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EXPLICIT SOLUTIONS OF POWERS OF THREE AS SUMS OF THREE
PELL NUMBERS BASED ON BAKER’S TYPE INEQUALITIES

ABDULLAH ÇAĞMAN1

Abstract. In this paper, we consider the Diophantine equation Pn + Pm + Pt = 3a and
obtain all solutions for this equation. In the proof of the main theorem, we use lower
bounds for the absolute value of linear combinations of logarithms and a version of the
Baker-Davenport reduction method.

1. Introduction

Recently, many authors are investigating the solutions of Diophantine equations involving
linear recurrence sequences. For example, Bravo and Luca [1,2] solved the equation un+um =
2a for the cases, where un is the Fibonacci sequence and the Lucas sequence respectively.
These are pioneer publications in this field. Later, many researchers made an effort to expand
and generalize such publications by increasing the number of terms in both the numerical
part of the equation and the recurrence sequence part. One can see the publications
[4, 5, 7, 11,12].

In this paper, our aim is to completely solve the Diophantine equation

Pn + Pm + Pt = 3a (1.1)

where Pn is the Pell sequence and n, m, t and a are nonnegative integers such that n ≥ m ≥ t.
The main argument used for the solution of such problems is Baker’s theory (lower bound

for the absolute value of linear combinations of logarithms of algebraic numbers) and a
version of the Baker-Davenport reduction method.

2. Preliminaries

A linear recurrence sequence of order k is a sequence whose general term is

(an) = L (an−1, an−2, . . . , an−k) (2.1)
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where k is a fixed positive integer and L is a linear function. A linear recurrence sequence of
order 2 is called a binary recurrence sequence. Pell sequence, one of the most familiar binary
recurrence sequence, is defined by P0 = 0, P1 = 1 and Pn = 2Pn−1 + Pn−2. Some of the
terms of the Pell sequence are given by 0, 1, 2, 5, 12, 29, 70, . . . . Its characteristic polynomial
is of the form x2− 2x− 1 = 0 whose roots are α = 1 +

√
2 and β = 1−

√
2. Binet’s formula

enables us to rewrite the Pell sequence by using the roots α and β as

Pn = αn − βn

2
√

2
. (2.2)

Also, it is known that
αn−2 ≤ Pn ≤ αn−1. (2.3)

We give the definition of the logarithmic height of an algebraic number and its some
properties.

Definition 2.1. Let ξ be an algebraic number of degree d with minimal polynomial

a0x
d + a1x

d−1 + · · ·+ ad = a0 ·
d∏
i=1

(x− ξi)

where ai’s are relatively prime integers with a0 > 0 and ξi’s are conjugates of ξ. Then

h (ξ) = 1
d

(
log a0 +

d∑
i=1

log (max {|ξi| , 1})
)

is called the logarithmic height of ξ. The following proposition gives some properties of
logarithmic height that can be found in [14].

Proposition 2.1. Let ξ, ξ1, ξ2, . . . , ξt be elements of an algebraic closure of Q and m ∈ Z.
Then

(a) h (ξ1 · · · ξt) ≤
∑t
i=1 h (ξi)

(b) h (ξ1 + · · ·+ ξt) ≤ log t+
∑t
i=1 h (ξi)

(c) h (ξm)=|m|h (ξ) .
We will use the following theorem (see [10] or Theorem 9.4 in [6]) and lemma (see [3] which
is a variation of the result due to [9] ) for proving our results.

Theorem 2.1. Let γ1, γ2, . . . , γs be nonzero elements of a real algebraic number field F of
degree D, b1, b2, . . . , bs rational integers. Set

B := max{|b1| , . . . , |bs|}

and
Λ := γb1

1 . . . γbs
s − 1.

If Λ is nonzero, then

log |Λ| > −3 · 30s+4 · (s+ 1)5.5 ·D2 · (1 + logD) · (1 + log(sB)) ·A1 · · ·As
where

Ai ≥ max{D · h(γi), |log γi| , 0.16}
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for all 1 ≤ i ≤ s. If F = R, then

log |Λ| > −1.4 · 30s+3 · s4.5 ·D2 · (1 + logD) · (1 + logB) ·A1 · · ·As.

