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ON INEQUALITIES FOR «(z)-CONVEX FUNCTIONS

MUHAMMAD ADIL KHAN! AND WAQAS AHMAD!

ABSTRACT. In this paper we give inequalities for a(x)-convex function. We obtain Slater’s
inequality and refinement of Jensen’s inequality for a(z)-convex function. We establish
mean value theorems and construct generalized Cauchy type means. Also we give improve-
ment and reversion of Slater’s inequality for o(z)-convex functions.

1. INTRODUCTION

First, let us recall the definition of convex function.

Definition 1.1. Let I be an interval in R. A function ¢ : I — R is called convex if

YAz + (1= N)y) < Mp(z) + (1 = N (y) (1.1)

for all points z,y € I and all A € [0, 1]. Tt is called strictly convex if the inequality (1.1) holds
strictly whenever x and y are distinct points and A € (0,1). If —1 is convex (respectively,
strictly convex), we say that v is concave (respectively, strictly concave). If ¢ is both convex
and concave, v is said to be affine.

We give the well- known Jensen’s inequality for convex function:

Theorem 1.1. Let ¢ : I — R be a convex function on interval I C R and p; be non negative
real numbers and xz; € I (1 =1,2,...,n), while P, = Y1* 1 p; > 0. Then following inequality
holds

1 & 1 &
(0 <P ZPN%) <5 > piy(wi). (1.2)
™i=1 " =1
If 9 is strictly convex then inequality (1.2) is strict unless x1 = xg = -+ = Xp.

The following converse of Jensen’s inequality has been proved by Dragomir and Goh in

[3]-
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Theorem 1.2. Let ¢ : I C R — R be differentiable convex function defined on interval
I. Ifz; € I,i = 1,2,..,n(n > 2) are arbitrary members and p; > 0 (i = 1,2,..,n) with
P, =" 1pi >0 and let

1 & 1 &

T = 72?2‘%‘7 y= 72291‘7#(%')-
n =1 n =1
Then the inequalities
1 n
0<y—-9(@) < FZPW’(%)(% —7) (1.3)
=1

hold.

In the case when 1) is strictly convex, we have equalities in (1.3) if and only if there is
some c € I such that x; = ¢ holds for all i with p; > 0.

In [8] Pecarié¢ gave general Slater’s inequality:

Theorem 1.3 ([8]). Suppose that ¢ : I C R — R is convex function on interval I, for
1,22, ..,Zn € I and for p1,p2,..,pn > 0 with P, =>"1" 1 p; > 0. Let

= 1 Pl ()
pitl, (i) # 0, 5
; +(@) i=1 Pitth (i)
then the following Slater’s inequality holds

el,

Zy:lp“”(xi)x") . (1.4)

1 n
B, 2 pw) < ( o) (a1)

When 1) is strictly convex on I, inequality (1.4) becomes equality if and only if x; = ¢ for
some ¢ € I and for all i with p; > 0.

Now we quote some definitions and state some basic properties of «(z)-convex functions
established in [1].

Definition 1.2 ([!, Definition 2.1]). Let 1, « be real functions defined on interval I C R
such that 1 is differentiable and a1}’ integrable. Function v is called a(z)-convex on interval

I if for every z,y € 1
Yy

(y — )W (y) —¢'(x) = (y — @) / a(t)y'(t)dt (1.5)

T

holds. Function ¢ is called a(x)-concave if the inequality in (1.5) is reversed.

Notice that for a(z) = 0, ¢ is convex. «(z)-convexity criteria given in the following
theorems.

Theorem 1.4 ([4, Theorem 2.1]). If )" is a continuous function and ar)’ an integrable
function on interval I, 1 is a(x)-convex on interval I if and only if " (x) — a(x)y)'(z) > 0.

Theorem 1.5 ([1, Theorem 2.2]). A function v is a(z)-convezx on interval I if and only if
9y —0@) — @) -2 > [[-Ha@v' @ (16)

x

forall x,y € I.
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Generalized Jensen’s inequality for a(z)-convex function is given in the following theorem.

Theorem 1.6 ([, Theorem 2.3]). Let ¢ : I — R be a(x)-convezr function, x; € I and
€[0,1],i=1,...,n such that Y1 1 p; =1 and let T =Y I p;x;. Then the inequality

> piie) — v(a) = Yo [ = D) 07)
=1
holds.

For more recent results related to convex functions and its application we recommend
[9-15].

