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ON NEW WEIGHTED OSTROWSKI TYPE INEQUALITIES FOR
CO-ORDINATED s-CONVEX FUNCTIONS

GOZDE BAYRAK!, MEHMET EYUP KIiRiS!, HASAN KARA?, AND HUSEYIN BUDAK?

ABSTRACT. In this paper, we obtain some new weighted Ostrowski type inequalities for
co-ordinated s-convex functions. Furthermore we present some weighted Midpoint type
inequalities as special cases of main results. We also show that our results generalize the
results obtained earlier studies.

1. INTRODUCTION

In the history of development calculus, integral inequalities has been thought of as a
key factor in the theory of differential and integral equations. The study of various types
of integral inequalities has been the focus of great attention for well over a century by a
number of scientists, interested both in pure and applied mathematics. One of the many
fundamental mathematical discoveries of A. M. Ostrowski [20] is the following classical
integral inequality associated with the differentiable mappings:

Let f : [a,b]— R be a differentiable mapping on (a,b) whose derivative I (a, b)— R is
bounded on (a,b), i.e., ||f'||o = sup |f'(t)] < co. Then, the inequality holds:

te(a,b)
b r— a+tb 2
fla) — / F(t)de| < i+<(b_)) - 1. (1)

for all = € [a,b]. The constant 1 is the best possible.

Over the years, many variations of Ostrowski type inequalities have been studied for
various function classes, such as convex functions, bounded functions, functions of bounded
variation, and so on. Specifically, since convexity theory is an effective and powerful way to
solve a large number of problems from different branches of pure and applied mathematics,
many papers have been dedicated to Ostrowski inequality for convex functions. For instance,
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Alomari et al. proved some Ostrowski type inequalities for s-convex functions in [5]. More-
over, Ostrowski type inequalities for other kinds of convexities were studied in [17,25,29,40].
In [39], Set first obtained the Riemann-Liouville fractional version of Ostrowski inequal-

ity for s-convex functions. In addition to this, many researchers focused on establishing
Ostrowski type inequalities for certain fractional integral operators, such as k-Riemann-
Liouville fractional integrals, local fractional integrals, Raina fractional integrals, etc. For
more information and unexplained subjects, we refer the reader to [1,9,11,14-16,23,37] and
the references therein. On the other hand, several Ostrowski inequalities for co-ordinated
convex mapping in involving double Riemann integrals and double Riemann-Liouville frac-
tional integrals are introduced in the papers [22] and [19], respectively.
A formal definition for co-ordinated convex function may be stated as follows:

Definition 1.1. A function f: A := [a,b] X [¢,d] — R is called co-ordinated convex on A,
for all (z,u), (y,v) € A and t, A € [0, 1], if it satisfies the following inequality:

flz+ (1 —1t)y,su+ (1 —A) ) (1.2)

<A flayu) (1 = A (@, )+ AL = ) (y,u) + (1 (L= ) f(yv).

The mapping f is a co-ordinated concave on A if the inequality (1.2) holds in reversed
direction for all ¢, A € [0,1] and (x,u), (y,v) € A.

Barnet and Dragomir gave the following Ostrowski type inequalities for double integrals
in [7].

Theorem 1.1. Let f : A := [a,b]x[c,d] — R be continuous on A, %@ch exists on (a,b) x(c,d)

Then, we have the inequality:

and is bounded, 1. e.,

0*f
0xdy

0*f(z,y)
oxdy

= sup < 00

0o (wy)e(ab)x(c,d)

b d d b
//f@AMMH—@—aMd—@f@MD—[@—aX/ﬂLAMA+Q#ﬂﬂ/f@yM4

a

1 5 a+b\%| [1 5 c+d\?| | &%f
< |=(b- — —(d— — 1.
< |j0-0+ (s 2)]L<cwﬂy >) | |owan. (13)
for all (x,y) € A.
In [10], Dragomir proved the following inequalities for co-ordinated convex functions on

the rectangle from the plane R2.
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Theorem 1.2. Suppose that f: A — R is co-ordinated convez, then we have the following
inequalities:

S5 < bt [ S a1 (555) )

C

s /b /d e y)dyda (1.4)
< [b_a/bfxcdx+/fxd

+ oo /faydy+——*/fby ]

fla,¢) + f(a,d) + f(b,c) + f(b,d)
T :

The above inequalities are sharp. The inequalities in (1.4) hold in reverse direction if the
mapping f is a co-ordinated concave mapping.

