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A TWO STEP EXTRAGRADIENT-VISCOSITY ALGORITHM FOR
COMMON FIXED POINT PROBLEM OF TWO ASYMPTOTICALLY
NONEXPANSIVE MAPPINGS AND VARIATIONAL INEQUALITY
PROBLEMS IN BANACH SPACES

IMO KALU AGWU! AND DONATUS IKECHI IGBOKWE?

ABSTRACT. In this paper, we propose a two-step extragradient-viscosity iteration algorithm
for finding common element of the set of solutions of the variational inequality problem
for accretive mappings and the set of fixed points of two asymptotically nonexpansive
mappings in the framework of uniformly convex Banach space and 2-uniformly smooth
Banach space. In addition, we prove strong convergence theorems of the proposed iterative
algorithm. Finally, we prove that a slight modification of our new scheme could be employed
in solving variational inequality problems in Hilbert space. Our results improve, extend
and generalize several known results in literature.

1. INTRODUCTION

Throughout this paper, we assume, unless otherwise specified, that C' is a nonempty,
closed and convex subset of a Banach space E whose dual space is E*, D(T") and R(T) are
the domain and range of the mapping 7', N, R, RT, — and — will denote the set of natural
numbers, the set of real numbers, the set of nonnegative real numbers, strong convergence
and weak convergence respectively. In what follows, the mapping J : E — 22 defined by

J(z) ={a" € E: (z,27) = |[=[ll2", [|=]] = =]}, (1.1)

is called normalised duality mapping, where (.,.) denotes the generalized duality pairing of
elements between E and E*. It is well known that E is smooth if and only if J is single-
valued, uniformly smooth if and only if each duality map J is norm-to-norm uniformly
continuous on bounded subset of E. ( see [10], [27] for more details on the duality mapping
and its properties).
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A Banach space is said to have a weakly continuous duality map, in the sense of Browder
[9], if there exists a gauge function ¢ : [0,00) — [0,00) with ¢(0) = 0 such that the
duality map J with the guage function ¢ is single-valued and is weak-to-weak* sequentially
continuous; that is, if {z,,} C F, z, — x, then Jy(z,) N Jp(z). It is known that P(1 < p <
o0) has a weakly continuous duality map with guage function ¢(t) = t*~!, see for example
[10] for more details.

Let C' nonempty subset of a real Banch spce E. Let S : C' — C be a mapping, then
we denote the set of fixed point of S by F(S). Let S,T : C — C be two given nonlinear
mappings. The set of common fixed point of the two mappings S and T will be denoted by
F=F(S)NFE(T).

Definition 1.1. Recall that a nonlinear mapping 7' is said to be:
(a) Lipschitizian if there exists a constant L such that
[Tz — Tyl < Lljz -y, v,y € D(T), (1.2)
where L is the Lipschitizian constant of 7. Note that T is contraction if L € (0, 1)

in (1.2) and nonexpansive if L =1 in (1.2).
(b) uniformly Lipschitizian if for all n € N, there exists a constant L such that

[T"x = T"y|| < Lllz — yl|, v,y € D(T). (1.3)

(c) asymptotically nonexpansive [1] if for all z,y € D(T') and n € N, there exists a
sequence k, C [1,00) with lim,,_,o k, = 1 such that the following inequality:

T2 — T"y[| < kyll2 — y|| (1.4)
holds.

Remark 1.1. If the classes of mappings such as nonexpansive, asymptotically nonexpansive,
uniformly Lipschitizian and Lipschitizian are represented by (N),(AN),(UL) and (L),
respectively, then the following relationship

(N)C (AN)cC (UL) C (L) (1.5)
is evident (see [19] for details).

Since the emergence of the equation of the type (1.6), researchers in mathematics and
mathematical sciences have discovered that many practical problems arising from different
areas of optimisation, engineering, variational inequalities, differential equations, mathemat-
ical sciences can be modeled by the equation of the form:

=Tz, (1.6)

where T is a nonexpansive mapping. The solution set of the problem defined by (1.6)
coincides with the fixed point set of 7. In about forty (40) years or so, some researchers
have studied the type of operator defined in (1.6) in the context of different mappings and
different underlying spaces, and many more are still deeply involved in some investigations
to learn more about some generations and practical implications of its inherent properties
(see, for example, [3-6, 12,13, 17,19,23,28 31,32 35,38 42, 52-54] for more details).
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Definition 1.2. Let C' be a nonempty subset of a real Banach space E. Recall that an
operator A : C' — FE is called :

(a) accretive if there exists j(z —y) € J(X —Y) such that
(Ax — Ay, j(x —y)) > 0,Vz,y € C. (1.7)
(b) a-inverse strongly accretive if for some o > 0

(Az — Ay, j(x — y)) > allz —y||,Vz,y € C. (1.8)

It is worthy to note that in Hilbert spaces, the normalized duality map is the identity
map. Hence, in Hilbert space, accretivity and monotonicity coincide.

In solving variational inequality problems, Aoyama et al [5], Ceng et al [53], Yao et al [17]
and Cai, Shehu and Iyiola [(] considered the following problems for accretive and a-strongly
operators:

(a) find a point 2* € C such that, for some j(z — z*) € J(z — x*) such that
(Az*, j(z — %)) 2 0,Vz € C. (1.9)
The solution set of (1.9) is denoted by VI(C, A); that is,
VI(C,A) ={z* € C: (Az", j(x — x¥)) > 0,Vz € C}.
(b) find (z*,y*) € C x C such that

Au* * ok —*) >
{()\ y* ot -yt e —a*) >0,Vr € C, (1.10)

(uBx* +y* —x*,x —y*) > 0,Vz € C,
which is called general system of variational inequality, where A, B : C' — H are

nonlinear mappings and A, 4 > 0 are two constants.
(¢) find (z*,y*) € C x C such that

Ay 42"~y o —a7) 2 0V € C, -
(Bx* +y* —a*,j(x —y*)) > 0,Vx € C, .
where A, B : C' — H are nonlinear mappings.
(d) find (z*,y*) € C x C such that
(MNy* + 2> —y*, j(z — x*)) > 0,Vz € C, (1.12)
(uBx* + y* — x*,j(z — y*)) > 0,Vx € C, '

where A, B : C — H are nonlinear mappings and A, 4 > 0 are two constants,

respectively. Observe that if A =1 = pu, then (1.12) reduces to (1.11).

