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A STUDY OF CAPUTO-HADAMARD FRACTIONAL
VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

WITH NONLOCAL BOUNDARY CONDITIONS

AHMED A. HAMOUD1, ABDULRAHMAN A. SHARIF2, AND KIRTIWANT P. GHADLE3

Abstract. In this study, the Volterra-Fredholm equation which is a nonlinear integro-
differential equation is discussed. In the first stage, the integro-differential equation was
extended to the Volterra-Fredholm integro-differential equations involving the recently ex-
plored Caputo-Hadamard fractional derivatives. After, existence and uniqueness of positive
solutions were obtained to such equations in Banach spaces via fixed point techniques and
the method of upper and lower solutions. Finally, an illustrative example was considered
for the extended problem by using the Caputo-Hadamard fractional derivative via fixed
point technique.

1. Introduction

Many nonlinear differential equations are used to describe real world problems. To
describe complex problems, the concept of a fractional-order derivative and a differential
equation are used. Fractional Differential Equations (FDEs) with and without delay arise
from a variety of applications including in various fields of science and engineering such
as engineering technique fields, applied sciences, practical problems concerning mechanics,
physics, dynamics, economy, control systems, chemistry, atomic energy, biology, medicine,
information theory, harmonic oscillator, nonlinear oscillations, conservative systems, stability
and instability of geodesic on Riemannian manifolds, dynamics in Hamiltonian systems, etc.
In particular, problems concerning qualitative analysis of linear and nonlinear FDEs with
and without delay have received the attention of many authors, see [11,21,24,25,27,29,32,33]
and the references therein.

The fractional derivative of hadamard type introduced by Hadamard in 1892, differs
from the Caputo and Riemann-Liouville derivatives in the sense that the kernel of the
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integral contains a logarithmic function of arbitrary exponent [1–3,5]. Recently, the study
of Hadamard FDEs is also of great importance. There has been a significant development in
Hadamard derivative of differential equations in recent years for detail study on Hadamard
fractional derivative, we refer to [6, 7, 9, 23,30,31].

Lately, there has been a developing interest for the fractional integro-differential equa-
tions (FIDEs). FIDEs have been recently used as effective tools in the modeling of many
phenomena in various fields of applied sciences and engineering such as acoustic control,
signal processing, porous media, electrochemistry, viscoelasticity, rheology, polymer physics,
proteins, electromagnetics, optics, medicine, economics, astrophysics, chemical engineering,
chaotic dynamics, statistical physics and so on [8, 10, 12, 13, 17, 19–22, 25, 29, 32, 33]. Many
problems can be modeled by FIDE from various sciences and engineering applications.

Zhang in [36] investigated the existence and uniqueness of positive solutions for the
nonlinear FDE

Dνu(t) = f(t, u(t)), t ∈ (0, 1], 0 < ν < 1,
u(0) = 0,

where Dν is the standard Riemann-Liouville fractional derivative of order ν and f : [0, 1]×
[0,∞)→ [0,∞) is a given continuous function. By using the method of the upper and lower
solution and cone fixed point theorem, the author obtained the existence and uniqueness of
a positive solution.

In [28], Matar discussed the existence and uniqueness of the positive solution of the
following nonlinear FDE

cDνu(t) = f(t, u(t)), t ∈ (0, 1], 0 < ν ≤ 2,
u(0) = 0, u′(0) = Φ > 0,

where cDν is the standard Caputo’s fractional derivative of order ν and f : [0, 1]× [0,∞)→
[0,∞) is a given continuous function. By employing the method of the upper and lower
solutions and Schauder and Banach fixed point theorems, the author obtained positivity
results.

Ardjouni and Djoudi in [7] studied the positivity of the solutions for the nonlinear FDE
with integral boundary conditions

HDνu(t) = f(t, u(t)), t ∈ [1, T ], 0 < ν ≤ 1,

u(1) = u0 + λ

∫ T

1
u(s)ds,

where HDν is the Caputo-Hadamard fractional derivative of order ν, λ ≥ 0, u0 > 0, f :
[1, T ]× [0,∞)→ [0,∞) is a given continuous function. By using the method of the upper
and lower solution and Schauder and Banach fixed point theorems, the author obtained the
existence and uniqueness of a positive solution.

