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Abstract. In the paper, by convolution theorem of the Laplace transforms, Bernstein’s
theorem for completely monotonic functions, and logarithmic concavity of a function
involving exponential functions, the author
(a) finds necessary and sufficient conditions for a ratio involving trigamma and tetragamma

functions to be monotonic on the right real semi-axis; and
(b) presents alternative proofs of necessary and sufficient conditions for a function and its

negativity involving trigamma and tetragamma functions to be completely monotonic
on the positive semi-axis.

These results generalizes known conclusions recently obtained by the author.

1. Motivations and main results

In the literature [1, Section 6.4], the function

Γ(z) =
∫ ∞

0
tz−1e−t d t, <(z) > 0

and its logarithmic derivative ψ(z) = [ln Γ(z)]′ = Γ′(z)
Γ(z) are called the classical Euler gamma

function and digamma function respectively. Further, the functions ψ′(z), ψ′′(z), ψ′′′(z),
and ψ(4)(z) are known as trigamma, tetragamma, pentagamma, and hexagamma functions
respectively. As a whole, all the derivatives ψ(k)(z) for k ≥ 0 are known as polygamma
functions.

Recall from Chapter XIII in [4], Chapter 1 in [17], and Chapter IV in [18] that, if a
function f(t) on an interval I has derivatives of all orders on I and satisfies inequalities
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(−1)nf (n)(t) ≥ 0 for t ∈ I and n ∈ {0} ∪ N, then we call f(t) a completely monotonic
function on I.

In [15, Theorem 4], the author turned out that,
(a) if and only if α ≥ 2, the function

Hα(x) = ψ′(x) + xψ′′(x) + α
[
xψ′(x)− 1

]2 (1.1)

is completely monotonic on (0,∞);
(b) if and only if α ≤ 1, the function −Hα(x) is completely monotonic on (0,∞);
(c) the double inequality

− 2 < ψ′(x) + xψ′′(x)
[xψ′(x)− 1]2 < −1 (1.2)

is valid and sharp in the sense that the constants −2 and −1 cannot be replaced by
any bigger and smaller ones respectively.

In this paper, we mainly generalize the double inequality (1.2) by finding necessary and
sufficient conditions in the following theorem.

Theorem 1.1. Let
Hβ(x) = ψ′(x) + xψ′′(x)

[xψ′(x)− 1]β (1.3)

on (0,∞) for β ∈ R. Then the following conclusions are valid:
(a) if and only if β ≥ 2, the function Hβ(x) is decreasing on (0,∞), with the limits

lim
x→0+

Hβ(x) =
{
−1, β = 2
0, β > 2

and lim
x→∞

Hβ(x) =
{
−2, β = 2
−∞, β > 2;

(1.4)

(b) if β ≤ 1, the function Hβ(x) is increasing on (0,∞), with the limits

Hβ(x)→
{
−∞, x→ 0+

0, x→∞;
(1.5)

(c) the double inequality (1.2) is true and sharp in the sense that the constants −2 and
−1 cannot be replaced by any bigger and smaller ones respectively.

The second aim of this paper is to supply alternative proofs of necessary and sufficient
conditions on α for ±Hα(x) in (1.1) to be completely monotonic on (0,∞).

2. Lemmas

The following lemmas are necessary in this paper.

Lemma 2.1 (Convolution theorem for the Laplace transforms [18, pp. 91–92]). Let fk(t)
for k = 1, 2 be piecewise continuous in arbitrary finite intervals included in (0,∞). If there
exist some constants Mk > 0 and ck ≥ 0 such that |fk(t)| ≤Mke

ckt for k = 1, 2, then∫ ∞
0

[ ∫ t

0
f1(u)f2(t− u) du

]
e−st d t =

∫ ∞
0

f1(u)e−su du
∫ ∞

0
f2(v)e−sv d v.
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Lemma 2.2 ([9, Theorem 6.1]). If f(x) is differentiable and logarithmically concave on
(−∞,∞), then the product f(x)f(x0 − x) for any fixed number x0 ∈ R is increasing in
x ∈

(
−∞, x0

2
)
and decreasing in x ∈

(x0
2 ,∞

)
.

Lemma 2.3. Let

h(t) =


et(et − 1− t)

(et − 1)2 , t 6= 0;

1
2 , t = 0.