Current literature shows that some constraints of a good number of practical problems
arising in image recovery, resource allocation, signal processing, etc can be expressed as the
variational inequality problem. In line with this, a good number of established mathemati-
cians are currently working on different ways of finding solutions of variational inequality
problems (see, for example, [7—8,21-26,44-19 51,55 50]).
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In an attempt to solve the variational inequality problem of (1.9), Aoyama et al [5] studied
the following algorithm:

Tptl = Qplp + (1 - an)QC(I - )\nA)xnv (113)

where Q¢ is sunny nonexpansive retraction from E onto C and «,} C (0,1) and {\,} C
(0, 00) are real number sequences. They proved the following weak convergent result:

Theorem 1.1. (Aoyama et al. [5]) Let C' be a nonempty closed convex subset of 2-uniformly
smooth and uniformly convexr Banach space E. Let Q¢ be the sunny nonexpansive retraction
from E onto C. Let A : C — E be an a-inverse-strongly accretive operator with VI(C, A) #

0. If {\n} and {ay} are chosen so that \, € [a, %} for some a > 0 and o, € [b,c| for
some b,c with 0 < b < ¢ < 1, then the sequence {x,} defined by (1.13) converges weakly to

z, a solution of the variational inequality (1.9), where the real number K is the 2-uniformly
smoothness constant of the Banach space E.

One of the most studied methods of approximating fixed points of nonexpansive mapping
is the viscosity approximation method which was introduced by Moudafi [17]. Let C be
a nonempty, closed and convex subset of a real Banach space E. Let T': C' — C be a
nonexpansive mapping such that F(T) # () and f : C — C be a contraction mapping. The
viscosity iteration method is defined as follows:

For xg € C, let {z,,}n>1 be a sequence generated by

Tnt1 = anf(xn) + (1 — an)Tay, (1.14)

where {ap }n>1 is a sequence of real numbers in (0,1). Under appropriate conditions, the
sequence defined by (1.14) converges to a fixed point of 7.

In [6], Cai, Shehu and Iyiola introduced the following iterative scheme: Let C be a
nonempty, closed subset of a real uniformly and 2—uniformly smooth Banach space FE.
Let T : C — C be an asymptotically nonexpansive mapping such that F(T) # 0 and
f: C — C be a contraction mapping. Then extragradient-viscosity iteration method for
the above mapping and problem (1.12) is defined as follows:

Tntl1 = anf(wn) + Bnn + T " 2p;

zn = Qc(I — ANA)uy; (1.15)

Up = QC(I - ,LLB)l’n,
Under suitable conditions on the iteration parameters, they proved strong convergence
theorem of the sequence defined by (1.15) to common element of solution of the variational
inequality problem (1.12) and fixed point problem of asymptotically nonexpansive mapping.
To be precise, following theorem was proved by them:

Theorem 1.2. (Cai, Shehu, Iyiola [0]) Let C' be a nonempty closed convex subset of 2-
uniformly smooth and uniformly convexr Banach space X, which admits weakly sequentially
continuous duality mapping. Assume that C' is a sunny nonexpansive retract of X and let
Qc be the sunny nonexpansive retraction of X onto C. Let A,B : C — X be a-inverse-
strongly accretive and B-inverse-strongly accretive mappings, respectively. Let f : C — C
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be a 0-strict contraction of C into itself with coefficient p € (0,1). Let T : C — C be
asymptotically nonexpansive self mapping on C such that F = F(T) N F(G) # 0, where G
is as defined by Lemma 2.9. For arbitrarily chosen x1 € C, let the sequence {xp}n>1 be
defined iteratively as follows:

Tp4+1 = anf(xn) + Bnxn + YT 2p;
Zn = QC(I - )‘A)Um
up = Qc(I — pB)xy,

where 0 < A < %,0 <p< % Suppose {an}, {Pn}, {1} are sequences in [0,1] satisfying
suitable conditions. Then, the sequence {x,} converges strongly to ¢* = Qrf(q) and (q,q*)
is a solution of problem (1.12), where ¢* = Qc(q — uSq) QF is the sunny nonexpansive
retraction of C' onto F.

For work on extragradient algorithm for finding a common solution to split generalised
mixed equilibrium problem, we refer the reader to [57].

Motivated by the above works, in this paper, we introduce and study the following algo-
rithm for the class of two asymptotically quasi-nonexpansive mappings and the variational
inequality problem (1.12) as follows: Let C' be a nonempty, closed subset of a real uniformly
convex and 2—uniformly smooth Banach space E. Let S,T : C — C be two asymptoti-
cally quasi-nonexpansive mappings such that F(T) # () and f : C — C be a contraction
mapping. Then, the extragradient-viscosity iteration method for the above mappings and
problem (1.12) is defined as follows:

Tpy1 = anf(Tn) + (1 — an — )0 + 1T Yn;
Yn = a%f(a:n) + (1 - O‘;z - 'Y;L)xn + 'Y;LSHZM
zn = Qo (I — ANA)up;
Up = QC(I - :UB):EWJ

3 n

where 0 < A < ﬁ,O < p < e K is uniformly smoothness constant, £,n > 0, and

(1.16)

2 )
{an} {Bn} {m}s{al}, {8}, {7} are sequences in [0, 1]. Under suitable conditions on the
control sequences, we prove strong convergence of the scheme defined by (1.16) to common
element of solution of two asymptotically quasi-nonexpansive mapping and the variational
inequality problem of (1.12).

Remark 1.2. The following remarks are evident from (1.16):

(1) If o/ = 0,9 =1, (1.16) reduces to:

Tnt+1 = anf(xn) + (1 — Op — ’Vn)xn + ’YnSan
2 = QoI — M) (1.17)
up = Qc(I — pB)xy,
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2)If B=1Ipu=0,ap0 =0=0al,7, =1and S = =T, where I is the identity
mapping, (1.16) reduces to:

Tn+l = (1 - ’Yn)xn + 'VnQC(I - AA)‘TTL (1'18)

Note that (1.15) is not the same as (1.17) since the class of mapping 7" in (1.15) is a
subclass of the class of mapping S in (1.17). Also, (1.18) is the same as (1.13). Consequently,
the results presented in this paper extend, improve and generalize some recently announced
results in the existing literature (see, for example, [1,6-58,13,19,30,32,33,41-13,16-18,51]
and the reference therein).

2. PRELIMINARIES

For the sake of convenience, we restate the following concepts and results:
Let E be a Banach space with its dimension greater than or equal to 2. The modulus of
convexity of E is a function dg(e) : (0,2] — (0, 2] defined by

. 1
dp(e) = nf{l —[I5(@+y)ll : lz]l = L lyl = 1,e = [lz — ylI}-

A Banach space E is uniformly convex if and if dg(e) > 0, for all € € (0, 2].
Let E be a normed linear space and let S ={z € E : ||z|| = 1}. E is called smooth if

iy N+ tyll = [lz]
im
t—0+ t

exists for each z,y € S. F is called uniformly smooth if it is smooth and the limit above is
attained uniformly for each z,y € S.