In this paper we give some general inequality for a(z)-convex function which implies
generalized Slater’s inequality and refinement of Jensen’s inequality. We prove mean value
theorems and construct Cauchy type means. We give exponential convexity and log convexity
for the parametric family associated with the general inequality. By using some log convexity
criteria we establish improvement and reversion of Slater’s inequality. At the end we
give some determinantal inequalities which give us improvement and reversion of Slater’s
inequality.

2. GENERALIZATION OF MATIC-PECARIC INEQUALITY

The first theorem that we prove here is the more general inequality for a(zr)-convex
function which is in fact the generalization of the inequality given in [(].

Theorem 2.1. Let ¢ : I — R be a(x)-convex function, x; € I and nonnegative real numbers
pi such that P, := " 1p; >0 and let T = Pin Y piTi, Y= Pin Yo pi(z). Ifde 1 is
arbitrarily chosen number, then we have

n n n d
p(d) + ]_.1,n ;pi¢l($i)<xi —d) — ;n ;pﬂ/}(xi) > ;n ;pz /z (d— )y (t)dt  (2.1)
Proof. From (1.6) we have
0y) — () ~ ¥ @)y =) = [ (= Daly (ar

by replacing y — d and x — z; we get

(d) — () — o () (d - 22) /j ot (t)dr.

Multiplying both hand side by £- and summing over ¢ we have

n n

S zpzw LY prtan) - ; > ) - 2 3 [ (- Dol war

P i=1 i=1 n i1 z;

V) + 3 pet (o) s — ) — - Zw ) zpl [ vty
" =1 T
Pt pt () (a1 im} (1) > i / Bty (t)dt.
=1 i=1

i=1



ON INEQUALITIES FOR a(z)-CONVEX FUNCTIONS 63

Integral version of the Theorem 2.1 can be stated as:

Theorem 2.2. Let v : I — R be a(x)-convex function and f : [a,b] — I, be a function such
that ¥(f), Y'(f) are integrable functions on I. Let p : [a,b] — R be non negative integrable
functions such that f;p(:n)dzz: > 0, then for any d € I, we have

1 b , 1 b
W)+ g [P TN — e = o [Tl ) >

J p(e)dz
1 b
1P p(x)da /a /f(w) ~ e

The following simple consequence of Theorem 2.1 is the refinement of Jensen’s inequality

(2.2)

for a(x)-convex function.

Corollary 2.1. Under the assumptions of Theorem 2.1 we have

= zpz / — Ha(t) (t)dt <7 — (@)

= Fn ;pi”"(“) i—T)+ 5 sz / (t — T)a(t)y/ (t)dt. (2.3)

Remark 2.1. If we put p; € [0,1], P, = 1 in the first inequality in (2.3), then we deduce
(1.7).

Integral version of the Corollary 2.1 can be stated as:

Corollary 2.2. Let ¢ : I — R be a(x)-convex function and f : [a,b] — I, (f), ¥'(f) are
integrable functions on I. Let p : [a,b] — R be non negative integrable function such that

[P p(z)dz > 0 and let f = W

b _
e [ 900 [ 0@ = (0w et < i [t a0

then we have

/ 1 b f B ,
i p(z) : Trtart . #O U 0) - D Jp(a)de [, 7@ e~ Dot (t)dt:m&
2.4

Corollary 2.3. Let ¢ : I — R be a(x)-convex function, x,y € I and real numbers p,q €
[0,1] such that p+q =1 and let T = px + qy. Then the inequality

p [ @ = 0a(w @+ [ (=D dt < pol@) +aly) — e + o)

(t —T)a(t)y'(t)dt + q/ (t — T)a(t)y' (t)dt. (2.5)

)

T

<PV @)@ -2 + @)y -D+p [

xX
Proof. Apply (2.5) with n = 2,21 = x,29 = y,p1 =p € [0,1] and p2 = ¢ € [0, 1]. O

Remark 2.2. The first inequality in (2.5) has been given in [4].
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Corollary 2.4. Let ¢ : I — R be a(z)-convex function, x1,x2,x3 € I,x1 < x9 < x3. Then
the inequality

2

(22 — 1) / (25 — () (O)dt — (w5 — ) / (1 — Ba(t)e' (£)dt

2 z1

< (w3 — x2)p(x1) + (21 — 23)Y(22) + (22 — 21)Y(x3)
< (w2 — x1) (23 — 22) (¢ (23) — ¢ (1))