In this paper, we extend the results in [6, 7] by proving the positivity of solutions for
the following nonlinear Caputo-Hadamard fractional Volterra-Fredholm integro-differential
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equation

HDν
1u(t) = f(t, u(t)) +

∫ t

1
k(t, s, u(s))ds+

∫ T

1
h(t, s, u(s))ds, t ∈ J := [1, T ], (1.1)

u(1) = u0 + λ

∫ T

1
u(s)ds, (1.2)

where HDν
1 is the Caputo-Hadamard fractional derivative of order ν, 0 < ν < 1, λ ≥

0, u0 > 0, f : [1, T ] × [0,∞) → [0,∞) and k, h : [1, T ] × [1, T ] × [0,∞) → [0,∞) are given
continuous functions, k, h are non-decreasing on u. To prove the existence and uniqueness
of positive solutions, we transform (1.1) into an equivalent integral equation and then by
use the Krasnoselskii and Banach fixed point theorems.

This paper is organized as follows. In section 2, we introduce some notations and lemmas,
and state some preliminaries results needed in later section. Also, we present the inversion
of (1.1) and the Banach and Schauder fixed point theorems. In section 3, we give and prove
our main results on positivity. In section 4, we provide an example to illustrate our results.
In section 5, concluding remarks close the paper.

2. Preliminaries

Let X = C(J) be the Banach space of all real-valued continuous functions defined
on the compact interval J , endowed with the maximum norm. Define the the subspace
E = {u ∈ X : u(t) ≥ 0, ∀t ∈ J}.

Let us first recall some basic definitions, propositions and lemmas, which will be used
throughout the work. For more details, see [1, 14–16,18,27,28,35].

Definition 2.1. [1,27] The Hadamard derivative of fractional order ν > 0 for a continuous
function h : [1,∞) −→ R is defined as

Dνh(t) = 1
Γ(n− ν)

(
t
d

dt

)n ∫ t

1

(
log t

s

)n−ν−1
h(s)ds

s
, n− 1 < ν < n. (2.1)

where n = [ν] + 1, and [ν] denotes the integer part of real number ν and log(.) = loge(.).

Definition 2.2. [1] The Hadamard fractional integral of order ν for a continuous function
h is defined as

Iνh(t) = 1
Γ(ν)

∫ t

1

(
log t

s

)ν−1
h(s)ds

s
, ν > 0,

provided the integral exists.

Definition 2.3. [35] The Riemann-Liouville fractional integral of order ν > 0 of a function
f is defined as

Jνh(t) = 1
Γ(ν)

∫ t

0
(t− s)ν−1h(s)ds, t > 0, ν ∈ R+,

J0h(t) = h(t), (2.2)

where R+ is the set of positive real numbers.
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Definition 2.4. [27] The Riemann-Liouville derivative of order ν with the lower limit zero
for a function h : [0,∞) −→ R can be written as

Dνh(t) = 1
Γ(1− ν)

d

dt

∫ t

0

h(s)
(t− s)ν ds, t > 0, 0 < ν < 1. (2.3)

Definition 2.5. [34] Let a, b ∈ R+ and b > a. For any u ∈ [a, b], we define the upper-control
function U(t, u) = supa≤β≤u f(t, β) and lower-control function L(t, u) = infu≤β≤b f(t, β).
Obviously, U(t, u) and L(t, u) are monotonous non-decreasing on u and

L(t, u) ≤ f(t, u) ≤ U(t, u).

Lemma 2.1. [4] Let n− 1 < ν ≤ n, n ∈ N and u ∈ Cn([J ]). Then

(Iν1Dν
1u)(t) = u(t)−

n−1∑
k=0

u(k)(1)
Γ(k + 1)(log t)k.

Lemma 2.2. [4] For all µ > 0 and α > −1

1
Γ(µ)

∫ t

1

(
log t

s

)µ−1
(log s)αds

s
= Γ(α+ 1)

Γ(µ+ α+ 1)(log t)µ+α.

Theorem 2.1. [35] (Banach’s fixed point theorem) Let (X, d) be a nonempty complete
metric space with T : X −→ X is a contraction mapping. Then map T has a fixed point
x∗ ∈ Xsuch that Tx∗ = x∗.

Theorem 2.2. [35] (Schauder’s fixed point theorem) Let X be a Banach space and B ⊂ X
be a convex, closed and bounded set. If Ω : B −→ B is a continuous operator such that
ΩB ⊂ X, ΩB is relatively compact, then Ω has at least one fixed point in B.