<

Over the years, many papers are dedicated on the generalizations and new versions of the
inequalities (1.3) and (1.4) using the different type convex functions. For more inequalities
obtained by using co-ordinated convex functions, please refer to ([2—0, 12-22,27, 28 30-13]).

We will frequently use the following lemma in our main results:

Lemma 1.1. [8,44]Let w : A := [a,b] X [¢,d] — [0,00) be an integrable function on A and

let f: A — R be an absolutely continuous function such that the partial derivative of order
2f(t, A

% exist for al (t,\) € A. Then we have the equality

O(a,b,c,d; f,w) (1.5)

Vi(h) 82
/ w(u, v)dvdu| 2L (01 (0), V1 (V) drdt

/ (w.v)dvdu| L5 (00, v 0) dde
d“””” atox L2

/ w(u, v)dvdu| 2L (U (0) V() dde
/ ’ atox 2

t) Va(A) 82f
d/ wlu, v)dvdu | L (U (1), Va(N)) dAdt
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where Uy (t) = tx+(1—t)a, Us(t) = tx+(1—1)b, Vi(A) = Ay+(1—=N)e, Va(X) = Ay+(1—N)d,

b

d
m(a, b;c,d) //wuvdvdu

and

®(a7 b? c’ d; f7 w) (1'6)

b d
= S = o [ [ e

b d
1
—M//w(u,v)f(x,v)dvdu

b d
1
+m(a’b;c’d)/c/w(u,v)f(u,v)dvdu.

This paper aims to establish some weighed generalizations of Ostrowski type integral
inequalities for co-ordinated s-convex functions. The results presented in this paper provide
extensions of those given in [23].

2. SOME NEW WEIGHTED OSTROWSKI TYPE INEQUALITIES

In this section, we present some weighted Ostrowski type inequalities for co-ordinated
s-convex functions.

Theorem 2.1. Suppose that the mapping w is as in Lemma 1.1. Moreover, let w is bounded

on A, ie. ||lwl|, = sup |w(z,y)|. is a co-ordinated s-convex function on A,

>’f
then for all (z,y) € A we have the following weighted Ostrowski inequality

1©(a,b,c,d; f,w)] (2.1)
_ 1
— m(a,b;c,d) (s1+2)(s2+2)
0? 1 0?
X{(.’E—G)Q(y—C)Q[&(Ki\($,y)‘+82+1 8t8f)\ (.T,C)
1 | 9%f 1 0% f
by WGl Il ear yy perae sl v (“’c)]
2 2 || 07 1| 2*f
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51 i 1 ;:aji\ @)+ G 1)1(52 1) ;28]; (a’d)H
#0220 of || ook |+ o 0

51 i 1 g?i (b’y)’ e 1)1(32 1) 6?1528& (b,¢) ]
#0-ap @0 [T el | o o)

311+1 aag; (b,9)| + (31+1)1(32+1) 5;]; (b’d)H}

where the mapping © is defined as in (1.6).
Proof. By taking the modulus of inequality (1.5), we have
’@(a’7 b7 C7 d7 f’ w)‘

11| U(®) Vi(N) 9
_ @—@@—C// / /wwdvdu o°f
m(a,b;c,d) , OtOX

(UL(1), V1(>\))| dAdt

0% f
OtoX

(U1(?), Vz(A))’ dAdt

0*f
It

1 1
(b—2)(y )
T / / (U (1), m(A))ldAdt

11
(b—=)(d—y) 2f
+ m(a,b;c,d) 0/0/

Oto

(Us(t), VQ(A))i d\dt.