+ (23 —$2)/$2

1

3

(t — 22)a(O)y (t)dt — (22 — 1) / (t — zo)a(O)W ()dt.  (2.6)

T2

Proof. Use (2.5) for x = x1, pr + qy = 29, y = z3,p+ ¢ = 1. O
Remark 2.3. The first inequality in (2.6) has been given in [1].
The following generalization of Slater’s inequality for a(x)-convex function is valid:

Corollary 2.5. Let ) : I — R be a(x)-convex function, x; € I and nonnegative real numbers
pi such that Py, := "7 1p;i >0 and let y = P%L iy (). If

iy Pt ()2

Zpiw'(xi) 75 O, .% =

n €l
i=1 =1 plwl(xl)
then
-1 T
<Y + 5 D p / (t — F)a(t)d (t)dt. 2.7)
nog=1 Vi
Proof. Put d = T in the inequality (2.1) we get (2.7). O

Integral version of the Corollary 2.5 can be stated as:

Theorem 2.3. Let ¢ : I — R be a(x)-convex function and f : [a,b] = I, o f, ¢'(f) are
integrable functions on I and p: [a,b] — R be non negative integrable functions such that

Jep(z)dz > 0 and let f = o 2 @) (f (2)da. If
o - Jp@ (@) @)da
x x))dx , fi="2 1,
Joretenis £, Fim g €
then _
_ - 1 b f _ /
Pt g oo [ [ o= Nalo s (28)

Now we are in the position to give mean value theorem for the generalized inequalities.
In the proof of mean value theorems we will use the following Lemma.

Lemma 2.1 ([4]). Let I be an open interval. Let o be an integrable function and s € C*(I) be
such that s" —as’ is bounded by integrable functions M and m, that is m(z) < s (z)—as (z) <
M(x), for every x € I. Then the functions 1, 1s are defined by

P1(z) = Ra(z) — s(x),
a(x) = s(x) — Ra(x)
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Ri(@) = [ (el [ar@pe T =@ar) g
Ra(w) = [ (/@ [mia)e [ ) do

Theorem 2.4. Let «, s" be continuous and g be the positive and continuous functions on
compact interval I C R. Let x;,d € I and p; be the non negative real numbers such that
P, =" 1pi>0. Then there exists n € I such that

where

are a(x)-convex.

1 & / 1 & /
d) + 2 sz(:zz —d)s (x;) — B Z s(x;) — = sz/ a(t)s (t)dt
o) = ( = z (2.9)
s (n)—«o /
= bi t)dt
9(77) ( Z 9() )
Proof. As W is continuous on compact interval I, therefore there exists

m = min [ > (z) = alw)s (x) and M = max [ > (z) =~ alz)s (2) . (2.10)

zel g(x) zel g(x)

Using (2.10) and Lemma 2.1, the functions 11,9 defined by
Y1 = Ri(x) — s(z),¥2 = s(x) — Ra(z)

Ri(x) = / (ef O‘(w)dx/Mg(x)e_fa(x)dxda:> dz
Ry(x) = /< /mg dxda:) dx
are a(x) — conver.
By applying (2.1) on functions v, we get the following inequality

DR+ 3w = ) = S mnte) = Do [ (0= ety o

=1

where

= (Ru(d) — s(d) P + > pi( Ry () — 8 (22)) (w5 — d) — Epz‘(Rl (i) — s(w)) ()

—sz/_ Ja(t) (R (1) — s (1)t > 0

n

= Ry(d)P, +zn: i(zi — d) R (%) Zlel zi)— Y Z/d(d—t)a(t)Rll(t)dt >
=1

i=1 Zi

)P, +sz z; sz s(zi) Zpi/ (d — t)alt)s (t)dt
i=1 T
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= M( ‘|‘sz Xq Rg 33'2 szR?) xz sz/. )Rg( )dt>

o+ Zpl X Zpl s(x;) Zpi / (d—t)a(t)s (t)dt,
i=1 i
(2.11)
where
R3(z) = / <efa(x)dw/g(z:)e_fa(x)dmda:) dx.
Similarly applying (2.1) on function 19, we get the following inequality
n d ,
 + sz z; sz s(z:) Zpi/_ (d—Da(t)s (t)dt >
(2.12)
m <R3 pi(x; — d)Ry(z;) szRg ) sz/ a(t)Ry(t )dt)

from (2.11) and (2.12) it follows

( d)P, -I-Zpl zi — d) Ry () szRg (:) Zpl/‘ Ja () R, (¢ )dt)

d) Py + Zpi(xi —d)s (wi) — Zpis(xi) - Zpi / (d = t)a(t)s (t)dt < (2.13)
M( d)P, +sz (z; — d) Ry () Zleg (z;) Zpl/_ )ou(t) Ry (t )dt)

