (4.20) into (4.19) we have

(N = 7)) llgn — dal

=

lwni —@nsall < (o + (BLk +Ln)

7

S

ot (L +1L) [T — ) (BA; + vA2) [T — 1)
i=1 =1
+(BA1 +vA2) ﬁ(& —13). (4.21)

=1
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HQn_QnH = HGCTL_GC;LH
V1 Vm Am
_ |F<t,§n(t),/ / K(t,5,Cn(s))ds / H(t,s,Cn(s))ds>
Am

—F(t () / / K(t,s,Cals /A/ ﬁ(t,s,(n(s))ds)\

< alGul) = Gl + 81 [
/ K(t,s,(n(s ds—/ .../ymf((t,s,f(s))dﬂ
—|—’y|//\1.../>\mHt 3, Cn(s) ds—/Al.../)\mff(t,s,fn(s))ds\
<l = GOl 8 [ [ (. Gul5) — K (15.Gus)
+K(t,5,Cu(5)) — K (t,5,Ca(s))])ds
A1 Am ~
o [ [T s G) — H s G +
+|H(t,5,Ca(s)) — H(t,s,Cals)))ds
< al(®) -Gl +8 [ / (LiclGa(s) = Gulo)] + Ar)ds
A1 Am
[ [ () = Gus)] + Ag)as
< O‘”Cnfgn”+B(LK||Cn*CnH+A1 H (Ai —14)
=1
V(L llGn = Call + A2) [T (X = 72)
i=1
= [a+ (BLk +~Lu) HO‘Z —7i)] G — (nH
=1
+(BAL +vA2) ﬁ Ai = 13). (4.22)
=1

Substituting (4.22) into (4.21), we have

m
lwnt1 —@niall < (fo+ (BLr +vLm) [ = r)])?[1¢n = Gall
=1

m

"‘([Oé'i‘(ﬁLK""YLH)H()\ )]) (BA1 + vA2) ﬁ
i=1 i=1
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+la+ (BLk +~vLu) H (A — )] (BA1 —|—’7A2)H()\ — 1)
=1

+(BA1 +7As2) ﬁ(A —Ti). (4.23)

I6n = Gal

I IA
—
|
=
2
=
3
=
|
&
=
4
=
s
Q
(S
2
=
|
[}
&
=

vy Vm A1 Am
+pn | F (t,wn(t), / K(t,s,wn(s))ds,/ H(t,s,wn(s))ds>

T1 Tm

—F [ t,wn(t K(t,s,wn(s))ds ' mHtswn( ))ds | |
(o [ L) )

(1= ptn) wa(t) — G (8)]
Hhnalon(t) = (O] +1n8 [ o | Lalen(s) = ()] + Ar)ds

IN

A1 Am
+”’”/T / (Liglwon(s) — n(s)] + Ao)ds

m

< (1=t =l + (i1 L) TTO = DYl =)
+pn(BAL + yA2) ITII()\Z — 7). (4.24)
Substituting (4.24) into (4.23), we obtain
lemss - @nsal < (fa+ (BLi +7Ln) ﬁw )y
% {1 = (1~ [a + (BT + L) ﬁ As = ) Ml —
(B + 7o) f[lu — )+ (BLic + L) ﬁ(A )y
o+ (8L + L) [T — rd)(88 +942) T - )

1

s
Il
.
I
—

s

+Ha+ (BLr +~vLu) | | (N = r)[(BA1 + yA)ILEE (N — 70)

Il
—

b3
m

+(BAL +yA2) [T (A — o). (4.25)

=1
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Recalling from assumption (Bs) that [a+ (8Lx +vLy) H (Ai —7i)] < 1 which follows that
i=1

(la + (BLk +vLH) f[l(/\i —r)))2 <1and ([o+ (BLk +vLg) [T (N — r)])® < 1. Thus,
(4.25) reduces to -

lwni1 = Dparll < {1 = (1 = [+ (BLx + L) [T = 7)) }Hlwn — @0l
=1
i (B 4 vA2) [T (N —73) + 3(BA1 +~A2) T[T (N
=1 i=1

(4.26)
From our assumption 3 L < jin, we have that
L—=pin Spn = 1=1— pin + pin < i + pin = 2fin.