2

is co-ordinated s-convex on A, we obtain

. . 0
Since w(z,y) is bounded on A and ’(%8)\

o*f
It

(Ur(1), Vl()‘))| dAdt

2

), v1<A>>| e

(2.2)
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(x—a) (y— ) ]l / / A [msz 0
0 0

(1 —t)% A%

IN

s, | 02
<x,y>\ (-

X (a,c) ] dXdt

1 o*f 1 0% f

(52 + 2) | Ot (x’y)’ T o T e (s 5 9) | Bt0n
9% f 1 9% f

Do (“’”‘ T TG D (et ) (e £2) | Bt0n ¢ ] '

= (z—a)(y—co)|w| {(51 +2)

T D (5142 (52 4 2)

Similarly, we have

1 1| Ui(t) Va(N) 2f
// / / w(u, v)dvdu N (U1 (1), Vg()\))‘d)\dt (2.4)
0 0 a
1 0% f 1 0% f
s (@-a)d=y)llvls {(51 1 2) (52 + 2) | OO (x’y)‘ o 7 2) (52 + 1) (52 + 2) | 910N ("T’d)’
1 0% f 1 0% f
T DT 9 Y] e E T T e @9
1 1| U2(t) Vi(h) 52
// / / w(u, v)dvdu o 8{\ (Ua(t), Vl()\))‘d)\dt (2.5)
0 0 b c
1 0% f 1 0% f
< b= y-lvle [(sl 12) (s3 +2) | 9tON <x’y)’ T e T 1) (a1 2) | Bon O
1 0% f 1 0% f
T 10 (51 7 2) (52 1 2) | 020 (b’y)‘ T TN D (e D) (52 2) | oton 0 ]
and
1 1| U2(t) Va(N) an
// / / (u, v)dvdu BTN (UQ(t),‘/Q()\))’ dXdt (2.6)
0 0 b
1 92 f 1 o2 f
< b-ad=y)lvl {(51 +2) (52 + 2) | 910N (m’y)‘ i) (2 + 1) (52 + 2) | 910 (x’d)‘
1 0*f 1 0*f
T D) (51 1 2) (52 1 2) | 910N ® y)’ BT D (142 (2t 1) (521 2) ‘(’%8)\ ® d)H '

If we substitute the inequalities (2.3)-(2.6) in (2.2), then we obtain the required result (2.1). This
completes the proof. O
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Remark 2.1. If we choose s;1 = so = 1 in Theorem 2.1 , then we obtain the inequality

IN

0% f 0% f o0 f 0% f
2 2
O f 0 f O*f °f
N2 N2
O f O*f 0*f °f
02 IRPAY
0’ f 0’ f 0% f 0% f
2 2
which is given by Budak in [3].
, | 0
Corollary 2.1. Under assumption of Theorem 2.1 with ETENN (z,y)| < M, (z,y) € A, then
we have the following weighted Ostorowski type inequality
2 2
AMB—a)?(d— ol |1 (=) | |1 (v—25)

|©(a,b,c,d; f,w)| < m(a,byc,d) (s1+1)(sg+1) |4 +W Z—i_ (d—c)?

Remark 2.2. If we choose w (z,y) = 1 and s; = sy = s in Corollary 2.1, then Corollary 2.1
reduces to inequality proved by Latif and Dragomir in [23, Theorem 2.2].

Corollary 2.2. Under assumption of Theorem 2.1 with x = “TH’ and y = %, then we have

following weighted midpoint type inequality

b d
b d 1
(55529 b ot

b d b d
1 c+d 1 atb
W//w(uyv)f <u, 9 )dvduw//w(u,v)f <2,1}> dvdu
2 2

(b B CL) (d B C) HwHoo 1—so 1 1—s1 1
16 (s1 4 2) (s2 + 2) m(a, b; ¢, d) 2 +82—|—1 2 +sl+1
0% f o0 f
X Hatm (a’c)’ * ‘8758)\

0% f
Otox

(b,c)‘ + ‘;;J; (b,d)H.

wa|+]

2

Oto

one can obtain the desired result. O

Proof. By choosing x = “TH’, y = # and by using co-ordinated s-convexity of

, then
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Remark 2.3. If we choose w (z,y) =1 and s; = s = 1 in Corollary 2.2, then Corollary 2.2

reduces to inequality proved by Latif and Dragomir in [24, Theorem 2.2].