3. Existence and uniqueness results

In this section, we shall give the existence and uniqueness results of Eq.(1.1), with the
conditions (1.2) and prove it. Before starting and proving the main results, we introduce
the following lemma.

Lemma 3.1. [7,26] Let 0 < ν < 1. Assume that u ∈ C1([1, T ]). Then u satisfies the problem
(1.1)-(1.2) if and only if u satisfies the mixed type integral equation

u(t) = 1
Γ(ν)

∫ t

1

(
log t

τ

)ν−1[
f(τ, u(τ)) +

∫ τ

1
k(τ, s, u(s))ds+

∫ T

1
h(τ, s, u(s))ds

]dτ
τ

+u0 + λ

∫ T

1
u(τ)dτ, t ∈ J. (3.1)

Proof. Suppose u satisfies the problem (1.1)-(1.2), then applying Iν1 to both sides of (1.1),
we get

Iν1D
ν
1u(t) = Iν1

(
f(τ, u(τ)) +

∫ τ

1
k(τ, s, u(s))ds+

∫ T

1
h(τ, s, u(s))ds

)
.
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By using Lemma 2.1 and the integral boundary condition, we obtain

u(t) = 1
Γ(ν)

∫ t

1

(
log t

τ

)ν−1[
f(τ, u(τ)) +

∫ τ

1
k(τ, s, u(s))ds+

∫ T

1
h(τ, s, u(s))ds

]dτ
τ

+u0 + λ

∫ T

1
u(τ)dτ, t ∈ J. (3.2)

Conversely, suppose u satisfies (3.1), then applying Dν
1 to both sides of (3.1), we obtain

Dν
1u(t) = Dν

1

( 1
Γ(ν)

∫ t

1

(
log t

τ

)ν−1[
f(τ, u(τ)) +

∫ τ

1
k(τ, s, u(s))ds+

∫ T

1
h(τ, s, u(s))ds

]dτ
τ

+u0 + λ

∫ T

1
u(τ)dτ

)
= Dν

1I
ν
1

(
f(t, u(t)) +

∫ t

1
k(t, s, u(s))ds+

∫ T

1
h(t, s, u(s))ds

)
+Dν

1

(
u0 + λ

∫ T

1
u(τ)dτ

)
= f(t, u(t)) +

∫ t

1
k(t, s, u(s))ds+

∫ T

1
h(t, s, u(s))ds

Moreover, the integral boundary condition u(1) = u0 + λ
∫ T

1 u(s)ds, holds. �

To transform (3.2) to be applicable to Schauder’s fixed point, we define the operator
Ω : B −→ B by

(Ωu)(t) = 1
Γ(ν)

∫ t

1

(
log t

τ

)ν−1[
f(τ, u(τ)) +

∫ τ

1
k(τ, s, u(s))ds+

∫ T

1
h(τ, s, u(s))ds

]dτ
τ

+u0 + λ

∫ T

1
u(τ)dτ, t ∈ J, (3.3)

where figured fixed point must satisfy the identity operator equation Ωu = u. We introduce
the following hypotheses:
(A1) Let u∗, u∗ ∈ B such that a ≤ u∗(t) ≤ u∗(t) ≤ b and

Dν
1u
∗(t)−

∫ t

1
k(t, s, u∗(s))ds−

∫ T

1
h(t, s, u∗(s))ds ≥ U(t, u∗(t)),

Dν
1u∗(t)−

∫ t

1
k(t, s, u∗(s))ds−

∫ T

1
h(t, s, u∗(s))ds ≤ L(t, u∗(t)), for any t ∈ J.

(A2) There exist three positive constants Lf , Lk and Lh such that

|f(t, u)− f(t, v)| ≤ Lf |u− v|
|k(t, s, u)− k(t, s, v)| ≤ Lk|u− v|,
|h(t, s, u)− h(t, s, v)| ≤ Lh|u− v|, ∀t, s ∈ J and u, v ∈ R.

The functions u∗ and u∗ are respectively called the pair of upper and lower solutions for the
problem (1.1)-(1.2).

The first result is based on the Schauder fixed point theorem.