Thus, we have from (4.26) that

m
lwnt1 = @nsall < {1 = pn(l = [+ (BLk +vLu) H (A = 73)]) Hlwn — @n|
=1

s

i (BAL + yA2) [ [ (N —74)

1

%
m

+3(1 = i + pin) (BAL 4+ A2) TT (X — 73)
i=1
{1 — pn(1 = [a+ (BLk +vLa) [T = ri)) Hlwn — @ul
=1

IN

+Tpn(BA1 + yA2) H
= {1—pn(l =+ (BLx +Ln) H ) Hlwn — @l

+pn(1 = [a+ (BLi + vLu) [ (X = r0)])
1=1
7(BA1 + vA2) ﬁ (A —13)
X =1 . (4.27)

1—lo+ (BLk +vLn) ﬁ()\i — i)
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For all n > 1, from (4.27) put

Pn = Hwn_dn”v
Tn = (1l —[a+ (BLk +vLu) [N —r:)]) € (0,1),
=1
T(BA1 +7As) TT (s —74)
Wn _ =1 _ 20

L=lat (BLac+yLa) 1N =)

1=
Notice that (4.27) takes the form pny1 < (1 — 7,)pn + TW¥,. Thus, all the conditions of
Lemma, 2.4 are satisfied. Hence, we obtain that

785+ 7A2) [T =)

lwn —@n| <

(4.28)

m

1= lo+(3Lx +7Lm) [T =)

0

5. APPLICATION OF Al ITERATIVE METHOD TO A DELAY DIFFERENTIAL EQUATION

Let C([u,v]) be endowed with Chebyshev norm ||w —pl|ee = maxepy o) |w(€) —p(f)], ¥V w,p €
C([u,v]) . Then the space (C([u,v]),] - |loc) is generally known to be a Banach space, see
[35]. Our interest now is to consider the delay differential equation (1.2)-(1.3).
We assume that the following conditions are satisfied:

(M) Lo,v € R, 7> 0;

(MQ) f S C([ﬁo,’v] X §R2,§R);

(M3) 1/) S C([ﬁo -7, ’U],§R);

(My) there exists Ly such that

|f(€,a1,a2) — f(£,b1,b2)] < Lg(lar — bi| + |az — bal), (5.1)

for all a1, a9,b1,bo € R and £ € [Eo,v];
(Ms) 2Lf<’l) —fly) < 1.
The problem (1.2)-(1.3) can be reformulated in the following integral equation:

(AJ(E) — ¢(€)7 ’ f S [EO - 7',50], (5 2)
U(lo) + fp, f(s,w(s),w(s —7))ds, £ € [o,v]. '
The following result which was obtained Coman et al. [20] will be useful in proving our

main result in this section.

Theorem 5.1 (see [20]). Suppose that conditions (M) — (Ms) are satisfied. Then the
problem (1.2)-(1.3) has unique solution, z € C([ly — 7,v], R) N C*([lo,v],R) and the Picard
iterative method converges to z for any p € C([lg — 7,v], R).

Now, we prove the following result using our new iterative scheme (1.8).
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Theorem 5.2. Suppose that conditions (M) — (Ms) are satisfied. Then the iterative
sequence {wy} generated by Al iterative method (1.8) with Y o pn, = 00, converges strongly
to the unique solution of the problem (1.2)-(1.3), say z € C([lo — 7,v], R) N CY([ly, v], R) for
any p € C([ly — 7,v],R).

Proof. Let {w,} be an iterative sequence generated by the IK iterative process (1.8) for an
operator defined by:

W(0), C e [ly —T,4],
Guit) = { P(lo) + feo f(s,w(s),w(s —7))ds, £ € [lo,v].

Let z be the fixed point of G. We will now prove that w, — z as n — oo. Apparently, it is
easy to see that w, — z as n — oo, for £ € [ly — T, {o].

For ¢ € [{y,v], we have from (1.8) and (My) that

[wnt1 = 2l = 1GPn — 2o
Gpn — G200
= Gp,(6) — Gz (¢
Ze[fl{(lgﬁv]l pn(l) — Gz(0)]
— KO
e | (£o)
+/ ($,pn(8),pn(s —T))ds — 1 /fsz z(s —7))ds
14
= max / f(s,pn(8),pn(s —7))ds —/ f(s,2(s),2(s —1))ds
Le[lo—T,v] Lo
<  max !f( n(8),Pn(s — 7)) — f(s,2(5),2(s — 7))|ds
Le[lo—T,v]
Z
< max L(lpn(s) — 2(s)| + [pn(s = 7) — 2(s — 7)|)ds
Lelbo—T,0] J o,
l
< L n - mn - - -
< [ sl Ioals) = 2]+ o Ipuls = 7) = 5(s — 7))ds
¢
< [ Lyllpn = 2o + 19 = 2l )ds
< 2Ls(¢ = Lo)llpn — 2lloo
< 2Lf( - 0)||pn_z||oo- (5.4)
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1Gan — 200

1Ggn — Gzl

s |Gan () — Gz(0))|

ee%aﬁv [ (Lo)

—}—/fsqn 8),qn(s —7))ds — ¢ /fsz z(s —171))ds
max f(s,qn(S),qn(S—T))dS— f(s z(s),2(s — 7))ds