Then the following conclusions are valid:
(a) the function h(t)

i satisfies the identity
h(t) + h(−t) = 1 (2.1)

on (−∞,∞);
ii is infinitely differentiable on (−∞,∞), increasing from (−∞,∞) onto (0, 1),

convex on (−∞, 0), concave on (0,∞), and logarithmically concave on (−∞,∞);
(b) the function h(2t)

h2(t) is increasing from (−∞, 0) onto (0, 2) and decreasing from (0,∞)
onto (1, 2);

(c) the double inequality

1 < h(2t)
h2(t) < 2 (2.2)

is valid on (0,∞) and sharp in the sense that the lower bound 1 and the upper bound
2 cannot be replaced by any larger scalar and any smaller scalar respectively;

(d) for any fixed t > 0, the function h(st)h((1− s)t) is increasing in s ∈
(
0, 1

2
)
.

Proof. It is straightforward to prove the identity (2.1) on (−∞,∞).
When t 6= 0, we can rewrite h(t) as

h(t) = et(et − 1− t)/t2

[(et − 1)/t]2 =
et
∑∞
k=2

tk−2

k!(∑∞
k=1

tk−1

k!
)2 =

et
∑∞
k=0

tk

(k+2)![∑∞
k=0

tk

(k+1)!
]2

which implies that t = 0 is a removable discontinuous point. Hence, the function h(t) is
infinitely differentiable on (−∞,∞).

Standard computation shows that

h′(t) = et[et(t− 2) + t+ 2]
(et − 1)3 = et

(et − 1)3

∞∑
k=3

(k − 2) t
k

k! ,

which is positive on (0,∞), and

h′′(t) = −
et
[
e2t(t− 3) + 4ett+ t+ 3

]
(et − 1)4

= − et

(et − 1)4

(
t5

30 +
∞∑
k=6

[
(k − 6)2k−1 + 4k

] tk
k!

)
,

which is negative on (0,∞). Hence, we see that the function h(t) is increasing and concave
on (0,∞).
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Differentiating with respect to t on both sides of (2.1) gives h′(t) = h′(−t) and h′′(t) =
−h′′(−t) on (−∞,∞). From this, we conclude that the function h(t) is increasing and
convex on (−∞, 0).

Taking the logarithm of h(t), differentiating, and expanding yield

[ln h(t)]′′ = −
e3t(t− 3) + e2t(2t+ 7)− et

(
2t2 + 3t+ 5

)
+ 1

(et − 1)2(et − 1− t)2

= −
∑∞
k=6

[
3k−1(k − 9) +

(
2k − 1

)
(k + 5) + 2

(
2k − k2)] tk

k!
(et − 1)2(et − 1− t)2

= −
t6

36 + 2t7
45 + 3t8

80 + 167t9
7560 + 439t10

43200 + 293t11

75600 + · · ·
(et − 1)2(et − 1− t)2

and

[ln h(−t)]′′ = −
et
[
e3t − e2t(2t2 − 3t+ 5

)
+ et(7− 2t)− t− 3

]
(et − 1)2[et(t− 1) + 1]2

= −
et
∑∞
k=6

[
3k − 2k−1(k2 − 3k + 10

)
+ 2k

(
2k−2 − 1

)
+ 7

]
tk

k!
(et − 1)2[et(t− 1) + 1]2

= −
et
(
t6

36 + 7t7
180 + 7t8

240 + 233t9
15120 + 1933t10

302400 + · · ·
)

(et − 1)2[et(t− 1) + 1]2 .

By calculus, we can verify that 2k − k2 ≥ 0 for k ≥ 4 and 3k − 2k−1(k2 − 3k + 10
)
> 0 for

k ≥ 8. Accordingly, the second derivatives [ln h(t)]′′ and [ln h(−t)]′′ of the logarithms of
h(t) and h(−t) are all negative on (0,∞). As a result, the function h(t) is logarithmically
concave on (0,∞).

Straightforward calculation gives

h(2t)
h2(t) =

(et − 1)2(e2t − 1− 2t
)

(et + 1)2(et − 1− t)2 ,

h(−2t)
h2(−t) =

(et − 1)2[e2t(2t− 1) + 1
]

(et + 1)2[et(t− 1) + 1]2 ,[
h(2t)
h2(t)

]′
= −

2(et − 1)
[
e4t(t− 2) + 2e3t + e2t(4t+ 2)− 2et

(
2t2 + 2t+ 1

)
− t
]

(et + 1)3(et − 1− t)3

= −
4(et − 1)

∑∞
k=6

[
22k−3(k − 8) + 3k + 2k

(
2k−1 − k

)
+
(
2k − 1

)]
tk

k!
(et + 1)3(et − 1− t)3

= − 2(et − 1)
(et + 1)3(et − 1− t)3

(2t6

9 + 19t7

45 + 13t8

30 + 299t9

945 + · · ·
)
,
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[
h(−2t)
h2(−t)

]′
= −

2et(et − 1)
[
e4tt− 2e3t(2t2 − 2t+ 1

)
− 2e2t(2t− 1) + 2et − t− 2

]
(et + 1)3[et(t− 1) + 1]3

= − 4et(et − 1)
(et + 1)3[et(t− 1) + 1]3

∞∑
k=6

(
3k−2(k[(4

3
)k−2 − 2k

]
+ (8k − 9)

)
+
[(

2k−4 − 1
)
k + 1

]
2k + 1

)
tk

k!