Let E be a normed space with dimension greater than or equal to 2. The modulus of
smoothness of F is the function pg : [0,00) — [0, 00) such that

lz+yll +lle—yll .

pe(T) =Sup{ 5 lll =1, flyl =T}-

It is known that a normed linear space F is uniformly smooth if

lim pe(7)
7—0 T

=0.

Note that if there exists a constant ¢ > 0 and a real number ¢ > 1 such that pg(7) < c7,
then E is called g-uniformly smooth. Typical examples of smooth spaces are L, ¢, and
W for 1 < p < oo, where Ly, £, or W is 2-uniformly smooth and p-uniformly convex if
2 < p < 00; 2-uniformly convex and p-uniformly smooth if 1 < p < 2.

Let D be a subset of C' and let @) be a mapping of C into D. The @ is said to sunny if

Q(Qz + t(z — Q) = Qu, (2.1)

whenever Qx + t(x — Qz € C and t > 0. A mapping @ of C into itself is called a retraction
if @Q? = Q. If mapping @ into itself is a retraction, then Qz = z for every z € R(Q), where
R(Q) is the range of Q. A subset D of C is called a sunny nonexpansive retract of C' if
there exists a sunny nonexpansive retraction from C' onto D. The following three lemmas
2.1, 2.2, 2.3 are known for sunny nonexpansive retraction:
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Lemma 2.1. (see [21]) Let C' be a nonempty, closed and convexr subset of a uniformly
conver and uniformly smooth Banach space E and let T be a nonexpansive mapping of C
into itself with F(T) # 0. Then the set F(T) is a sunny nonexpansive retraction on C.

Lemma 2.2. (see [10]) Let C' be a nonempty closed convex subset of a smooth Banach
space E and let Q¢ be a retraction from E onto C. Let D be a nonempty subset of C'. Let
Q : C — D be a retraction and J be a normalised duality map on E. Then, the following
are equivalent:

(1) Q¢ is both sunny and nonexpansive;

(i1) |Qx — Qyl* < (z — y.J(Oz — Qy)),Va,y € C;

(7i1) (x — Qex, J(y — Qex) <0,Vx € E and ye€ CD.
It is well known that if E is a Hilbert space, then a sunny nonexpansive retraction Q¢
coincides with the metric projection Po from E onto C. Let C be a nonempty closed and
convex subset of a smooth Banach space E, x € E and xg € C. Then, we have from Lemma
2.2 that xy € Qcx if and only if Yx — xo, J(y — x0)(< 0,Vy € C, where Q¢ is a sunny
nonexpansive retraction from E onto C.

Lemma 2.3. (see [5]) Let C be a nonempty closed convex subset of a smooth Banach space
E, Q¢ be a sunny nonexpansive retraction from E onto C and A be an accretive operator
of C into E. Then, for all X\ > 0,

VI(C, A) = Fiz(Qc(I — MA)).

Proposition 2.1. (see [0]; see also [Theorem 4,23]) Let D be a closed and convexr sub-
set of a refexive Banach space E with a uniformly Gateaux differentiable norm. If C is
nonexpansive retract of D, then it in fact a sunny nonexpansive retract of D.

Lemma 2.4. (see [13]) Let {z,} and {y,} be bounded sequences in a Banach space E and
let By, be a sequence in [0, 1], which satisfies the following condition: 0 < liminf,_,~ fn <

limsup,,_,. Bn < 1. Suppose xpir1 = Bnxn + (1 — Bn)yn,n > 0 and limsupp—soo(||ynt+1 —
Ynll = |Xnt1 — znl| < 0. Then, limy, o0 ||yn — zn|| = 0.

Lemma 2.5. (see [19]) Let {a,} be a sequence of nonnegative real numbers with an+1 =
(1 — ap)an + bp,n > 0, where v, is a sequence in (0,1) and b, is a sequence in R such that
* , = 00 and limsup,,_,, — < 0. Then, lim, o a, = 0.
On

Lemma 2.6. (see [25], [39]) Let E be a real smooth and uniformly convex Banach space
and r > 0. Them, there exists a strictly increasing, continuous and convex function g :
[0,2r] — R with g(0) = 0 such that g(|lx — y|| < ||z]|* = 2(z, j(y)) + |yl1?, for all z,y € B,.

Lemma 2.7. (see [7]) Let C be a nonempty closed convexr subset of a real 2-uniformly
smooth Banach space E. Let the mapping A : C — E be an a-inverse-strongly accretive.
Then, we have the following:

I(Z = AA)z = (I = AA)y|? < Jlz =yl + 20(AK? — a)| Az — Ay]]?,

where A > 0. In particular, if 0 < A < %, then I — AA is nonexpansive.
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Lemma 2.8. (see [7]) Let C' be a nonempty closed convex subset of a real 2-uniformly
smooth Banach space E. Assume that C is sunny nonexpansive retract of E and let Q¢
be a sunny nonexpansive retraction of E onto C. Let the mappings A,B : C — FE be
a-inverse-strongly accretive and B-inverse-strongly accretive respectively. Let G : C — C
be a mapping defined by

G(r) = QclQc(z — pBr) — MQC (2 puBa)) vaeC.
Ifo< A< % and 0 < p < %, then G : C' — C' is nonexpansive.

Lemma 2.9. (see [31]) Let C' be a nonempty closed convex subset of a real 2-uniformly
smooth Banach space E and let Q¢ be a sunny nonexpansive retraction of E onto C.
A,B : C — E be two nonlinear mappings. For a given x*,y* € C,(z*,y*) is a solution
to problem (1.18) if and only if x* = Qc(y* — NAy*), where y* = Qc(x* — uBz*), that is
x* = Gx*, where G is as defined by Lemma 2.9.

Lemma 2.10. (see [34]) Let E be a real Banach space and J : E — 2F" be a normalised
duality mapping, then for any x,y € E, the following inequalities hold:

lz+yl* < N+ 2y, i@ + ), Yie +y) € J(@ +y);
lz+yl> > 2 +2(y, j(2)), Vi(x) € J(x);

Lemma 2.11. (see [10]) Let C' be a nonempty closed convex subset of a real uniformly
convexr Banach space E and let T a nonexpansive mapping of C into itself. If {x,} is a
sequence of C such that r, — z and x, — Tx, — 0, then x is a fixed point of T.

Lemma 2.12. (see [12]) Let E be a Banach space satisfying weakly continuous duality
map, K a nonempty closed convex subset of E and let T : K — K be an asymptotically
nonezxpansive mapping with a fived point. Then I — T is demiclosed at zero; if {x,} is a
sequence of K such that x,, — x and if v, — Tx,, — 0, then x — Tz = 0.

Lemma 2.13. (see [0]) Let C be a nonempty closed convex subset of a real Hilbert space H
and T : C — C be a k-strictly pseudocontractive mapping. Define A=1—-T :C — H.