ZG[E()—T,’U} Lo

l
. [nax £ (s, an(5), qn(s — 7)) = f(s, 2(s), 2(s — 7))|ds
G[ZO_T)’U} ZO

4
max Li(Jgn(s) — 2(s)| + |gn(s — 7) — 2(s — 7)|)ds
KE[ZO 7] J e

L n(s) — w(s —7) = 2(s —7))d
[ L an(s) =)+ mas Jan(s =) = 2(s = 7) s

[ 5l = 2l + laa — 1)

2L ¢ (¢ = Lo)llan = 2lloo
2L (v —Lo)llgn — 2|loo- (5.5)

Putting (5.5) in (5.4), we obtain

lan = 2llo

IN

lonii =2l < 2Lpw— )P lgn — 2lc- (5.6)

GG = 2[00
|GG — G20
max  |GCa(f) — Gz(0))|

LE[ly—T,v]

max |1(£,)

Lelo—T,v]

¢ ¢
+/€0 f(8,Cn(s), Culs — 7))ds — (L) — /ZO f(s,2(s), 2(s = 7))ds

¢

l
/ F(5:6u(3), Guls = 7)ds = [ f(5,2(6), 2(s = 7)ds

Lo

max
Lelbo—T,v)

max \f Cn(8): Cals = 7)) = (s, 2(s), 2(s — 7))[ds

ée[éo T ’U]
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{
KE[(I%EF;{_,U] % Lf(’(n(s) - Z(S)’ + |Cn(5 — T) — Z(S _ T)|)d8

74
Li( max [(n(s) —2(s)|+ max [(u(s—7)—2(s—7)|)ds

Lo

Lefly—T,v) Le(ly—T,v)

l
| L016: = #le + 16 = 2ll)ds

2L(€ = £o)l[Gn = 2lloo
2L (v = £o)[I¢n — 2lloo- (5.7)

Putting (5.7) in (5.6), we obtain

16 = 2lloo

IN

IN

IN

IN

lonii =2l < 2Lpw—£)PIGn - 2loe- (5.8)

H(l — pn)wn + pnGwp — 2|0
(1 — pn)(wn — 2) + pin(Gwn — 2)|l oo
(1 = pn)llwn = 2lloo + tnl|Gwn — Gzl

(1= pn)llwn = 2[loc + pn | max |Gwn () — Gz(0)]
LE[lo—T,]

(1 = pn)l|wn = 2lloo + pn max [1(£,)
LE[lo—T,0]

0 0
+ % f(s,wn(s),wn(s - T))ds - ¢(€o) - % f(sa Z(S), Z(S - T))ds

¢
(1 = pn)|lwn — 2||loo + b, max /g (s, wn(8),wn(s —7))ds

le [fo —T,U]

74
- A f(s,2(s),2(s —1))ds

L

(1 — pn)llwn — 2lloo + pn_max |f(s,wn(s),wn(s — 7))
Lelbg—T0] J o,

_f(sa Z(S)a Z(S - T))’ds
0
(1= pn)l[wn = 2lloc + pin Ze[rl%%}i,v] v L(lwn(s) — z(s)|
+Hwn(s —7) — 2(s —7)|)ds
l
1- n n o] n L n -
(1= )lon = Zlo g | Ly(, o () = =()

+ max |wp(s—7)— z(s—171)|)ds
ZE[fo—T,U]
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IN

L
(1 = n)llta = o+ st | Ly(letn = o + [l = 2llc)ds
0

< (1= pn)llwn = 2]l + 2:““an(£ —£o)||lwn — 2|l

< [ = pn(1 = 2L (v = fo))]flwn = 2[|co- (5.9)
Substituting (5.9) into (5.8), we have
lwnp1 — 2l < [2Lg(v = £o)P[1 = pn(1 — 2L s (v — £0))][[wn — 2[lco- (5.10)

Recalling from assumption (Ms) that 2Ls(v — £p) < 1, it follows that [2Lf(v — £)]® < 1.
Thus from (5.10), we have

lonsi =2l < (1= pa(l = 2L5(0 — €o))]llwn — 2loc. (5.11)

Since i, € [0, 1], and from assumption (Ms) we set 7, = pin(1 — 2Ly (v —£p)) < 1. It follows
that 7,, € [0,1] such that Y o> 7, = co and also set p, = |lw, — 2||c. Notice that (5.11)
takes the form

Prt1 < (1= Tn)pn. (5.12)

Thus all the conditions of Lemma 2.3 are satisfied. Hence, Jim llwn — 2|lec = 0.
This completes the proof of Theorem 5.2. g

6. CONCLUSION

Fixed point theory play important role in applied science and engineering. Part of the
beauty and applications of the concept of fixed point theory has been demonstrated in
this paper. Owing to the fact that multi-steps iterative methods in most cases performs
better in term faster rate of convergence than one-step and two-steps iterative method,
hence, the results in this paper generalize, improve and unify the corresponding results in

[ 9 9 9 9 9 9 ]'
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