Theorem 3.1. Assume that the hypothesis (A1)-(A2) are fulfilled, then there exists at least
one positive solution for the problem (1.1)-(1.2).
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Proof. Let Φ = {u ∈ B : u∗(t) ≤ u(t) ≤ u∗(t), t ∈ J} endowed with the norm ‖u‖ =
maxt∈J |u(t)|, then we have ‖u‖ ≤ b. Hence, Φ is convex bounded and closed subset of
the Banach space C([1, T ]). Moreover, the continuity of f, k and h imply the continuity of
the operator Ω on Φ defined by (3.3). Now, if u ∈ Φ, there exist three positive constants
Mf ,Mk and Mh such that

max{f(t, u(t)) : t ∈ J, u(t) ≤ b} ≤Mf ,

max{k(t, s, u(s)) : t, s ∈ J, u(s) ≤ b} ≤Mk,

and

max{h(t, s, u(s)) : t, s ∈ J, u(s) ≤ b} ≤Mh.

Then

|(Ωu)(t)| ≤ 1
Γ(ν)

∫ t

1

(
log t

τ

)ν−1[
|f(τ, u(τ))|+

∫ τ

1
|k(τ, s, u(s))|ds+

∫ T

1
|h(τ, s, u(s))|ds

]dτ
τ

+u0 + λ

∫ T

1
|u(τ)|dτ

≤ Mf (log T )ν

Γ(ν + 1) + Mk(log T )ν+1

Γ(ν + 2) + Mh(log T )ν+1

Γ(ν + 2) + u0 + λb(T − 1).

Thus

‖Ωu‖ ≤ Mf (log T )ν

Γ(ν + 1) + (Mk +Mh)(log T )ν+1

Γ(ν + 2) + u0 + λb(T − 1).

Hence, Ω(Φ) is uniformly bounded. Next, we prove the equicontinuity of Ω(Φ). For each
u ∈ Φ. Then for t1, t2 ∈ J with t1 < t2, we have

|(Ωu)(t2)− (Ωu)(t1)|

≤ 1
Γ(ν)

∫ t1

1

[(
log t1

τ

)ν−1
−
(

log t2
τ

)ν−1]
|f(τ, u(τ))|dτ

τ

+ 1
Γ(ν)

∫ t2

t1

(
log t2

τ

)ν−1
|f(τ, u(τ))|dτ

τ

+ 1
Γ(ν)

∫ t1

1

[(
log t1

τ

)ν−1
−
(

log t2
τ

)ν−1]( ∫ s

1
|k(τ, s, u(s))|ds+

∫ T

1
|h(τ, s, u(s))|ds

)dτ
τ

+ 1
Γ(ν)

∫ t2

t1

(
log t2

τ

)ν−1( ∫ s

1
|k(τ, s, u(s))|ds+

∫ T

1
|h(τ, s, u(s))|ds

)dτ
τ

≤ Mf

Γ(ν + 1)
[
2(log t2

t1
)ν + (log t1)ν − (log t2)ν

]
+(Mk +Mh)

Γ(ν + 2)
[
2(log t2

t1
)ν+1 + (log t1)ν+1 − (log t2)ν+1

]
≤ 2Mf

Γ(ν + 1)
(

log t2
t1

)ν
+ 2(Mk +Mh)

Γ(ν + 2)
(

log t2
t1

)ν+1

−→ 0 as t1 −→ t2. (3.4)
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The convergence is independent of u in Φ, which means that Ω(Φ) is equicontinuous. The
Arzela-Ascoli theorem implies that Ω : Φ −→ B is compact. The only thing to apply the
Schauder fixed point is to prove that Ω(Φ) ⊂ Φ. For any u ∈ Φ, then u∗(t) ≤ u(t) ≤ u∗(t)
and by (A1), we have

(Ωu)(t) = 1
Γ(ν)

∫ t

1

(
log t

τ

)ν−1[
f(τ, u(τ)) +

∫ τ

1
k(τ, s, u(s))ds+

∫ T

1
h(τ, s, u(s))ds

]dτ
τ

+u0 + λ

∫ T

1
u(τ)dτ

≤ 1
Γ(ν)

∫ t

1

(
log t

τ

)ν−1[
U(τ, u(τ)) +

∫ τ

1
k(τ, s, u(s))ds+

∫ T

1
h(τ, s, u(s))ds

]dτ
τ

+u0 + λ

∫ T

1
u(τ)dτ

≤ 1
Γ(ν)

∫ t

1

(
log t

τ

)ν−1[
U(τ, u∗(τ)) +

∫ τ

1
k(τ, s, u∗(s))ds+

∫ T

1
h(τ, s, u∗(s))ds

]dτ
τ

+u0 + λ

∫ T

1
u∗(τ)dτ

≤ u∗(t),

and

(Ωu)(t) = 1
Γ(ν)