1_
Then, A is

-inverse-strongly accretive mapping; that is, for all x,y € C,

1—k
(v =y, Az — Ay) > ——|| Az — Ay|®.

3. MAIN RESULTS

Lemma 3.1. Let C be a nonempty closed convex subset of 2-uniformly smooth and uniformly
conver Banach space X, which admits weakly sequentially continuous duality mapping.
Assume that C is a sunny nonexpansive retract of X and let Q¢ be the sunny nonexpansive
retraction of X onto C. Let A,B: C — X be &-inverse-strongly accretive and n-inverse-
strongly accretive mappings, respectively. Let f : C — C be a p-strict contraction of C into
itself with coefficient p € (0,1). Let S,T : C — C' be two asymptotically nonexpansive self
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mappings on C such that F = F(T)NF(S)NF(G) # 0, where G is as defined by Lemma 2.9.
For arbitrarily chosen x1 € C, let the sequence {xy}n>1 be defined iteratively as follows:

Tnt+1 = oznf(xn) + (1 — Qp — 'Yn)fvn + YT Yn;
Yn = o f(zn) + (1 — aq — )20 + 775" 2n;
zn = Qc(l — ANA)uy;

Up = QC(I - MB>$7L7

(3.1)

where 0 < X < %,O <p< % Suppose {an}, {Bn =1 — an — W}, {m} {a,}, {8, =
1—af, — 9.}, {7L} are sequences in [0,1] satisfying the following conditions:

n
(a) 0 <oy <an <7, < <L
(b) 0 < liminf 3, < limsup g, < 1;
S () k, — 1
(c) nli_)noloan:(),Zan:oo,Z’y%<oo, lim =0;
)

n—oo

n=1 n=1
(d) T, S satisfy the asymptotically reqularity:
lim [|[T" 2, — T"z,|| = 0= lim HS”Hxn - S":L'nH.
n—oo n—oo

Then, the sequence {xy} is bounded and nh_)rrolo |Znt1 — zpl = 0.

Proof. Let ky, = max{ky(}),kg)}. Firstly, we prove that {z,} is bounded. Let z* € &.
Then, it follows from Lemma 2.9 that z* = Qo (Qc (I — uB)z* — NMAQc (I — uB)x*)). Let
t* = Qo (I — uB)x*), then * = Qc(I — MNA)t*). Also, from Lemma 2.9, we have

Iz — 27| = |Gzn — Gz™|| < [lzn — 27| (3.2)

By condition (c), there exists a constant € with 0 < e < 1 — ¢ and y,(k, — 1) < ea,, such
that following estimates hold:

”mn-f-l - x*H = HOénf(l’n) + (1 — O — ’Yn)xn + ’VnTnyn - «T*H
lan(f(zn) — o) + (1 — an — ) (@n — 27) + Y0 (T"yn — 27) ||
anllf(xn) — 2| + (1 = an — ) |20 — 2| + | T"yn — 27|

IA AN IA

(1= = p)an)llzn — 27| + anll f(27) = 27| = ynllzn — 27|

anpllry — 1‘*” + an”f(a:*) - 1‘*” + (1 = an —y)llon — 33*” + ’ynk‘g)Hyn —a*

+7nkn”yn - :L‘*H (3'3)

Again, from (3.1), we get

lyn = 2*(| = llagf(n) + (1 = ap = 7)wn + 7,520 — 27|

oy (f () — &%) + (1 = o, = ) (w0 — 27) + 7,(S" 20 — 27|

apllf(@n) — 2" + (1 = ofy = y)llen — 2% + 719" 20 — 27|

anplln — a*| + el |l f (%) = 2* | + (1 = af = )lln — 2|+ 70kP 20 — 27|
(1= (1= p)ap)llzn — 2| + ap | f (%) = 2| + 7, (kn = Dll2n — 2|

(1= (1 =p=ay)llen — 27| + ap[Lf (") — 27| (3-4)

VAN VAN VANRR VAN
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(3.3) and (3.4) imply

[en = 2" < (1= (1= p)an)llen — 27| + anll f(z7) — 27|
—nllzn — 2% = (anf(z") — %) + (an f(z") — 27|
k{1 = (1= p = €)ap)llzn — 2*[| + an || f (%) — 27|}
< (1= =pan)lzn — 2" + anl f(27) — 2|

—allzn = 2| = el f (@) = 2*]| = el f (@) - a*|
k(L= (1= p = ) 20 — o + | f () — 2]}
= (- (1= paw)lzn — 2] + L+ 3alkn — Dl (@) - 27

Fn{kal(1 = (1= p = €)ay,)] = L}zn — 2| (3.5)
Using conditions (a) and (c), we get

1 +’Y(k‘n - 2)

1+’7n(kn_1)_7n
14 eap, — T

Applying the above information in (3.5), we obtain

IN

(1= =pag)|zn — 2| + anl f(z¥) — 27|
+n(kn — 1) ||lzn — 2|
< (1= =p—ean)lzn — 2" + anl| f(z") — 27

[Znt1 — 2|

*\ ok
= (== p-anlen o+ (- p— o, L

*\ ok

< mar{on — o, LEL =l
(L—p—e)
By induction, we have
*\ ok
|zn —a*|| < max{Hxl — x*H,W},Vn >1,

which implies that the sequence {z,} is bounded, and so are the sequences {z,}and {y,}.
Next, we show that lim,,_,o |[Zp+1 — 2p|| = 0. Define the sequence {z,} as follows:

Tn41 = (1 — Op — 7n)$n + (Oén + 'Yn)yTh (36)
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where ay, + v, € (0, 1). Then, it follows that

Tn4+2 — (1 — Op41 — 7n+1)xn+1 _ Tn4+1 — (1 — Oy — PYn)xn

Yn+1 —Yn =
nr " Qpit1 + Yt Qn + Yn
= O‘n+1f(517n+1) + '7n+1Tn+1yn+l o Oénf(ffn) + YT yn
Qpi1 + Ynt1 Qp + Yn
_ an—i—lf(xn—i—l) - (an+1 + 7n+1)Tn+1xn+l + ’Yn+1Tn+1yn+l
Qpi1 + Ynt1
_anf(xn) — (an +7)T"@n + 1T yn + Ty — Ty,
Qp + Vn
_ g1 (f(Tny1) — Tn—H:UnJrl) + Y1 (TYnt1 — Tn+1$n+1)
Qpi1 + Yot
_onlf(@n) = Tn) £ 0 (Tyn = T20) | sy, png(37)
Qp + Vn
(3.7) implies that
[Yyn+1 = Ynll — [[Tnt1 — 24|
Qn+1 n+1
< || flrpe1) =T g
O (i) = T
Yn+1 +1 n+1
T Y1 — T || + ————||f(xp) — T
i1 + Yt || n+ n+ H an + Y || ( n) n”
Ty — T | 4+ | T ey — T |
Qp + Vn
—|—HT"+1xn =Tz || = |Tnt1 — 20|l
Qn+1 n+1
< || flrpe1) =T xpyaq
1 "‘Vn—&-le( n+ ) n+ ||
L) i — | (n) — T
On+1 + Yn+1 Qn + In
g — gl + (st — 1)1 —
an + n
Tz, — T 2, | (3.8)
Observe that
|21 = Yns1ll = ||Tn41 — (a ;z+1f(xn+1) +(1- O‘;1+1 - 'Y;L+1)xn+1 + ’V;LJrlSnJrlxn-&-l)H