If R(d +Zpu d) Ry (x7) szRgscz sz/. Jau(t) Ry (t)dt = 0

Then as

R3(d)Pn + Z ( - d R3 xl szRS 372
i=1

(2.14)
sz/ d —t)(Rs(t) sz/_ g(t)dt.
Therefore from (2.13) we have
n d ,
d)P, +sz zi sz () Zpi/ (d = t)a(t)s (t)dt = 0.
=1 T

So in this case (2.16) holds for any n € I.

If R3(d P+szz d) Ry () Zlegxl Zpl/_ )ou(t) Ry (t)dt > 0.
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Then from (2.13) we have
m <
S(d) P + Yiy pilwi — d)s'(z5) — Yimy pis(@s) — Yimy pi [0 (d — )a(t)s (t)dt
(Rs(@) P+ 521y pils — d) Ry () — S0y piRa(s) — iy pi [ (d — t)a() Ry ()dt )
<M
(2.15)

As % is continuous on I, therefore by using (2.10) and intermediate value theorem
we can find n € I such that

1 & 1 & d ,
+*ZP2 vi = d)s' (@) = 5= D opis(s) - Zp,-/ (d = Da(b)s ()dt

=1 F”i:l i
S” — S/ n d
_s'() g(ngm (n) lzin.zpi / (d_t)g(t)dt],

=1 Ti

We can give mean value theorem for the refinement of Jensen’s inequality:

Corollary 2.6. Let a, s be continuous and g be the positive and continuous functions

on compact interval I C R. Let x; € I and p; be the non negative real numbers such that
P,=%"1pi>0andletT = P%L Yo pixi. Then there exists n € I such that

1

Eszs Pinz(xz —7) sz/ T—t) (t)s/(t)dt

i= n ; n

) - 1( (2.16)
n) —a(n)s
g(n) ( sz/ (7 =09 )dt>

Integral version of the Theorem 2.4 can be stated as:

Theorem 2.5. Let a, s” be continuous and g be a positive and continuous function on [a, b]
Let p : [a,b] — R be non negative function with f;’p(m)daz >0, f:]a,b = R be a function

with Imf C [a,b] and let f,s(f),s'(f) be integrable functions and d € [a,b]. Then there
exists n € [a,b] such that

s(d) + Jep(@)s' (f(@)(f(x) = d)dz  [Pp(z)s(f(z))dz Ja P(@) [j(a)(d = )a(t)s' (t)dtdz
S p(w)dz Jy p(a)dz fa<>dx

S ) = al)s' () [ Jap(@) [fp(d— ) f (t)dtdz

a g(n) ffp(x)dm .

(2.17)

Theorem 2.6. Let I be a compact interval in R. Let x; € I and p; be the non negative real
number such that P, = 311 p; > 0. Let s1,s0 € C%(I) and « be the continuous function
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such that
sz zi—d)sy(7) szsz i) sz/_ a(t)sy(t)dt £ 0, (2.18)

then there exists n € I such that

1(m) = )5 (1)

s5(1) — ( ) 2(1) (2.19)

_su(d) P + 30 i — d)s) (z:) — Sy pisi (@) — Sy pi [ (d — ta(t)sy (t)dt

s2(d) P, +ZZ 1pi(s — d)sh (i) — iy pasa(wi) — 7y pi [ (d — t)a(t)sh(t)dt

Proof. Let

_ 82 + _ sz T; 32 xz — szs? sz sz/ (t)sé(t)dt

co =s1(d) + 2N sz'(% )5y (2) — szsl xi) Zpl / ta(t)s, (t)dt

Now apply (2.16) for the function c1hy — 02h2 we have

(&1 [31 + 72]92 Ty 31 xz - szsl xz sz/. (t) (t>dt] -
e [32 - —sz i — d)sy(w;) — me ;) sz/_ (t)s;(t)dt]

(2.20)

71

9(n)
It is easy to see that the left-hand side of (2.20) is equal to 0, so the right-hand side should
also be equal to 0. From (2.22) we get that the right-hand side in (2.16) is not equal to 0, so
the part in square brackets on the right-hand of (2.20) is not equal to 0. For the right hand
side in (2.20) to be equal to zero it follows that 15, (1) —casy () —a(n) (151 () —cas4(n)) = 0.
After some calculation, it is easy to say that (2.23) follows from c;(s(n) — a(n)si(n)) —
ca(sh(n) — a(n)sh(n)) = 0, so the proof is complete.