Lemma 2.1. Let A, B, µ be some real numbers with A > 0 and B > 1 and let γ be an
irrational number and M be a positive integer. Take p/q as a convergent of the continued
fraction of γ such that q > 6M . Set ε := ‖µq‖−M ‖γq‖ > 0 where ‖·‖ denotes the distance
from the nearest integer. Then there is no solution to the inequality

0 < |uγ − v + µ| < AB−w

in positive integers u, v and w with

u ≤M and w ≥
log Aq

ε

logB .

3. Main Result

Theorem 3.1. The only nonnegative integer quads n,m, t, a with n ≥ m ≥ t satisfying the
Diophantine equation (1.1) as follows

(n,m, t, a) ∈ {(1, 0, 0, 0), (1, 1, 1, 1), (2, 1, 0, 1), (3, 2, 2, 2)}.

Proof. First, let us examine some solutions of the equation case by case according to the
states of n,m and t. In the case that t = 0, if also m = 0 then equation becomes

Pn = 3a.

So, by Carmichael’s primitive divisor theorem [8] n must be less than or equal to 12. This
implies only the existence of the solution (1, 0, 0, 0). For the same case, if m > 0 then we
have the equation

Pn + Pm = 3a.

In [13], they gave an upper bound for the solutions of the general case of the above equation.
Taking into account this upper bound, a brute force search with Mathematica reveals that
(2, 1, 1) and (1, 0, 0) are only solutions of above equation. Thus, the equation (1.1), in this
case, has solution (2, 1, 0, 1) as distinct from the previous case.
In the other case when n = m = t, the equation (1.1) takes the form

Pn = 3a−1

and so has solution (1, 1, 1, 1).
From now on, we will assume that n ≥ m ≥ t ≥ 1 except for the last case above. A computer
search with Mathematica for n ≤ 200 found out that there are no other solutions to the
equation (1.1) than those stated in Theorem 3.1.
Assume that n > 200. Let us try to find a relation between a and n. Using the right hand
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side of the inequality (2.3) we get

3a = Pn + Pm + Pt

≤ αn−1 + αm−1 + αt−1

< 3n−1
(
1 + 3m−n + 3t−n

)
< 3n−1 · 3
= 3n.

Thus, we have that a < n. When we replace Pn in the equation (1.1) with its closed form,
we obtain

αn

2
√

2
− 3a = βn

2
√

2
(Pm + Pt) .

By taking the absolute value of both sides of the above relation and using the upper bound
in relation (2.3), it is yielded that∣∣∣∣ αn2

√
2
− 3a

∣∣∣∣ ≤ |βn|2
√

2
+ Pm + Pt <

1
6 +

(
αm + αt

)
.

When we divide both sides of the above expression by αn

2
√

2 to apply Matveev’s result in
Theorem 2.1, we have

∣∣∣1− 3a · α−n · 2
√

2
∣∣∣ < 2

√
2

αn

(1
6 + αm + αt

)
= 2
√

2αm−n
(1

6α
−m + 1 + αt−m

)
<

7
αn−m

. (3.1)

The first application of the Matveev’s result:

Set ∆1 := 1− 3a ·α−n · 2
√

2. ∆1 is not zero. If it were zero, it would be α2n ∈ Z, which is
impossible. Let us take s := 3, (γ1, γ2, γ3) :=

(
3, α, 2

√
2
)
and (b1, b2, b3) := (a,−n, 1). We

have D := 2 since each γi belongs to Q
(√

2
)
.

A1, A2, A3 and B can be chosen as follows:

A1 := 2.2 > 2.1972 ' 2 · log 3 = D · h (γ1)
A2 := 0.9 > 0.8813 ' logα = D · h (γ2)

A3 := 2.1 > 2.079 ' 2 · log
(
2
√

2
)

= D · h (γ3)
B := n.
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From Theorem 2.1, it is obtained that

|∆1| > exp (−C1 · (1 + logn) · 2.2 · 0.9 · 2.1)
7

αn−m
> exp (−C1 · (1 + logn) · 2.2 · 0.9 · 2.1) from (3.1)

where C1 = 1.4 · 306 · 34.5 · 22 · (1 + log 2). Proceeding to appropriate operations, we have
7

αn−m
> exp (−C1 · (1 + logn) · 2.2 · 0.9 · 2.1)

(n−m) logα− log 7 < C1 · (1 + logn) · 2.2 · 0.9 · 2.1.