= [[(ogr + Vos1) (@ns1 — 8" zns1) + oy 1 (S" Mgt — Flans))||
(g1 + Vo) |Zns1 — Toat|| + ot 1S i — f(@na]|

(1 + YD) @n1 — " apin || + anp1 | S an 1 — f@ngall (3.9)

Sn+1
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(3.8) and (3.9) imply that

On+1
[Ynt1 = Unll = llTng1 —anll < ———|f(zng1) = T" 2|
Qpt1 + Yt
k
M[(anﬁ-l + V)| Tt — Sn+1xn+1”
Qn+1 + Ynt1
«a
o1 | ang — flanll] + Th”ﬂxn) — Tz, ||
o+ )l — Sl + all "0 — £ (@l
Qp + Yn
F (kg1 — Dan1 — zall + [T 2 — T2, | (3.10)
By conditions (a), (c),(d) and the fact that lim, o knt1 = 1, we obtain from (3.10) that
Hm sup([|yn+1 — Ynll — |znt1 — 20|)) <0,
n—oo
which from Lemma 2.5 yields
Timn_ llgn — 2l =0 (3.11)
(3.6) together with (3.11) gives
nh_{go |Zns1 — 20|l = nh_ggo(an + Y )|Yn — 20|l = 0 (3.12)
OJ

Lemma 3.2. Let C be a nonempty closed convex subset of 2-uniformly smooth and uniformly
conver Banach space X, which admits weakly sequentially continuous duality mapping.
Assume that C' is a sunny nonexpansive retract of X and let Q¢ be the sunny nonexpansive
retraction of X onto C. Let A, B : C — X be &-inverse-strongly accretive and n-inverse-
strongly accretive mappings, respectively. Let f : C — C be a p-strict contraction of C
into itself with coefficient p € (0,1). Let S,T : C — C be asymptotically nonexpansive self
mappings on C such that F = F(T)NF(S)NF(G) # 0, where G is as defined by Lemma 2.9.
For arbitrarily chosen x1 € C, let the sequence {xy}n>1 be defined iteratively as follows:

Tnt1 = an f(@n) + (1 — an — ) Tn + 10T Yn;
Yn = ap fn) + (1 — af, — 7)@n + 7,8 20;
zn = Qc(l — MNA)uy;

un = Qc(I — pB)n,

(3.13)

where 0 < A < %,0 <p< % Suppose {an},{Bn}, {m} {al,}, {BL}: {1} are sequences

in [0,1] satisfying conditons of Lemma 3.1. Then, lim, o0 ||Tn — 2zn|| = 0,limy, oo ||2n —
Szl =0 and limy, 0 ||, — Tzy|| = 0.
Proof. From

[Zns1 = T"ynll = llanf(@n) + Baon + 1T yn — T ynl|

lon(f(zn) = T"yn) + Br(zn —T"yn) ||
anll f(zn) = T"yull + Bullzn — T ynll
anllf(xn) — T"yull + Bullzn — Tni1ll + Bullntr — T"Yall,

IA A
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we get

|Zne1 — T yn|| < 1

Since

[0 — Tyn|

VAN VAN VAN VA

IMO KALU AGWU AND DONATUS IKECHI IGBOKWE

Bn

)~ T+ 2

[0 = @ngall + ([0 = T"yall + HT"yn =Tyl + 1T"Yn—1 — Tyl

20 = Znpall + |2ns1r — Tynll + £ lyn — yn— 1H+||T(T"_1yn 1) — Tynl
|25 = @nall + 21 = Tyl + £ g = gl + kDT g1 = yall
|20 — Tng1ll + Zns1 = Tyl + 2kn||yn — znll + knl2n — 2ol + knllzn-—1

+anTn_1yn—1 - anu
it follows from (3.11), (3.12) and (3.14) that

Observe that

|20 — Ty

Jiny la = Ty | = 0.

|20 — Tyn| + (| T2n — Tyy|

<
< Nlzn = Tyn| + knllzn —yn] =0 as n — oc.

Furthermore, from (3.13) and Lemma 2.8, we obtain

lun =117 = Qe — pB)zy) — Qc(I — uB)z*)||?

and

l2n — 2™

IN

I(I = pB)an — (I — pB)z*||?
lz — 2* — p(Bzyn — Ba™)|”

< lwn — 2*|* — 2u(€ — K2%€)|| Bz, — Ba*|?
= |Qc(I — A)u,) — Qc(I — AA|?)
< (I = XA)uy, — (I — NA)E|?

= |lun — t* — M(Au, — A)|?

< lun = )12 = 2X(n — K?n) || Au,, — At*||?

(3.17) and (3.18) imply

l2n — 2% < llon — 2*|* = 20(¢ — K2€)|| Bxn — Ba™||* — 2X(n —

Again, from (3.13) and the convexity of ||, ., [|?, we get

|41 — 2*||?

where M* = sup,,»; = ||f(2,) — =

VARVAN

Hanf(xn) + (1 — Op — ’Yn)xn + T yn — x*HQ

|zrn — nt1]] =0 as n — oo.

(3.14)

- ynfl”

(3.15)

(3.16)

(3.17)

(3.18)

K2n)|| Au, — At*|? (3.19)

Han(f(xn) - .1'*) + (1 - OQp — 'Yn)(xn - x*) + %(T”yn - iU*)HQ
el o) =7+ 0= o ) = 1 50T =7

anM* + (1 — ap — 'Vn)H:Un_:U*HQ""Y ( ) lyn — *HQa
*HZ‘

(3.20)
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Similarly, from (3.13) and the convexity of ||,., |, with an,Vn, Zns1 and T™y, replaced

by al,, 7%, yn and S™y,, in (3.20), respectively, we have
lyn — 2> < @l M* + (1 = af, = ) en — 2 |* + 1 (k3|20 — 277, (3.21)
From (3.19), (3.20) and (3.21), we obtain

w1 — ¥

< anM* 4 (1= ap = )2 — 2 |1* + ki {on, M* + (1= oy = ) |2 — 2|7
Fynkalllen — 2*|? = 2u(€ — K2€)|| Bx, — Ba*||* — 2A(n — K*n)|| Auy, — A%}
= anM*+ (1 —an—v)|lzn — fE*HQ + Vnki{a:zM* + (1= ap)[lzn — m*HQ
(K = Dl — 2*|* = 23k (€ — K2€)||Ba, — Ba*|?
=29k A(n — K*n) || Auy — A}
< anM* o+ (1= ap = ) [en — 2| + anynkn MY + ki (1= oy, )[Jan — a2
k(b = Dllzn — 2*(1” = 29 ymkpu(é — K2€)||Ben — Ba™||?
_2'77/1'Ynk;1l)‘(77 - K277)HAU% - At*HQ
< an(l k) M+ (1= an)llzn — 2™+ (k; — 1)llzn — 2"

F2R2(2 — 1) — 272 — 290 k(€ — K2€)| o — Ba|?
=29k A(n — K?n)|| Auy, — AF|?