_asy(n) = easy(n) — a(n)(ers)(n) — casy(n l sz/ )dt]

O

Integral version of the Theorem 2.6 can be stated as:

Theorem 2.7. Let s1,52 € C%([a,b]), a be a continuous function on [a,b], p: [a,b] — R be
non negative integrable function with f;p(x)dﬂs > 0. Let f : [a,b] — R be a function such
that Imf C [a,b] and f,s1(f),s1(f),s2(f), s5(f) are integrable functions and let d € |a, b]

and

s2(d) + 5 [ b)) (S (e) ~ e -

1 b
Jo px)dz / p(x)sa(f(x))dx

f;p(x)dx a

1 b d .
_f;p(.’ﬂ)dl'/a p(z) /f(:p)(d — t)a(t)ssy(t)dtdx # 0.
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Then there exists n € |a,b] such that
s1.07) = a(m)sy(n) _

sy (1) — a(n)sy(n)

[ p@)si (f@)(f@)—d)yde [ p(a)si(f(@))da d ,
s1(d) + =2 f: Ry _ b f: o(@)ds - fb p(z i fb )ff(z)(d —t)a(x)sy(f(z))dtdx
[ p@)sh (f@)(f@)—d)yda [ p(a)sz(f(2))da d '
so(d) + =2 }: Ry _ b f: o(@)ds — fb p(z i fb )ff(z)(d — t)a(x)sh(f(z))dtdx
(2.21)

Corollary 2.7. Let I be a compact interval in R. Let x; € I and p; be the non negative real

number such that P, =3 1" 1 p; > 0 and let T = P% S piri. Let 1,50 € C*(I) and o be

the continuous function on I such that

+—sz T, — )50 () me (i ——ZpZ/ Ya(t)sy(t)dt £ 0, (2.22)
then there emsts n € I such that
s1(n) — a(m)s, (n)

s3(1) — a()s5(n)
251( T) Py + S0 i — T)sy () — S0y pisa (i) — S0y pi fg(f — Da(t)s, (t)dt (2.23)
52(T) Py + o0 pilw; — T) sy (i) — Sy pisa(wi) — S0y pi f:fi T — t)a(t)slg(t)dt'

3. IMPROVEMENT AND REVERSION OF GENERALIZED SLATER’S INEQUALITY
Definition 3.1 ([7]). A function ¢ : I — R is convex if
P(s1)(s3 = s2) + P(s2)(s1 — 53) + Y (s3)(s2 — 51) 2 0 (3.1)
holds for every s; < s < s3, 51, 82,83 € 1.
Definition 3.2 ([5]). A function ¢ : I — R is exponentially convex if it is continuous and

> bplj(xs + ax) > 0

k,j=1
foralln € N, i, €¢ Rand z € I, k = 1,...,n such that (z; +z3) € I,1 < j,k < n, or
equivalently

> i (U5 0,

k,j=1

Lemma 3.1 ([5]). Let ¢ : (a,b) — R. The following statements are equivalent:

(i) v is exponentially conver,

(i) ¢ is continuous and

E:zzm¢<xﬂ+xk)__o

7,k=1
for everyn € N, l; € R and every x; € (a,b), 1 < j <n.
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Corollary 3.1 ([5]). If ¢ is exponentially convex function, then

(5],

k,j=1

foreveryneNuaz;el, k=1,...,n

Corollary 3.2 ([5]). If ¢ : I — (0,00) is exponentially convex function, then 1 is a
log-convez function that is

YAz + (1= Ny) < M) (),
forallz,y € I, A €0,1].

Lemma 3.2. Let p € R. Then function 1, defined by

Yp(x) = / <€fa(x)d””/:Up_2e_fa($)dxdx)dm (3.2)

is ax)-convex function for x > 0.