q
s a co-ordinated s-conver function

2

OtoX
on A, then for all (z,y) € A we have the following weighted Ostrowski inequality

Theorem 2.2. Let w be as in Theorem 2.1. If

IN

(svme)
m(a,b;c,d)(p + 1)% (s1+1)(s2+1)

q

1
82f 62f q 82](‘ q 82f g
N2/ N2
1
aZf q 62]0 q 32f q 2f g
1
82f q an q 82f q 82f 39
2 2
N2 N2
where the mapping © is defined as in (1.6) and % + % =1.
Proof. Using the well known Hoélder inequality in (2.2), we obtain
1©(a, b, ¢, d; f,w)| (2.9)
( Vo) RN RTOREYCY b P 5 . @
z—a)(y—c
0 0 a c 0 0
( Yd—) 11| Uit Vo) 11 . i
r—a)(d—y
NI iy e ( | 120 o M)
0 0 a d 0 0

T =

o _
o _

) 1 1| U2(t) Vi(N) i
L= -0 // / /w(u,v)dvdu dXdt
0 0

[ [
|

)]

2
f
ot U0V

1
q q
dXdt

1 1 %
82]0 q
/ iy (U2(), V2 () d/\dt> .
0

0

Ua(t) Va(\) p

=
4N
—
A

S~—
uo.‘A
|
S
o _

o _

/ w(u, v)dvdu| dAdt
b d
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Since w is bounded on A, we have

11| U@ vix r 11| i) Vi P
// / / (u,v)dvdu| d\dt < lelﬁo// /dvdu dAdt (2.10)
0 0 a c 0 0 a c
1 1
— . (x—a)P(y—c)p//)\ptpd/\dt
0 0
z—a) (y—c)P
o e
Similarly, we get
11| UL(#) Va(N) b P (g P
// /w(u,v)dvdu ddt < (”“"_(‘;L(l);y) [ (2.11)
0 0 a d
INRRRIOREYEY P b oy )
// / /w(u,v)dvdu dAdthkugo (2.12)
0 0 b c
and
11| U200 V() b RV
// / /w(um)dvdu d)\dt<(_(xp)_|_(1)2_y)||w||ic. (2.13)
0 0 b d

q
is a co-ordinated s-convex function on A, we obtain

2
On the other hand, as

Dt
1 1 62 q
/ / ‘atafA (U1(5), V()| dAdt (2.14)
0 0
1 82f q 82]0 q 82f q 82f q
(s1+1)(s2+1) Hatf))\ (z,9) +‘3t8)\ (,¢) +‘5‘t8)\ (a,y) +‘6‘t8)\ (a,c) },
11 5 .
//‘atm t),Va(N)| dAdt (2.15)
0 0
1 *f a 0% f 4 0% f q o%f q
S T DD Hatm (@9) +’6t(‘))\($’d) +‘8t8)\ (a) +‘6ta)\ (a,d) }
1 1 an g
//‘c’?ta/\ Vi(A))| dAdt (2.16)
0 0
1 (92f q 62f q 62f q an q
S G DD Hatax(x’y) +‘8t8)\(m’c) +‘8t8>\(b’y) +‘3m(b,c) }
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and

11

o2 L
/ / ‘ MJ; £),Va(\)| dadt (2.17)
0 0

1 82f q 82f q 82f q a2f q
CEICES) Hatm (@) +‘6t8/\ (@,d) +‘8t6)\( 2 ‘8158)\ ®, d)]

If we substitute the inequalities (2.10)-(2.17) in (2.9), then we obtain the required inequality
(2.8). O

Remark 2.4. If we choose s1 = so = 1 in Theorem 2.1 | then we have the inequality