Set W = 24,9k (€ — K26)[| By — B2 + 29, kiA(n — K2m)]| Aun — A#*[[2. Then, it
follows from the last inequality that

W < an(l+ykp) M* + (1= o)z — 2|7 = llznsr — 212 + 7a (1 + okz) (B = 1)l|zn — 2*||?

= ap(l+ 'Ynkrzb)M* + | = (Tnr1 — Tn) + Tpy1 — -77*H2 —[|Znt1 — x*Hz
A (1 4+ Yk (k7 — 1) || — 2|
< an(l+ 'Ynkrzb)M* + | Znt1 — xn)H2 + (1 + 'ynki)(k‘% = Dz, — x*H2

Using (3.12), (3.22), conditions (b), (c¢), Lemma 3.1 and the fact that 0 < A < %,0 <p<

/a and lim,_ .. k, = 1, we get

K2
lim W =20
n——aoo
Thus,
lim ||Bz, — Bz*||=0= lim |[Au, — At*|| (3.23)
n—m—o0 n——:oo

Since, using Lemma 2.7 and Lemma 2.2,

lun =117 = Qe — pB)y) — Qc(I — uB)z*)||?
< (xp — pBx, — (2" — uBx™), j(u, — t*)
= <37n —l’*,j(un _t*> +N<B‘T*_mej(un _t*>
1
< Gllen =217+ flun = 1 = g*(lon = un — (2% = )] + pll Bon — Ba*|

XH’LLn - t*Hv

(3.22)
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it follows that
un — )1 < [Jan — ¥ — g*(lzn — un — (&% = t*)])) + 20 By — Ba*|[[lun — ]| (3.24)

Similarly, since

lzn —2** = |Qc(I = A)uy) — Qc(I — AA))|?
< (up — AMuy, — (87— M), j(zn, — )
= (up —t*,j(z2n — %) + MAt* — Aup, j(z, — )
1 * * *k * * *
< Gllun =1+ llzn = 271 = g (lun = 20 + (27 = ) )] + M| A" = Aun |

xlzn — 27|,
it follows that
lzn = 2*[* < flun = 1% = g (lun — 20 + (@ = t)I]) + 2A[ A" — Aug |20 — 2™ (3.25)
(3.24) and (3.25) imply that
lzn = 21> < lan = 2*|? = g*(len — un — (&% = )]]) + 2u| Ban — Ba*||[Jun — *]
—g" ([un = 20 + (&7 = t)|) + 2X[ A" — Aug ||| 20 — 27| (3.26)
From (3.21) and (3.26), we have
lyn —2*I? < apM* + (1= ag, =) len — 2l + ki [l — 2|
—g" (len — un — (2" = )||) + 2ul| Brn — Ba™|[[|un — ¢
—g" ([[un = 2n + (2" = t)]) + 2X[[ A" — Aug ||| 20 — 2]
= ap,M* + (1= ap)lan — | + 9 (k2 = D]jon — 27|
~nkng" (l2n = wn — (&* = )) + 2p, k3 || Bey — Ba*|||Jun — t*|
kg™ (lun = 20 + (&% = )]) + 207,k || A" — Aus|
X ||z — x| (3.27)
Thus, from (3.20), (3.27) and the inequality:
[ — 212 < @M+ (1= o — yo)llzm — 212 + k2o, M* + (1 — @) — 7|
(ks = Dllen = 2*I2 = ypkig* (lan — un — (a* = £9)])
+2pynka | Ban — Br*||[[un — ¢ — kg™ (lun — 20 + (@ = *)1)
+2X k| A" — Aug ]|z, — 2*]
anM*(1+ynky) + (1= an)llzn — 21+ (ky = Dllzn — 2|
ks (kn = Dllzn = 2*I* = vimkng(l2n — un — (2% = £9)])
209 Yk | By, — Ba* || — ]| = v ynking™ (lun — 20 + (@ = *)l1)
207 ki | A" — Aun|[| 20 — 27|
= anM* (1 +7aky) + (1= an)llzn — 22 + (1 +9k2) (k7 — 1)z — ¥
~AnYnkng* (20 = un — (2 = t)) + 2wy 0k | Ban — Ba*||[lun — *]
~ A Ynkn g™ ([un = 20 + (2% = t)]) + 207,70k | A" — Aug|l||2n — 2*]],

IA
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we obtain, with W* = 4/ v, k2 g* (||zn — un — (2 — t)|) + Yovnkt g™ (|t — 20 + (2* — t)|]),
the following estimation:
W < a,M*(1+ 'YnkQ) + (1 —an)llzn — m*HQ —llzn+1 — x*HQ
Fyn(L+nkn) (ki = Dllzn — |1 + 20y k| Bon — Ba*|[[un — ¢
F2M 7, ki | A — Aup||[| 20 — 27|

< an ML+ k) + || = (@1 = 20) + ogr — 2| = [[epg — 27|
(1 + ykn) (B = Dllan — *1* + 20y, k|| Beo — Ba*||[lun — ]
PO RAIAL — Aualllzn — 27|

< M (Lt 3k2) + s — ol + s — 22 — sr — ]2

(1 + ynkn) (K = Dllzn — *|* + 20y, vk | Bra — Ba*||[[un — ]
207 ki | A" = Aun||[lz0 — 27|
Using conditions (b), (¢), Lemma 3.1 and the fact that 0 < A < —
lim,, o0 by, = 1, we get from the last inequality that

i Ak (e — 1w — (2 — 0)]) = 0= Tim Ayyakig™ (lun — 20 + (@ — )]]) (3.28)

and 0 < p < and

£
K2 K2

Thus, from the properties of ¢g* and g**, we get
lim ||z, —up, — (2" =t")||=0= Jim lun, — zn + (" — )| (3.29)

n—oo

Using (3.29) and the inequality

[z — 2nll < Ml —un — (&% = )| + [lun — 2 + (2" — )], (3.30)
we obtain
Jim |zn, — 2| = 0. (3.31)
Since
lyn — S"znll = Ho/nf(xn) +(1— 0‘;1 - 'Y;w)xn + V;LSnzn — 5" zn|

o (f (@n) = ) + (1= ) (0 = tn) + (1= 9) (yn — S"20) |

apllf(@n) =zl + 1 =)z = ynll + (1 = 3)llyn — S"20)ll;
it follows from condition (c) and (3.11) that

n Qn (1 ’Yn)

