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CONVEX FUNCTIONS ON THE INTERVAL IN A REAL VECTOR
SPACE

ZLATKO PAVIĆ1

Abstract. The article investigates convex functions defined on the interval in a real vector
space. The first objective is to establish the most relevant inequalities relying on the support
and secant lines. These are the Hermite-Hadamard and Jensen type inequalities. The
second objective is to propose more appropriate notations related to the convex function
subderivative and subdifferential.

1. Introduction

Throughout the article, the interval in a real vector space X is used. Let a, b ∈ X be a
pair of different points. The interval between a and b is the set

[a, b] = conv{a, b} = {(1− t)a+ tb : 0 ≤ t ≤ 1}, (1.1)

and its points are called convex combinations of a and b. It can also be said that the
interval between a and b is the convex hull of the set {a, b}. Using 0 < t < 1 in the above
representation, we get the open interval (a, b) whose points are called interior points. The
line through a and b is the set

L{a,b} = aff{a, b} = {(1− t)a+ tb : −∞ < t < +∞},

and its points are called affine combinations of a and b. We also say that the line through
a and b is the affine hull of the set {a, b}. As it is obvious that [a, b] ⊂ L{a,b}, a bounded
interval is often called a line segment.

In the paper, the following two representations of points from the interval [a, b] will also
be employed. The point b− a can be considered as the interval directional point. Let r0 be
a positive number, let v = r0(b− a), and let c = (1− t0)a+ t0b ∈ [a, b] be an interval point
implying that 0 ≤ t0 ≤ 1. Then we have

[a, b] = {c+ tv = (1− t0 − r0t)a+ (t0 + r0t)b : ta ≤ t ≤ tb}, (1.2)
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where
ta = − t0

r0
, tb = 1− t0

r0
.

Here is ta = −t0/r0 ≤ t ≤ (1− t0)/r0 = tb because it has to be 0 ≤ t0 + r0t ≤ 1. As regards
the line, using the mark o for the origin in X, we have

L{a,b} = c+ L{o,v}.

2. Monotonicity of slopes

The slopes of convex functions defined on the interval [a, b] are considered.

Lemma 2.1. Let x1, x2, x3 ∈ [a, b] be points where x2 = (1− t)x1 + tx3 for some number t
satisfying 0 < t < 1.

Then each convex function f : [a, b]→ R satisfies the double inequality

f(x2)− f(x1)
t

≤ f(x3)− f(x1)
1 ≤ f(x3)− f(x2)

1− t . (2.1)

Proof. Applying the convexity of the function f to the given convex combination of the
point x2, we get

f(x2) ≤ (1− t)f(x1) + tf(x3),

and then moving f(x1) over to the left side, and dividing by t, we obtain

f(x2)− f(x1)
t

≤ f(x3)− f(x1)
1 .

Combining the above inequality with the convex combination

f(x3)− f(x1)
1 = t

f(x2)− f(x1)
t

+ (1− t) f(x3)− f(x2)
1− t ,

we reach the double inequality in (2.1). �

Corollary 2.1. Let r0 > 0, let v = r0(b − a), let c ∈ (a, b) be a point, and let c + t1v, c +
t2v, c+ t3v ∈ [a, b] be points where t1 < t2 < t3.

Then each convex function f : [a, b]→ R satisfies the double inequality

f(c+t2v)−f(c+t1v)
t2 − t1

≤ f(c+t3v)−f(c+t1v)
t3 − t1

≤ f(c+t3v)−f(c+t2v)
t3 − t2

. (2.2)

Proof. We put x1 = c+ t1v, x2 = c+ t2v and x3 = c+ t3v. Since t2 ∈ (t1, t3), it follows that
t2 = (1− t)t1 + tt3 for some number t satisfying 0 < t < 1. Then we have the relations

t = t2 − t1
t3 − t1

and x2 = (1− t)x1 + tx3. This leads us to apply formula (2.1) to the given points and the
above coefficient, and so realize formula (2.2). �
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Corollary 2.2. Let r0 > 0, let v = r0(b− a), let c = (1− t0)a+ t0b ∈ (a, b) be a point, and
let f : [a, b]→ R be a convex function.

Then the slopes function f(v,c) : [ta, 0) ∪ (0, tb]→ R defined by

f(v,c)(t) = f(c+ tv)− f(c)
t

(2.3)

is nondecreasing and bounded, and it satisfies the inequality

f(v,c)(0−) ≤ f(v,c)(0+). (2.4)

Proof. As for the monotonicity of f(v,c), let t1, t2 ∈ [ta, 0) ∪ (0, tb] be numbers such that
t1 < t2. Applying the double inequality in (2.2) to each of ordered triples t1 < t2 < 0,
t1 < 0 < t2 and 0 < t1 < t2, we always get f(v,c)(t1) ≤ f(v,c)(t2).