= − 2et(et − 1)
(et + 1)3[et(t− 1) + 1]3

(2t6

9 + 7t7

15 + 47t8

90 + 43t9

105 + 4741t10

18900

+ 641t11

5040 + 15059t12

272160 + 5281t13

249480 + 1519051t14

209563200 + 2921293t15

1297296000 + · · ·
)
.

By calculus, we can verify that the sequence(4
3

)k−2
− 2k = 9

16

[(4
3

)k
− 32

9 k
]

is increasing for

k ≥
ln 32

9 − ln ln 4
3

ln 4
3

= 8.74024101586 . . .

and is positive for all k ≥ 14. Consequently, both of the derivatives
[h(2t)
h2(t)

]′ and [h(−2t)
h2(−t)

]′ are
all negative on (0,∞). In a word, the function h(2t)

h2(t) is increasing on (−∞, 0) and decreasing
on (0,∞).

By the L’Hospital rule, we obtain

lim
t→0

h(2t)
h2(t) = 2, lim

t→−∞

h(2t)
h2(t) = 0, lim

t→∞

h(2t)
h2(t) = 1.

Direct differentiation gives
d[h(st)h((1− s)t)]

d s = th′(st)h((1− s)t)− th(st)h′((1− s)t)

= th(st)h((1− s)t)
[
h′(st)
h(st) −

h′((1− s)t)
h((1− s)t)

]
= th(st)h((1− s)t)

[d ln h(s)
d s

∣∣∣∣
s=st
− d ln h(s)

d s

∣∣∣∣
s=(1−s)t

]
> 0

for 0 < s < 1
2 , where we used in the last step the facts that st < (1 − s)t for 0 < s < 1

2
and that h(t) is logarithmically concave on (−∞,∞). Accordingly, for any fixed t > 0, the
function h(st)h((1− s)t) is increasing in s ∈

(
0, 1

2
)
.

Since h(st)h((1−s)t) = h(st)h(t−st) = h(x)h(t−x) for x = st, it is ready from Lemma 2.2
that, for any fixed t > 0, the function h(st)h((1 − s)t) is increasing in x = st ∈

(
0, t2

)
,

equivalently, in s ∈
(
0, 1

2
)
. The proof of Lemma 2.3 is complete. �

Lemma 2.4 (Bernstein’s theorem [18, p. 161, Theorem 12b]). A function f(x) is completely
monotonic on (0,∞) if and only if

f(x) =
∫ ∞

0
e−xt dσ(t), x ∈ (0,∞), (2.3)
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where σ(s) is non-decreasing and the integral in (2.3) converges for x ∈ (0,∞).

The integral representation (2.3) means that a function f(t) is completely monotonic on
(0,∞) if and only if it is a Laplace transform of a non-decreasing measure σ(s) on (0,∞).

3. Proofs of main results

In this section, we are in a position to give a proof of Theorem 1.1.

Proof of Theorem 1.1. In the proof of [15, Theorem 4], the author established that

xψ′(x)− 1 =
∫ ∞

0
h(t)e−xt d t > 0 (3.1)

and
ψ′(x) + xψ′′(x) = −

∫ ∞
0

th(t)e−xt d t < 0. (3.2)

If the function Hβ(x) is decreasing, then its first derivative

H ′β(x) =
[
2ψ′′(x) + xψ′′′(x)

][
xψ′(x)− 1

]
− β

[
ψ′(x) + xψ′′(x)

]2
[xψ′(x)− 1]β+1 ≤ 0,

that is,

β ≥
[
2ψ′′(x) + xψ′′′(x)

][
xψ′(x)− 1

]
[ψ′(x) + xψ′′(x)]2 =

x3[2ψ′′(x) + xψ′′′(x)
]
x
[
xψ′(x)− 1

]
x4[ψ′(x) + xψ′′(x)]2

→
limx→0+

(
x3[2ψ′′(x) + xψ′′′(x)

])
limx→0+

(
x
[
xψ′(x)− 1

])(
limx→0+(x2[ψ′(x) + xψ′′(x)])

)2 = 2× 1
(−1)2 = 2

as x→ 0+, where we used (3.1), (3.2), and the limit

lim
x→0+

[
xkψ(k−1)(x)

]
= (−1)k(k − 1)!, k ≥ 1

in [8, p. 260, (2.2)] and [19, p. 769]. Hence, the necessary condition for Hβ(x) to be
decreasing on (0,∞) is β ≥ 2.