[yn — S™2nl| < 7“f(xn) — || + ——

n ’fL

IN

|zn, —yn] =0 as n— oo (3.32)

Again, since
|2 — S™ 2|l < llzn — ol + |20 — yull + llyn — S" 24|

and

IN

|2 = 2nll + [[2n = S"2n|| + [ 2n — S" 20|

(14 kn)l|xn — 2n|| + ll2n — S™ 20l (3.33)
it follows from (3.11), (3.31), (3.32) and (3.33) that

Jim |z, — S™zp|| = 0. (3.34)

|zn — S x|

IN
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and
lim ||z, —S"z,| = 0. (3.35)

n—oo

From (3.35) and condition (d), we have

|zn — Sznll <z — S"@n| + [|S" 2, — Sn+1$ﬂ” + HSn—Ha:n |

< (A +kp)|zn — S™xn|| + [|S"x, — S" T2, - 0 as n— oco.(3.36)
O

Theorem 3.1. Let C be a nonempty closed conver subset of 2-uniformly smooth and uni-
formly convex Banach space X, which admits weakly sequentially continuous duality mapping.
Assume that C' is a sunny nonexpansive retract of X and let Q¢ be the sunny nonexpansive
retraction of X onto C. Let A,B: C — X be &-inverse-strongly accretive and n-inverse-
strongly accretive mappings, respectively. Let f : C — C be a p-strict contraction of C
into itself with coefficient p € (0,1). Let S,T : C — C be asymptotically nonexpansive self
mappings on C such that F = F(T)NF(S)NF(G) # 0, where G is as defined by Lemma 2.9.
For arbitrarily chosen x1 € C, let the sequence {xy}n>1 be defined iteratively as follows:

Tnt1 = an f(n) + (1 — an — ) Tn + 10T Yn;
Yn = o f(zn) + (1 — ag — 7)) @0 + 77,5 2
zn = Qc(l — MNA)uy;

un = Qo (I — pB)n,

(3.37)

where 0 < A < %,0 <p< % Suppose {an}, {Bn} {m}, {c}, {8}, {7} are sequences

in [0, 1] satisfying conditions of Lemma 3.1. Then, the sequence {x,} converges strongly to
¢ = Qrf(q) and (q,q*) is a solution of problem 1.18, where ¢* = Qc(q — nSq) QF is the
sunny nonezxpansive retraction of C' onto F.

Proof. Since for all x,y € C,
1Qrf(z) = QrfWI < If(z) = fWI < llz =yl

it follows from Banach contraction principle that there exists a unique ¢ € C such that
Qrf(q) = q. By the definition of sunny nonexpansive retraction Qr, we have q € F.

Now, we show that
lim sup(f(q) - ¢,4(zn — q)) <0, (3.38)
n
where Qr f(q) = gq. Boundedness of {z,} guarantees the existence of a subsequence {x,, }
of {x,,} such that z,, — z as k — oo and

limsup(f(q) — ¢, j(xn — q)) = limsup(f(q) — ¢, 5(zn, — q)) (3.39)

n— 00 k—o0

(3.31) and Lemma 2.12 imply that z € F(G). Again, (3.16), (3.36), and Lemma 2.11 imply
that z € F(T)NF(S)NF(G) =9F.
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Since j is weakly sequentially continuous, Lemma 2.2 and (3.39) imply that

ligsogp<f (@) —q¢.j(zn—q) = ligljupﬁ (@) = q,5(n, —q))
= (fl@) —¢,j(z—q))
< 0,

which is as required by (3.38).
Next, we show that =, = ¢ = Qrf(q) as n — oo. Now, using (3.1) and Lemma 2.11, we
have

|Tn1 — CIH2 = [[(1 =an—")(@n — @) + (T "yn — @) + an(f(zn) — )H2
S H(l — Qp — ’Yn)(xn - Q) + ’Yn(Tnyn - Q)HQ + 2an<f(xn) - Qaj(xn-‘rl - Q>
< (1= an)llzn — qll = vnllzn — 4l +%kn|lyn—(J|l)2

+2anpl|n — qlll|zn1 — qll + 200 (f(q) — ¢, j(Tns1 — @) (3.40)

Using condition (a) and the same argument as in (3.4), with z* replaced by ¢, we obtain

lyn —dall < anpllen — qll + anll f(g) — qll + (1 = o) |20 — 4l
+’7n(kn - 1)H$n - QH (3'41)

(3.40) and (3.41) imply that

|Zns1 — gl

< A0 —an)llzn = all = wllzn — all + mknlanpllzn — 4f
+an| f(@) = all + (1 = ap)lzn — gl + n(kn — 1)l|z — gll]}
+2onpllan — qlllzns1 — qll + 200 (f (@) — ¢, (2011 — )
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< A0 —an)llen = gll = mllzn — gll + Yknompllzn — 4l
+anTnknll f(q) — qll + vknllzn — gl + '772Lkn(kn — 1z, — Q||}2
+2anplzn — qlll|znt1 — all + 2an(f(@) — ¢, j(Tn+1 — @)

< A{l(X—an) + ks — 1) + ynknanp + 'szn(kn = D]llzn — 4|
+annkall (@) — all}? + 20mpll 2 — dll|zn1 — gl
20 (f(q) = ¢ 5 (xnt1 — q)

< Al = an) + (ke = 1)1+ ykn) + ynknanp]zn — gl
+anyaknl £(a) = all}? + anp(lzn — all* + [|lzne1 — all?)
+20n(f(q) — ¢4 (nt1 — @)

= [(1—an) +v((kn — 1)1 + ynkn) + knanp)]2||$n - ‘I||2
+20nYnkn[(1 = an) + Y (kn = D1+ mkn) + Ynknomplllzn — qllllf (@) — 4l
+azmkn | £(a) = all® + anp(llen — al® + 2 — gl®)
+20n(f(q) — ¢, §(nt1 — @)

< 1 =20 + a2 4 29 ((kn — D)(1 + vkpn) + knamp)

(k= 1) (1 4+ mkn) + knanp)?lllen — qll” + 7211 — an)
9 (b — 1) (1 + ynkn) + Ynknompl(lzn — qll* + a2 k2| £ (@) — ql?
+ag kil £ (@) = all? + enp(an — ql” + lzns1 — ql?)
+20n(f(q) — 4,5 (Tn+1 — @)