Since C1 < 9.7 · 1011 and 1 + logn < 2 logn for n ≥ 3, we get

(n−m) logα− log 7 < 9.7 · 1011 · (1 + logn) · 2.2 · 0.9 · 2.1
(n−m) logα < 8.2 · 1012 · logn. (3.2)

To find an upper bound on n− t, let’s rewrite the equation (1.1) as a second linear form in
logarithms as follows

αn

2
√

2
+ αm

2
√

2
− 3a = βn

2
√

2
+ βm

2
√

2
− Pt.

If we take the absolute value of both sides and apply the triangle inequality, we get∣∣∣∣ αn2
√

2
(
1 + αm−n

)
− 3a

∣∣∣∣ ≤ |β|n + |β|m

2
√

2
+ Pt

<
1
3 + αt.

Dividing both sides by αn

2
√

2 (1 + αm−n), we obtain

∣∣∣1− 3aα−n2
√

2
(
1 + αm−n

)−1
∣∣∣ < 2

√
2

αn · (1 + αm−n)

(1
3 + αt

)
= 2

√
2

(1 + αm−n)α
t−n

(1
3α
−t + 1

)
<

8
√

2
3 ·
(
1 + 1

α

)αt−n
<

3
αn−t

. (3.3)

Second application of the Matveev’s result:

Set ∆2 := 1− 3aα−n2
√

2 (1 + αm−n)−1. Here ∆2 is different from zero. In fact, if ∆2 is
zero then

3a2
√

2 = αn
(
1 + αm−n

)
= αn + αm.

By conjugating in Q
(√

2
)
we get

−3a2
√

2 = βn + βm.
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So, considering last two equation we obtain

2 · 3a = αn − βn

2
√

2
+ αm − βm

2
√

2
= Pn + Pm.

If the last equation is replaced in equation 1.1, Pt = −3a is derived and this is a contradiction.
Now we are ready to apply the Theorem 2.1 for the second time.

We take s := 3, (γ1, γ2, γ3) :=
(
3, α, 2

√
2 (1 + αm−n)−1

)
and (b1, b2, b3) := (a,−n, 1). We

have D := 2 since each γi belongs to Q
(√

2
)
.

A1, A2 and B can be chosen as follows:

A1 := 2.2 > 2.1972 ' 2 · log 3 = D · h (γ1)
A2 := 0.9 > 0.8813 ' logα = D · h (γ2)
B := n.

Now, let us compare the h (γ3) and log γ3 to find an appropriate value for A3:

h (γ3) = h

(
2
√

2
1 + αm−n

)
≤ h

(
2
√

2
)

+ h
(
1 + αm−n

)
from Proposition 2.1(a)

≤ log
(
2
√

2
)

+ h (1) + h
(
αm−n

)
+ log 2 from Proposition 2.1(b)

= log
(
4
√

2
)

+ |m− n| · h (α) from Proposition 2.1(c)

= log
(
4
√

2
)

+ (n−m) logα
2 .

Considering
γ3 = 2

√
2
(
1 + αm−n

)−1
<
√

2
and

γ−1
3 = (1 + αm−n)

2
√

2
<

2
2
√

2
<
√

2

we get |log γ3| < 1. Thus,

A3 := 3.47 + (n−m) · logα > log 32 + (n−m) · logα = max {2h (γ3) , |log γ3| , 0.16} .

Now Theorem 2.1 implies that
3

αn−t
>
∣∣∣1− 3aα−n2

√
2
(
1 + αm−n

)−1
∣∣∣

> exp (−C2 · (1 + logn) · 2.2 · 0.9 · (3.47 + (n−m) logα))

where C2 := 1.4 · 306 · 34.5 · 22 · (1 + log 2) < 9.7 · 1011. Taking the logarithm of both sides
in the last inequality, considering that 1 + logn < 2 logn for n ≥ 3 and using the inequality
(3.2), one can see that

(n− t) logα < 3.2 · 1025 · log2 n. (3.4)
Third application of the Matveev’s result for bounding n:
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Now, we will make the equation (1.1) a little more explicit with the help of Binet formula
and get a new linear form as follows:

αn

2
√

2
+ αm

2
√

2
+ αt

2
√

2
− 3a = βn

2
√

2
+ βm

2
√

2
+ βt

2
√

2
.