∫ t

1

(
log t

τ

)ν−1[
f(τ, u(τ)) +

∫ τ

1
k(τ, s, u(s))ds+

∫ T

1
h(τ, s, u(s))ds

]dτ
τ

+u0 + λ

∫ T

1
u(τ)dτ

≥ 1
Γ(ν)

∫ t

1

(
log t

τ

)ν−1[
L(τ, u(τ)) +

∫ τ

1
k(τ, s, u(s))ds+

∫ T

1
h(τ, s, u(s))ds

]dτ
τ

+u0 + λ

∫ T

1
u(τ)dτ

≥ 1
Γ(ν)

∫ t

1

(
log t

τ

)ν−1[
L(τ, u∗(τ)) +

∫ τ

1
k(τ, s, u∗(s))ds+

∫ T

1
h(τ, s, u∗(s))ds

]dτ
τ

+u0 + λ

∫ T

1
u∗(τ)dτ

≥ u∗(t).

Hence, u∗(t) ≤ (Ωu)(t) ≤ u∗(t), t ∈ J , that is, Ω(Φ) ⊂ Φ. According to the Schauder
fixed point theorem, the operator Ω has at least one fixed point u ∈ Φ. Therefore, the
problem (1.1)-(1.2) has at least one positive solution, and the proof is completed. �

The second result is based on the Banach fixed point theorem.

Theorem 3.2. Assumes that (A1) and (A2) hold, and if

∆ :=
Lf
(

log T
)ν

Γ(ν + 1) +
(Lk + Lh)

(
log T

)ν+1

Γ(ν + 2) + λ(T − 1) < 1. (3.5)
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Then the problem (1.1)-(1.2) has a unique positive solution.

Proof. From Theorem 3.1, it follows that the problem (1.1)-(1.2) has at least one positive
solution. Hence, we need only to prove that the operator defined in (3.3) is a contraction in
Φ. In fact, for any u, v ∈ Φ, we have

|(Ωu)(t)− (Ωv)(t)|

≤ 1
Γ(ν)

∫ t

1

(
log t

τ

)ν−1∣∣∣f(τ, u(τ))− f(τ, v(τ))
∣∣∣dτ
τ

+ 1
Γ(ν)

∫ t

1

(
log t

τ

)ν−1[ ∫ τ

1

∣∣∣k(τ, s, u(s))− k(τ, s, v(s))
∣∣∣ds

+
∫ T

1

∣∣∣h(τ, s, u(s))− h(τ, s, v(s))
∣∣∣ds]dτ

τ
+ λ

∫ T

1
|u(τ)− v(τ)|dτ

≤
(Lf( log T

)ν
Γ(ν + 1) +

(Lk + Lh)
(

log T
)ν+1

Γ(ν + 2) + λ(T − 1)
)
‖u− v‖.

Thus
‖Ωu− Ωv‖ ≤ ∆‖u− v‖.

Hence, the operator Ω is a contraction mapping by inequality (3.5). Therefore, by the
Banach fixed point theorem, we conclude that the problem (1.1)-(1.2) has a unique positive
solution. �

4. An example

Example 1. Consider the fractional Volterra-Fredholm integro-differential equation with
integral boundary conditions

HD
2
3
1 u(t) = 1

2(3 + cos(u(t))) + 1
6

∫ t

1
u(s)e−(t2+s2)ds+ 1

6

∫ e

1
u(s)e−s2

ds (4.1)

u(1) = 3
2 + 1

6

∫ e

1
u(s)ds (4.2)

where T = e, ν = 2
3 , λ = 1

6 , u0 = 3
2 , f(t, u(t)) = 1

2(3 + cos(u(t))), k(t, s, u(s)) = u(s)e−(t2+s2)

and h(t, s, u(s)) = u(s)e−s2 . Since f is continuous positive functions, k and h are nonde-
creasing on u and

Lf
(

log T
)ν

Γ(ν + 1) +
(Lk + Lh)

(
log T

)ν+1

Γ(ν + 2) + λ(T − 1) ' 0.65 < 1,

then, by Theorem 3.2, the problem (4.1)-(4.2) has a unique positive solution.

5. Conclusions

We can conclude that the main results of this article have been successfully achieved, that is,
through of Banach and Schauder’s fixed point theorems, we have investigated the existence
and uniqueness of positive solutions of a nonlinear Caputo-Hadamard fractional Volterra-
Fredholm integro-differential equation.
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