<

Z%m(m b;e,d)(p+ 1)%

. {(x—a>2 (v o (\;g; e +| gk wa| + | 5L | +] 2k o )
+(z—a)® (’ ' ‘aa;f)\(x,d)q—i—‘aaty)\(a,y)q—i—‘é)a;&(a,d)q);
+(b—x)? 2(’ ' ’8;&(:5,0)q—l—’;;&(b,y)q-i-’;;&(b,c) q>;
oo (k] [+ 28 w2 o))
which is given by Budak in [3].
2
Corollary 2.3. Under assumption of Theorem 2.2 with EEN (x,y)| < M, (z,y) € A, then

we have the following weighted Ostrowski type inequality

4M(b—a)2(d—c)2< 4 )
= m(a, b; c, d)(p + 1)% (51 + 1) (82 + 1)

St N FR U o N P

|O(a, b, c,d; f,w)]

T e—a |1 -

Remark 2.5. If we choose w(z,y) =1 and s; = s3 = s in Corollary 2.3, then Corollary 2.3
reduces to inequality proved by Latif and Dragomir in [23, Theorem 2.3].
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Corollary 2.4. Under assumption of Theorem 2.2 with x = “TH’ and y = %d, then we have

the following weighted midpoint type inequality

b
a+b c+d
‘f(Qaz) abcd// f(u,v)dvdu
c+d 1
abcd// w) (u, 2 )dd ~ m(a,b;c,d)

D\@
0\&
S
—
£
=
&.‘
/

+
~_
QU
<
j<%
<

wllye (0= a)® (d_c)2< . >;
T tomabied)(p+1)F \(1 1) (s2+1)

{5 ) s (5 s (5 e |

[ () o (32 2 ) o]

g () ek (52 ek (=5 <[ )

[l (5 s (<52 e (59 )}

f |
OtoA
function on A, then for all (z,y) € A we have the following weighted Ostrowski inequality

Theorem 2.3. Let w be as in Theorem 2.1. If

, q > 1, is a co-ordinated s-convex

1

1(82 + 2)>q

- (
277 x m(a,b;c,d) (51 +2)

« {(x—a)z (y— o) ( ;28-’; @yl + 521+1 ;;’; .0
51 i 1 822(‘9];\ (@) q T 1)1(52 1) ;28{\ (@) q) E
o= = (s o] + iy o )
,

51 1+ 1 ;28]; (a,9) q AP 1)1(52 1) ;28]; (a,d) q) q
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+ (=) (y— o) < ;;6];(56,3/) q+ 5211 881526& (z,c) q
s1 iLl gfzaf)\ (b,y) q T (51 1 1)1(32 gy ((i;}; (b,c) q>q
R e R e
1
51 :— 1 887528f)\ (b,y) q + (51 1 1)1(32 ) ;26']; (b,d) <1> q}

where the mapping © is defined as in (1.6).

Proof. By utilizing the power mean inequality in (2.2), we obtain

©(a,b, ¢, d; f,w)| (2.18)
( ) ( ) 1 1| Ui(t) Vi(x) 1—%

Tr — a y —C

m(a,b;c,d) 0/ 0/ / / w(u, v)dvdu| dAdt

Q=

Ul (t) V1 (/\)

11 an .
- // / /w(“’“)d”d“ DO (Ur(t), Vi(A))| dAdt
00 a c
1 1| U(t) Va(N) 1-2
N m(a, b; ¢, d) ) J w(u, v)dvdu| dAdt

Q=

82 q
DL (1) va) | drde

11
. // /w(u,v)dvdu
00
Usa(t) Vi(A) 1—

bonly—c) [ y dvdu| d\d
+ m(a, b o, d) O/O/ b/ C/ w(u, v)dvdu t

(Ua(t), Vi(N))| dAdt

Q=

Q=

[}
~
Q

S
—~
~
—
>
—~
>
%
—
|
=




88 GOZDE BAYRAK, MEHMET EYUP KIRIS, HASAN KARA, AND HUSEYIN BUDAK

Sy (U1(t), V1(N)

1
= ?to= ol ([ [,
1—1
44 x m(a,b;c,d) 0

1
q q
d/\dt)