By taking absolute value and using triangle inequality we get

∣∣∣∣ αn2
√

2

(
1 + αm−n + αt−n

)
− 3a

∣∣∣∣ ≤ |β|n2
√

2
+ |β|

m

2
√

2
+ |β|

t

2
√

2
<

1
2 .

We obtain below inequality by a simple division with the first term of the left hand side of
the above inequality.

∣∣∣∣1− 3aα−n2
√

2
(
1 + αm−n + αt−n

)−1
∣∣∣∣ < 1

αn
. (3.5)

Set ∆3 := 1 − 3aα−n2
√

2
(
1 + αm−n + αt−n

)−1. First of all, it must be shown that ∆3 is
not zero. For this, assume that ∆3 = 0. So, we have

2
√

2 · 3a = αn
(
1 + αm−n + αt−n

)
= αn + αm + αt (3.6)

and by conjugating this equation we get

− 2
√

2 · 3a = βn + βm + βt. (3.7)

Substracting the equation (3.7) from the equation (3.6) we obtain

2 · 3a = αn − βn

2
√

2
+ αm − βm

2
√

2
+ αt − βt

2
√

2
= Pn + Pm + Pt

which contradicts to the equation (1.1). Like the previous ones, we are ready to imple-
ment the Matveev’s result with s = 3, (γ1, γ2, γ3) :=

(
3, α, 2

√
2
(
1 + αm−n + αt−n

)−1
)
and

(b1, b2, b3) := (a,−n, 1). We can take A1 := 2.2, A2 := 0.9 and B := n. Now, let us again
compare the h (γ3) and log γ3 to find the value of A3:

γ3 = 2
√

2
(
1 + αm−n + αt−n

)−1
<
√

2

and

γ−1
3 =

(
1 + αm−n + αt−n

)
2
√

2
<

1 + 1
2 + 1

2
2
√

2
<
√

2.
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So, these two inequalities imply that |log γ3| < 1. Let us find the value of h (γ3).

h (γ3) = h

(
2
√

2
(
1 + αm−n + αt−n

)−1
)

≤ h
(
2
√

2
)

+ h

((
1 + αm−n + αt−n

)−1
)

= h
(
2
√

2
)

+ h
(
1 + αm−n + αt−n

)
≤ h

(
2
√

2
)

+ |m− n|h (α) + |t− n|h (α) + 2 log 2

= log 2
√

2 + (n−m) logα
2 + (n− t) logα

2 + 2 log 2

= log 8
√

2 + (n−m) logα
2 + (n− t) logα

2 .

Thus,

2 · h (γ3) ≤ log 128 + (n−m) logα+ (n− t) logα
< 5 + (n−m) logα+ (n− t) logα.

Considering |log γ3| < 1 and 2 · h (γ3) < 5 + (n−m) logα+ (n− t) logα we can take

A3 := 5 + (n−m) logα+ (n− t) logα.

As a result, if we apply Matveev’s result with the inequality (3.5) we find

n logα < 1.84× 1012 × logn×
(
5 + 8.2× 1012 × logn+ 3.2× 1025 × log2 n

)
and so

n < 6.9× 1043.

Now let us improve this upper bound on n a little bit more. Set

z1 := a log 3− n logα+ log
(
2
√

2
)
.

The inequality (3.1) can be also written as

|1− ez1 | < 7
αn−m

.

By using (1.1) and (2.2) we get
αn

2
√

2
= Pn + βn

2
√

2
< Pn + 1 ≤ Pn + Pm + Pt = 3a.

Therefore, we have
1 < 3aα−n2

√
2

and so
z1 > 0.