By virtue of (3.1) and (3.2), the function Hβ(x) defined in (1.3) can be rewritten as

Hβ(x) = −
∫∞
0 th(t)e−xt d t[∫∞
0 h(t)e−xt d t

]β .
Since

dHβ(x)
dx =

∫∞
0 t2h(t)e−xt d t

∫∞
0 h(t)e−xt d t− β

[∫∞
0 th(t)e−xt d t

]2[∫∞
0 h(t)e−xt d t

]β+1 ,

in order to prove that the function Hβ(x) is decreasing on (0,∞), it is sufficient to show
the inequality

β

[∫ ∞
0

th(t)e−xt d t
]2
≥
∫ ∞

0
t2h(t)e−xt d t

∫ ∞
0

h(t)e−xt d t. (3.3)

By Lemma 2.1, the inequality (3.3) can be reformulated as

β

∫ ∞
0

[∫ t

0
u(t− u)h(u)h(t− u) du

]
e−xt d t ≥

∫ ∞
0

[∫ t

0
u2h(u)h(t− u) du

]
e−xt d t. (3.4)
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Let

P (t) =
∫ t

0
u(t− u)h(u)h(t− u) du and Q(t) =

∫ t

0
u2h(u)h(t− u) du.

The inequality (3.4) can be rewritten as∫ ∞
0

Q(t)
[
P (t)
Q(t) −

1
β

]
e−xt d t ≥ 0. (3.5)

Changing the variable u = (1+v)t
2 results in

P (t)
Q(t) =

∫ 1
0
(
1− v2)h(1+v

2 t
)
h
(1−v

2 t
)

d v∫ 1
0 (1 + v2)h

(1+v
2 t
)
h
(1−v

2 t
)

d v
→
∫ 1

0
(
1− v2) d v∫ 1

0 (1 + v2) d v
= 1

2 (3.6)

as t → 0+ or t → ∞, where we used the property in Lemma 2.3 that the function h(t) is
increasing from (0,∞) onto

(1
2 , 1
)
.

Let

S(t) =
∫ 1

0

(
1− v2)h(1 + v

2 t

)
h

(1− v
2 t

)
d v − 1

2

∫ 1

0

(
1 + v2)h(1 + v

2 t

)
h

(1− v
2 t

)
d v.

Then

S(t) = 3
2

∫ 1

0

(1
3 − v

2
)
h

(1 + v

2 t

)
h

(1− v
2 t

)
d v

= 3
2

[∫ 1/
√

3

0

(1
3 − v

2
)
h

(1 + v

2 t

)
h

(1− v
2 t

)
d v

+
∫ 1

1/
√

3

(1
3 − v

2
)
h

(1 + v

2 t

)
h

(1− v
2 t

)
d v
]
.

Employing the fourth conclusion in Lemma 2.3 leads to

S(t) > 3
2h
(1 + 1/

√
3

2 t

)
h

(1− 1/
√

3
2 t

)[∫ 1/
√

3

0

(1
3 − v

2
)

d v +
∫ 1

1/
√

3

(1
3 − v

2
)

d v
]

= 0.

Consequently, considering the limit in (3.6), we find that the inequality

P (t)
Q(t) >

1
2 (3.7)

is valid for t > 0 and is sharp in the sense that the scalar 1
2 cannot be replaced by any larger

number. This sharp inequality means that the inequality (3.5) is valid for all β ≥ 2. As a
result, the condition β ≥ 2 is sufficient for Hβ(x) to be decreasing on (0,∞).

Considering the characterization expressed by the integral representation (2.3) of com-
pletely monotonic functions on (0,∞), the inequality (3.5), and the sharpness of the inequal-
ity (3.7), we can conclude the necessary and sufficient condition β ≥ 2 alternatively.