= [1=@=pallen —al® + [af + 23 ((kn = D)(L + vnkn) + knanp)
+’Yr2L((kn = 1)1+ ykn) + knanP)Q]Hxn - QH2 + %%,[(1 —ap)
+Yn(kn — 1)(1 + ynkn) + 'Ynknan/’]QHxn - QHQ
+apkallf(q) — all* + epvakall £ (@) — 4l + anpllzas — ql?
200 (f(q) — ¢, j(Tna1 — q)

= 1= 2= panlllzn — qll” + [ah + 290 ((kn — V(1 + Yakn) + knanp)
+297 ((kn = D (1 4 nkn) + knanp)® + 72 (1 = an)]M + apki (1 + 7)1 £(9) — qll?
+anp||Tni1 — QH2 + 200 (f(q) — ¢, J(Tny1 — q)

from which we obtain

fz0e1 — al?
2(1 —p)a « 1
< 1= HEE 0, g U, (ks — D3+ k) + )

+2’Yr2L((kn — D)1+ vnkn) + knanP)Q + 'Yz(l — ap)|M + O‘nki(l + 72)”]0((1) - QHQ
+2(f(9) = @, (@1 — a)},

where M = sup,,>; ||z, — qll*.
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Put
2(1 —
0 — (1 —plan
1- Qnp
and
n 1
bp = 1 _aa p{an + 07[2%1((]% = (1 + mky) + knanp) + 2%%((]% — (1 + mky) + knanP)Q
+92 (1 = an)]M + ok (1+72) | £(a) = al* + 2(f (@) = 4, (zns1 — @) },
so that
bn,
cn = —
Qp
1 1
- 21 p){an + a—[2fyn((kn — DA 4 Ynkn) + knanp) + 292 ((kn — 1)(1 + ynkn) + Enanp)?

921 = )M + k2 (1) Fa) — all* + 207 (@) ~ @.3(@nss —a) 1

Then, from condition (c¢) and (3.38), we get

(o)
ap — 0 asn — o0 ,Zan:oo and limsupc, <O0.

n=1 n—oo

Thus, from Lemma 2.6, the result follows as required (i.e., z,, — ¢ as n — oo) and this
completes the proof. O

Corollary 3.1. Let C be a nonempty closed convex subset of a Hilbert space H. Let Po be
a metric projection from H onto C. Let A, B : C — H be {-inverse-strongly accretive and
n-inverse-strongly accretive mappings, respectively. Let f : C — C' be a p-strict contraction
of C into itself with coefficient p € (0,1). Let S,T : C — C' be asymptotically nonexpansive
self mappings on C' such that F = F(T)NF(S)NF(G) # 0, where G is as defined by Lemma
2.9. For arbitrarily chosen x1 € C, let the sequence {zy}n>1 be defined iteratively as follows:

Tp41 = anf(l'n) + (1 — Op — 'Yn)xn + T Yn;
Yn = & f(zn) + (1 — g, — 75,) 20 + 7,5 2n;
zn = Po(I — AA)uy;

up = Po(I — pB)wy,,

(3.42)

where 0 < A < %,0 <p< % Suppose {an},{Bn}, {m} {al,}, {BL} {7} are sequences
in [0,1] satisfying the following conditions:

(8) 0 <l < an < b < < 1
(b) 0 < liminf g, <limsup g, < 1;

: k 1
(C) limy, 00 o, = 0, ZZO:1 Oy = 00, Z%O:I WQL < 00, limy, 00 = =0;
)

n

(d) T, S satisfy the asymptotically reqularity:
lim,, oo |77y, — T2y || = 0 = limy, o0 || S 2y, — S|
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Then, the sequence {x,} converges strongly to the unique solution of the variational inequal-
ity: ¢ € F such that

(I-[)g,j(qg—a")) <0,Vz* € F.

2
Proof. Since H is a Hilbert space, then 2-uniformly smooth constant K = - The result

follows from Theorem 3.1. O

Remark 3.1. Since every asymptotically nonexpansive mapping is a superclass of the class of
nonexpansive mapping, the above results remain valid when S, T" are nonexpansive mappings.

4. APPLICATION

Here, we give an application of our main result to a variational inequality problem for
two strictly pseudocontractive mappings in Hilbert space.

Theorem 4.1. Let C be a nonempty closed convex subset of of a Hilbert space H. Let P be
a metric projection from H onto C. Let S*,T* : C' — C be k1 -strictly pseudocontractive and
ko-strictly pseudocontractive self mappings on C. Let f : C — C be a p-strict contraction
of C into itself with coefficient p € (0,1). Let S,T : C — C' be asymptotically nonexpansive
self mappings on C' such that F = F(T)NF(S)NF(G) # 0, where G is as defined by Lemma
2.9. For arbitrarily chosen x1 € C, let the sequence {xy}n>1 be defined iteratively as follows:

Tpt1 = anf(Tn) + (1 — an — V) Tn + 1T Yn;
Yn = a;zf(xn) + (1 - O‘;L - ’Y;L)xn + 71,15'”271;
Zn = (1 = Nuy + AT uy;

up = (1 — p)xy + pS*xn,

where 0 < A < (1= k1),0 < p < (1= k2). Suppose {an}, {Bn}, {1}, {on}, {Bn}, {7} are
sequences in [0, 1] satisfying the following conditions:

(4.1)

(a) 0< o), <ap < <7, <1;

(b) 0 < liminf g8, <limsup g, < 1;
kn—1
(C) lim,, o v, = 0, Zzo:l Oy = 00, 2%0:1 ’7721 < 00, limy, 00 - = 0;
n
(d) T, S satisfy the asymptotically regularity:
limy, oo | Ty, — T2y || = 0 = limy, o0 || S 2y, — S|

Then, the sequence {x,} converges strongly to the unique solution of the variational inequal-
ity: ¢ € F such that

((I-[)g,j(qg—z")) <0,Vz* € F.

Proof. Let A=1—-T*:C — Hand B=1—-5":C — H. Then, by Lemma 2.13,
A:C — H is &-inverse-strongly accretive with & = — G

1—k
strongly accretive with n = 5 2

and B : C — H is n-inverse-
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Also, observe that
zn = Po(up — Auy,)
Po(up — NI —T*)uy,)
Po((1 = XNuy + AT uy)
= (1= Nuy + AT uy,
and
u, = Po(xy, — uBzy)
Po(wn — p(l = S%)zp)
Po((1 = p)an + pS*Xn)
= (1—p)a, + pS*z,
Using the above information and Corollary 3.1, the proof of Theorem 4.1 is completed. [
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