In this case, we get

0 < z1 < ez1 − 1 < 7
αn−m

.
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If we divide both sides of the above inequality by logα and make some necessary operations
we obtain

0 < (2a+ 1) log 3
logα − 2n < 16

αn−m
. (3.8)

To find an upper bound for n−m we will use the above inequality which of type |xγ − y|.
Recall that a < n < 6.9 × 1043. So, this implies 2a + 1 < 14 × 1043. If we take pk

qk
as kth

convergent of γ, one can see with Mathematica that q70 < 14× 1043 < q71 and maximum of
continued fractions of γ up to 71, say xmax, is 181. We obtain

1
(xmax + 2) (2a+ 1) < (2a+ 1) γ − 2n < 16

αn−m

from the known properties of continued fractions. Thus, above inequality yields

αn−m < 16× 183× 14× 1043

which means that
n−m < 125.

Let us find an upper bound for n− t using the inequality (3.3). Set

z2 := a log 3− n logα+ log
(
2
√

2
(
1 + αm−n

)−1)
.

From (3.3) we have

|1− ez2 | < 3
αn−t

.

The inequality
αn

2
√

2
+ αm

2
√

2
< Pn + Pm + 1 ≤ Pn + Pm + Pt = 3a

means that
3aα−n2

√
2
(
1 + αm−n

)
> 1

and hence z2 > 0. Therefore, the inequality

0 < z2 <
3

αn−t

is obtained. In this inequality, if we write z2 in its open form and divide both sides with
logα, the following inequality emerges immediately:

0 < a
log 3
logα − n+

log
(
2
√

2 (1 + αm−n)−1
)

logα <
3.5
αn−t

. (3.9)

Now, we can operate Lemma 2.1 with the parameters

γ = log 3
logα, µ =

log
(
2
√

2 (1 + αm−n)−1
)

logα ,A = 3.5, B = α,w = n− t.

We can set M := 6.9 × 1043and if we take the denominator of the 85th convergence of γ,
then we get q > 6M but in this case ε < 0 appears for many values of n−m. So, we take
the denominator of the 86th convergence except for n −m = 2. Performing the Lemma
2.1 for these values of n−m, we find that solutions of the equation (1.1) are available for
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n − t ∈ [1, 120]. Now, let us take the special case n −m = 2. Since µ = 1, the inequality
(3.9) turns into the following:

0 < a
log 3
logα − (n− 1) < 3.5

αn−t
.

Using the properties of continued fractions, this inequality can be rewritten as

1
(amax + 2) · a < a

log 3
logα − (n− 1) < 3.5

αn−t
(3.10)

where amax is the maximum value of the continued fractions of the γ up to 71. From the
inequality (3.10), if we use a < 6.9× 1043 then we get n− t < 122. Therefore, n− t < 122
is a valid inequality in all cases.

Now we can proceed to improve the upper bound we find for n. Set

z3 := a log 3− n logα+ log
(

2
√

2
(
1 + αm−n + αt−n

)−1
)
.

In this case, we can write

|1− ez3 | < 1
αn

from the inequality (3.5). It can be shown easily that z3 6= 0 as in the previous cases. Now
let us examine z3 < 0 and z3 > 0 cases separately. If z3 > 0 then

0 < z3 < ez3 − 1 < 1
αn
.

Now suppose z3 < 0. Using |ez3 − 1| < 1/2 we get e|z3| < 2. So,

0 < |z3| ≤ e|z3| − 1 < e|z3| (ez3 − 1) < 2
αn
.

Considering both cases, the inequality

0 < |z3| <
2
αn

can be considered as a general case. Substituting the value of z3 in the above inequality
and dividing both sides by logα we obtain

0 <

∣∣∣∣∣∣a
( log 3

logα

)
− n+

log
(
2
√

2
(
1 + αm−n + αt−n

)−1
)

logα

∣∣∣∣∣∣ < 3
αn
.

If we take M := 6.9 · 1043 and apply Lemma 2.1to the above inequality for all values of
n −m and n − t in the ranges [0, 124]and [0, 121] respectively, we always get ε > 0 in the
90th convergence of log 3

logα . So, from the result of Lemma 2.1 it is obtained that if there is
a solution of the equation (1.1) then it must be n < 128 which contradicts our assumption
n > 200. This completes our proof. �
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