From 0 < 1 − v2 < 1 + v2 for v ∈ (0, 1) and the positivity of h(t) on (0,∞), we derive
0 < P (t)

Q(t) < 1 on (0,∞). This means that, for all β ≤ 1, the function Hβ(x) is increasing on
(0,∞).
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The limits in (1.4) and (1.5) follow from the integral representation (3.1) and corre-
sponding limits in [2, Proposition 4], [3, Proposition 14], or [15, Theorem 2]. The proof of
Theorem 1.1 is complete. �

Corollary 3.1. The function

β
[
ψ′(x) + xψ′′(x)

]2 − [2ψ′′(x) + xψ′′′(x)
][
xψ′(x)− 1

]
is completely monotonic on (0,∞) if and only if β ≥ 2, while its negativity is completely
monotonic on (0,∞) for β ≤ 1.

Proof. This follows from the proof of Theorem 1.1. �

4. Alternative proofs of necessary and sufficient conditions

In this section, we supply alternative proofs of necessary and sufficient conditions on α
for the functions ±Hα(x) in (1.1) to be completely monotonic on (0,∞).

Theorem 4.1 ([15, Theorem 4]). If and only if α ≥ 2, the function Hα(x) defined in (1.1)
is completely monotonic on (0,∞); if and only if α ≤ 1, the function −Hα(x) is completely
monotonic on (0,∞).

Alternative proof of sufficient conditions. By integral representations (3.1) and (3.2), we
arrive at

Hα(x) = α

[∫ ∞
0

h(t)e−xt d t
]2
−
∫ ∞

0
th(t)e−xt d t.

By Lemma 2.1, we obtain

Hα(x) = α

∫ ∞
0

[∫ t

0
h(u)h(t− u) du

]
e−xt d t−

∫ ∞
0

th(t)e−xt d t

=
∫ ∞

0

[
α

t

∫ t

0
h(u)h(t− u) du− h(t)

]
te−xt d t.

(4.1)

By logarithmic concavity of h(t) in Lemma 2.3 and by Lemma 2.2, we acquire
α

t

∫ t

0
h(u)h(t− u) du− h(t) ≤ α

t

∫ t

0
h

(
t

2

)
h

(
t− t

2

)
du− h(t)

= α

[
h

(
t

2

)]2
− h(t)

=
[
h

(
t

2

)]2(
α− h(t)[

h
(
t
2
)]2
)

and
α

t

∫ t

0
h(u)h(t− u) du− h(t) ≥ α

t

∫ t

0
h(0)h(t) du− h(t)

= [αh(0)− 1]h(t)

=
(
α

2 − 1
)
h(t).
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By the double inequality (2.2) in Lemma 2.3, when α ≤ 1, we deduce
α

t

∫ t

0
h(u)h(t− u) du− h(t) < 0, t ∈ (0,∞);

when α ≥ 2, we have
α

t

∫ t

0
h(u)h(t− u) du− h(t) > 0, t ∈ (0,∞).

Consequently, when α ≥ 2, the function Hα(x) is completely monotonic on (0,∞); when
α ≤ 1, the function −Hα(x) is completely monotonic on (0,∞).

By the way, the proof of necessary conditions on α for ±Hα(x) to be completely monotonic
on (0,∞) is the same as in the proof of [15, Theorem 4]. The required proof is complete. �

Alternative proof of necessary and sufficient conditions. We can rewrite the integral repre-
sentation (4.1) alternatively as

Hα(x) =
∫ ∞

0

[
α

∫ 1

0
h(st)h((1− s)t) d s− h(t)

]
te−xt d t

=
∫ ∞

0

[
2α
∫ 1

1/2
h(st)h((1− s)t) d s− h(t)

]
te−xt d t

=
∫ ∞

0

[
2α
∫ 1
1/2 h(st)h((1− s)t) d s

h(t) − 1
]
h(t)te−xt d t.

From the last property in Lemma 2.3, we see that, for any fixed t > 0, the function
h(st)h((1− s)t) is decreasing in s ∈

(1
2 , 1
)
. Accordingly, the inequalities

1
4 = h(0)

2 <

∫ 1
1/2 h(st)h((1− s)t) d s

h(t) <
1
2

[
h
(
t
2
)]2

h(t) <
1
2

are valid and sharp for t ∈ (0,∞), where we used the upper bound in the double inequal-
ity (2.2) and its sharpness. Therefore, due to these sharpness, by virtue of Lemma 2.4, we
conclude that, if and only if α ≥ 2, the function Hα(x) is completely monotonic on (0,∞);
if and only if α ≤ 1, the function −Hα(x) is completely monotonic on (0,∞). The required
proof is complete. �

Remark 4.1. This paper is a revised version of the electronic preprint [13], was reported be-
tween 11:10–11:25 on 20 November 2020, the 3rd International Conference on Mathematical
and Related Sciences: Current Trends and Developments (ICMRS 2020) in Turkey, and is
the second one in a series of articles including [5–7,10–12,14–16].
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