Then the bordering inequality f(v,c)(ta) ≤ f(v,c)(t) ≤ f(v,c)(tb) holds for every t ∈ [ta, 0) ∪
(0, tb], and so the function f(v,c) is bounded.

Since the function f(v,c) is nondecreasing and bounded, its left and right limits exist at
t = 0 satisfying

f(v,c)(0−) = lim
t→0−

f(v,c)(t) ≤ lim
t→0+

f(v,c)(t) = f(v,c)(0+),

which confirms the inequality in formula (2.4). �

The inequality in (2.4) implies that the slopes set [f(v,c)(0−), f(v,c)(0+)] is nonempty, it
contains at least one number. The slopes functions f(v,c) and f(b−a,c) satisfy the relation

1
r0
f(v,c)

( t
r0

)
= f(b−a,c)(t)

for every t ∈ [−t0, 0) ∪ (0, 1 − t0]. Relying on the above equality, we finish the section by
presenting the lemma on slopes functions and sets.

Lemma 2.2. Let r1,2 > 0, let v1,2 = r1,2(b− a), let c = (1− t0)a+ t0b ∈ (a, b) be a point,
and let f : [a, b]→ R be a convex function.

Then the slopes functions relation
1
r1
f(v1,c)

( t
r1

)
= 1
r2
f(v2,c)

( t
r2

)
(2.5)

holds for every t ∈ [−t0, 0)∪ (0, 1− t0]. Letting t tend to zero from the negative and positive
sides, it follows the slopes sets relation

1
r1

[f(v1,c)(0−), f(v1,c)(0+)] = 1
r2

[f(v2,c)(0−), f(v2,c)(0+)]. (2.6)

3. Main results - Inequalities

In this section, the Hermite-Hadamard and Jensen type inequalities referring to a convex
function on the interval in a real vector space are obtained.

Two affine functions are usually attached to a convex function f : [a, b]→ R. Let r0 > 0,
let v = r0(b−a), let c ∈ (a, b) be an interval interior point, and let k ∈ [f(v,c)(0−), f(v,c)(0+)]
be a number.
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The affine function h(c,k) : L{a,b} → R presented by the equation

h(c,k)(c+ tv) = kt+ f(c) (3.1)

is the support line of f at c with the slope k. Its graph passes through the point (c, f(c))
in L{a,b} × R. It can be visualized as the line

u(t) = kt+ f(c)

passing through the point (0, f(c)) in R× R with the slope k.
The affine function h(a,b) : L{a,b} → R presented by the equation

h(a,b)(c+ tv) = (1− t0 − r0t)f(a) + (t0 + r0t)f(b) (3.2)

is the secant line of f at a and b. Its graph passes through the points (a, f(a)) and (b, f(b))
in L{a,b} × R. It can be visualized as the line

v(t) = tb − t
tb − ta

f(a) + t− ta
tb − ta

f(b) = (1− t0 − r0t)f(a) + (t0 + r0t)f(b)

passing through the points (ta, f(a)) and (tb, f(b)) in R× R.

Lemma 3.1. Let r0 > 0, let v = r0(b − a), let c ∈ (a, b) be a point, let f : [a, b] → R be a
convex function, and let k ∈ [f(v,c)(0−), f(v,c)(0+)] be a number.

Then the double inequality

h(c,k)(c+ tv) ≤ f(c+ tv) ≤ h(a,b)(c+ tv) (3.3)

holds for every t ∈ [ta, tb].

Proof. Respecting the equations of the support and secant lines in formula (3.1) and formula
(3.2), we have to show that the double inequality

kt+ f(c) ≤ f(c+ tv) ≤ (1− t0 − r0t)f(a) + (t0 + r0t)f(b) (3.4)

is valid for every t ∈ [ta, tb].
To prove the left-hand side of the inequality in formula (3.4), we will observe the cases

t = 0, t > 0 and t < 0. If t = 0, then the trivial inequality f(c) ≤ f(c) represents the
left-hand side of (3.4). If t > 0, then the inequality

k ≤ f(c+ tv)− f(c)
t

is valid because the function f(v,c) is nondecreasing. Multiplying this inequality by t, and
then moving f(c) over to the left side, we get the left-hand side of the double inequality in
(3.4). If t < 0, then the reverse inequality

f(c+ tv)− f(c)
t

≤ k

is valid, and doing as above, we obtain the left-hand side of the double inequality in (3.4).
To prove the right-hand side of the inequality in (3.4), we apply the convexity of f to the

convex combination c+ tv = (1− t0 − r0t)a+ (t0 + r0t)b. �
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In order to prepare the theorem below, the following is handled. If f : [a, b] → R is a
convex function, then the related function f̃ : [ta, tb]→ R defined by

f̃(t) = f(c+ tv) = f
(
c+ r0t(b− a)