1 J
(z —a)® (d—y)*[lw| o f !
+ . o0 tA Ui (), Va(\)| dAdt
4179 x m(a,b;c,d) 0/ 0758/\( 16, Vo)
11 %
(b—2)*(y = o) |l Of !
+ : 00 tA Us(t), Vi(\)| dAdt
(b— ) (=9l ([, ] 0% Y
+ - N |— (Us(t), Va(N)| drat| .
4173 x m(a,b;c,d) (0/0/ 8t8)\( (), 1alV) )
a2f |
Since N is a co-ordinated s-convex function on A, we have the following inequalities
1 1 62 q q
//u S 0. vi)| (2.19)
0 0
|: 1 82]0 q 1 82f q
(514 2) (52 +2) ’67&8)\ @O+ e T B ) e 12 ‘61%)/\ (z,¢)
) 1 ‘Bzf ol + 1 L INRE
Gr+1) (51 +2) (s2+2) |0tox Y| T 51+ 1) (51 +2) (52 + 1) (52 +2) ‘ataA (a,¢) } ’
1 1 q
82f q
( / / 0|2 (i), ) d)\dt) (2.20)
0 0
1 0% f a 1 0% f e
[(51 +2) (52 +2) ’ataA 2 Bl Py y o v pry ’ataA (,d)
1 92f a 1 o2 f g
HCEDIEDICES) ’6t8/\ @Y+ oD ) e D (2 £ 2) ‘8t8/\ (a,d) ] 7
1 1 q q
(//tsl/\52 225 (Ua(8), Vi(V) d)\dt) (2.21)
0 0
1 82f 4 1 62]0 q
{(81 12)(s2+2) ’8756)\ @9+ e T B ) e 12 ‘8758)\ (@)
1 Pf 1 I IPNEE
+ (s1+1)(s14+2)(s2+2) lata)\ (b.y)| + (s1+1)(s14+2)(s2+1)(s2+2) lata)\ (b,) ] ’
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89
and
1 1 82 q q
( / / t)\’ d 8& (Ua(), Va(\) dAdt) (2.22)
0 0
1 82]0 q 1 82f q
{(81 ¥ 2) (52 +2) ’61&8)\ @O+ e T B ) e 12 ‘81&8)\ (z,4)
1 0*f ? 1 9%f g

T ) (1 +2) (52 +2) ‘6%8)\ L B Pores sy pow ¥ por y y per ‘81&8)\ (b,d) } '

O

Remark 2.6. If we choose s1 = so = 1 in Theorem 2.1 , then we have the inequality

3 +2‘§ta{\(:p,6) —1—2’87528];(@3/)(IvL’aéj;];(a,c)q)é
+(z—a) (d—y)2(4‘;28};(33,;(;)(1—&-2‘;28&( ,d)q+2’§2§(a,y)q+’§2€)};(a,d)q>;
L (b—a) (y— o) (4‘52& (2,9) q+2’§23£ (z, )q+2‘§a& (b.9) q+2’§;’; (b,0) q>q
+(b—x)2(d—y)2(4’;28];(%1/)(1-1-2‘;2&( : )q+2‘(§;];(b, )q—i—’;g;(b,d) q);}
which is given by Budak in [3].
Corollary 2.5. Under assumption of Theorem 2.3 with (i;f/\ (x,y)| < M, (z,y) € A, then

we have the following weighted Ostrowski type inequality

' M (b—a)*(d—c)? 4 7
[6(a,b,¢,di f,w)] - < m(a,b;c,d) <(81 +1) (s2+ 1))

(=) ] [r, =)

. L
17 T h—a? | |47 @—e | M

Remark 2.7. If we choose w(z,y) =1 and s; = s9 = s in Corollary 2.5, then Corollary 2.5
reduces to inequality proved by Latif and Dragomir in [23, Theorem 2.4].
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Corollary 2.6. Under assumption of Theorem 2.3 with x = “TH’ and y = %d, then we have

the following weighted midpoint type inequality

b d
(525 b | ot
b d
a a+b
abcd// UU (u)dd (abcd)//w(u,wf(Q?U)dvdu

(b—a)* (d =) [Jwll, < >
477 m(a,b;c,d) (51+2) (52 +2)
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OtON 2 72 sg 4+ 1 |OtOX 2’
1 | 9%f c+d\| 1 0% f
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OEICEIE e
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1
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2 q 2 N
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