Proof. Since ¢ () —a(z)i),(x) = 2772 > 0, z > 0, therefore ¢, () is a(x) — convex function
for x > 0. 0

For p € R, let the function I'(p) is defined as follows:

P P
I'(p) = logd - 1 + P% i1 B + pn Elzlpl(logml) p=0; (3.3)
legd+ PLn Z?:lplxl - pn Ez:l pz(l + logxi)a b= 1.

where p; be non negative real number and P, = >_1* ; p; > 0 and I'(p) > 0 for all p € R.

Lemma 3.3. Let p € R, let the function 1, be defined by (3.2) for mutually different
numbers x; > 0, i =1,...,n and let the function I'(p) be defined above. Then

-5 [ - et oar

D(p) = (@) + 5 D) i — ) = - >ty
" i=1 " i=1 "i=1
(3.4)

holds where, i =1,...,n, and P, = >7; 1 p; > 0.

Proof. Since w;(x) - 04(96‘)1/};(@ = 2P~2, we have a(:):)w;(m) = wg(x) —2P72 so
d d ,

[ @=nauyd = [ @ we + e

% @

Hence
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d
d) + — sz x; Zpﬂ,[)p x;) . (d - t)a(t)qb;)(t)dt
+ 72]71 Z; ¢p xz Zpﬂﬁ;u .CL‘Z
Do [ D) vpld) — dylw) - aT T T o,
— B 2P (s = D) + p(d) — dylai) +d (f - f) +Ind—Ina;, p=0;
U @ — (@) + dp(d) — dplai) —d(nd —Ina) +d—x;  p=1;
=T'(p).

O

Theorem 3.1. Let p € R, let the function T'(p) be defined by (3.2) for mutually dif-
ferent numbers x; > 0, i = 1,..

.,n. Let p; be the non negative real number such that
P, =37 1pi>0. Then

(i) the function p — T'(p) is continuous on R,

ii) foreveryn € Nand (; e R, k=1,...,n, the matriz [I'((; + (x)/2)" . _,] is a positive
( ) J J 7,k=1
semi definite matriz. Particularly

wfp (S92

(iii) the function p — T'(p) is exponentially conver,

(iv) if T'(p) > 0, then the function p — T'(p) is log conver, i.e for —oo <1 < s < p < 00,
we have

(C(s))"" < (L) (T(p)"" (3.5)

(i) In order to prove that the function p — T'(p) is continuous on R, we need to

verify that lim, ,oI'(p) = I'(0) and lim,_,; I'(p) = I'(1). Both are obtained by simple
a calculation. Hence, I'(p) is continues on R.

(ii) Let n e N, [; e R, (j € Rj=1,2,...,n. Denote (jr, = (¢ +(x)/2. Let 1, be defined
by (3.2). Consider the function y : R* — R,

x) = Y Lk, (x)

jk=1

Proof.

Then

y (z) — alz Z Lilke, () Z il (@)

7,k=1 7,k=1
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= 3 Ll () — ale), ()

jk=1

n
= > lilgatn?
jik=1

2
j=1

Hence, y(x) is a(x)-convex function.
Now we apply (2.1) to the function y defined above, and obtained

" 1 & / 1 &
> Ll (%-k(d) + 5 > vt () (@i — d) — B > pit,, ()
n =1 ni=1

J,k=1

_u—wwwmﬁww>zo
Now, from (3.4) it follows that

> LlkD(Gr) >0

]7k:1

Therefore, the matrix [I‘ (%)}n is positive semi-definite.
7,k=1
(iii) Follow from (i), (i7) and Lemma 3.1.

(iv) Let I'(p) > 0, then by Corollary 3.1 we have that T'(p) is log-convex i.e p — logI'(p)
is convex and by (3.1) for —oco < r < s < p < oo and taking ¥ (p) = logI'(p), we get

logI'(r)(p — s) + log I'(s)(r — p) +1log I'(p)(s —7) > 0

After some calculation, it is equivalent to (3.5).
]

1 /
s1 — as
Theorem 2.6 enables us to define various types of means, because if the function H
sy — as,

has inverse, from (2.23) we have

” 7\ —1
n= (S}, — as}>
Sy — (Sq
<Sl(d)Pn + S pilwi — d)s) (23) — iy pisi (@) — gy pi [ (d — t)a(t)sll(t)dt> nel
sa(d) Py + Xy pilwi — d)sh(wi) — Liy pisa(@i) — iy pi [ (d — t)alt)sh(t)dt )
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Let us observe differential equations s (n) — a(n)s}(n) = nP~2 and s4(n) —a(n)sh(n) =7
Then from (2.23) we have

- <Sl(d)Pn + S pilws — d)sy (1) — Sy pisi (@) — Sy pi [ (d — ta(t)s, (t)dt> r
52(d) P + o7y piws — d)sh(wi) — Sy pisa(wi) — iy pi [ (d — ta(t)sh(t)dt '

From (3.4) we have

1

) — (s(s —1) PPy +pXi pi(w; — d)al ! — zzf;lp,-:cg?> s

p(p—1) &P, + s pi(w; — d)xi = S0 pat

Hence we have mean
1

s(s—1) d"PotpY i pilw —d)al ™ — Y0 piad \ 7 (3.6)
p(p—1) doP,+ s pilwi — d)af ™! — S0 pixs

where x = (x1,...,2,) € R™ is n-tuple of mutually different numbers greater than zero,
p# s, p,s#0,1. We have

M(X;p,é‘):(

M(x;p, s) = Gg)pi

where T is defined by (3.3). All continuous extensions of (3.6) are now obvious but the case
p=s:
M (z;p, s) =

b PodPlnp + 30 pi(zi — d)a? ™"+ p Xt piwy — d)a? n(p — 1) — X pia? lnp
APy + p Yy pi(ai — d)z ™t = S0 pia?

1—-2p
p(p—1)

p#0,1.
In the following theorem we give improvement and reversion of generalized Slater’s in-

) 37

equality.

n n ’
. + i _ ) > pimiy ()
Theorem 3.2. Let x;, p;, d, € RT (i=1,...,n), P, = E pi > 0, where d, = m

=1
Let Z, be defined by

1 & dp
Zp = Pp(dp) — B ZPM/@(%;) - / (dp — t)au(t)ay, (t)dt.
=1 T

Then

Zy > [W(s;p)) = W (r; p)] =, (3.8)

for —co<r<s<p<ooand —co<p<r<s<oo.
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(i)

Zy < [W(s;p)) = W (r; p)] =, (3.9)
for —co<r<p<s<oo.

where W (s;p) = ¥s(d + — Zpﬂ/fs (i) (2 — dp) — % Zpiws(l’i)
i=1

Lme/ (dy — ) (e (1)

Proof. (i) By putting d = d,, in (3.4), then I'(p) becomes Z,, and for
—00 < r < s§<p<oo, by putting d = d, in (3.5), we get

@wm+é§pMWMmﬂm—;§)wwa— zpjnd—tuwam>
<Gmm+§2ﬁ¢mmﬁ%w;§)mu»

"= " i=1
——sz / (dy — Dt (t)dt) (2

= [W(s;p)P™" < W( )P 21T

(3.10)

Zy = [W(s;p)] = [W (r; p)] =
Similarly for —oco < p <r < s < 00 (3.5) becomes

(T(r))>? < (T(p))*"(I'(s)"; (3.11)
by putting d,, % in (3.11), we have

(W(rp)I? < Wisip)]P1Z]""

= Zp > [W(sp) = W (rp) =
which is required.
(ii) for —oo <r < p < s < o0 (3.5) becomes

(D(s))P~" < (P(p))* " (T(r))P % (3.12)
by setting d = d,, in (3.12), we get (ii) by simple calculation.
O
n n /
Theorem 3.3. Let z;, p;, d, € RY (i=1,...,n), P, = Z;pi > 0, where d = %
Then for every n € N and for every (; € R, j € {1,2, §_ ,n}, the matrices
[W(Cﬁc’“ GO k=1 [W(ngc’“, §1+C2)]] w_1 are positive semi-definite matrices. Particularly

detfw (ST >0 (313)
det[W (CJ;Ck C142rC2)]]k >0, (3.14)

where W (s,t) is defined by (3.10).
Proof. By setting d = d¢, and d = d¢;+¢, in Theorem 3.1(ii), we get the required results. [J
2
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Remark 3.1. We note that W (p,p) = Z,. So by setting n = 2 in (3.13), we have special
case of (3.8) forpol,r:%,S:Cgifcl<Cgandforp:C1,r:C2,s:%if
(2 < (1. Similarly by setting n = 2 in (3.14), we have special case of (3.9) for r = (1, s = (o,
p=32if ¢ < Gandforr =, 5= p= 52 if (b < G

Remark 3.2. Related results for convex function have been given in [1,2].
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