)
(3.5)

is convex. Therefore, the function f̃ is integrable. In this context, we will utilize the above
function as integrand with the variable t.

Theorem 3.1. Let r0 > 0, let v = r0(b− a), let c = (1− t0)a+ t0b ∈ (a, b) be a point, let
f : [a, b]→ R be a convex function, and let k ∈ [f(v,c)(0−), f(v,c)(0+)] be a number.

Then we have the double inequality
1− 2t0

2r0
k + f(c) ≤ r0

∫ tb

ta

f
(
c+ r0t(b− a)

)
dt ≤ f(a) + f(b)

2 . (3.6)

Proof. Integrating the inequality in formula (3.4) over the interval [ta, tb] by the variable t,
using the calculations ∫ tb

ta

dt = 1
r0
,

∫ tb

ta

t dt = 1− 2t0
2r2

0
and ∫ tb

ta

(t0 + r0t) dt =
∫ tb

ta

(1− t0 − r0t) dt = 1
2r0

,

and multiplying by the number r0, we obtain the inequality in (3.6). �

If t0 = 1/2, then k disappears from the double inequality in (3.6). Using the interval
midpoint c = (a+ b)/2, in which case t0 = 1/2, the previous theorem is reduced as follows.

Corollary 3.1. Each convex function f : [a, b]→ R satisfies the double inequality

f

(
a+ b

2

)
≤ r0

∫ 1
2r0

− 1
2r0

f

((1
2 − r0t

)
a+

(1
2 + r0t

)
b

)
dt ≤ f(a) + f(b)

2 (3.7)

for every positive number r0.

Taking X = R, and so utilizing the real numbers interval [a, b], and applying the substi-
tution

x =
(1

2 − r0t
)
a+

(1
2 + r0t

)
b = a+ b

2 + r0(b− a)t

to the middle member in formula (3.7), we gain the well known Hermite-Hadamard inequality
(see [3] and [2])

f

(
a+ b

2

)
≤ 1
b− a

∫ b

a
f(x) dx ≤ f(a) + f(b)

2 . (3.8)

As a preparation for the next theorem, we consider a bounded function g̃ : [ta, tb] → R.
If the image of g̃ is contained in the interval [a1, b1] ⊂ R, and if g̃ is integrable, then its
integral arithmetic mean

c1 = 1
tb − ta

∫ tb

ta

g̃(t) dt = r0

∫ tb

ta

g̃(t) dt

is contained in [a1, b1]. Namely, integrating the inequality a1 ≤ g̃(t) ≤ b1 over the interval
[ta, tb] by the variable t, it follows that a1 ≤ c1 ≤ b1.
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Attaching an affine function h : R→ R to the above integral arithmetic mean is done by
the rule

h

(
r0

∫ tb

ta

g̃(t) dt
)

= r0

∫ tb

ta

h
(
g̃(t)

)
dt.

Theorem 3.2. Let r0 > 0, let c = (1 − t0)a + t0b ∈ [a, b] be a point, let g : [a, b] → R
be a bounded function such that the related function g̃ : [ta, tb] → R defined by g̃(t) =
g(c + r0t(b − a)) is integrable, let c1 = r0

∫ tb
ta
g̃(t) dt, and let [a1, b1] ⊂ R be an interval

containing the image of g.
Then each convex function f : [a1, b1]→ R satisfies the double inequality

f

(
r0

∫ tb

ta

g
(
c+ r0t(b− a)

)
dt

)
≤ r0

∫ tb

ta

f
(
g
(
c+ r0t(b− a)

))
dt

≤ b1 − c1
b1 − a1

f(a1) + c1 − a1
b1 − a1

f(b1).
(3.9)

Proof. If c1 ∈ (a1, b1), then any support line h(c1,k1)(x1) = k1(x1 − c1) + f(c1) of f at c1,
and the secant line

h(a1,b1)(x1) = b1 − x1
b1 − a1

f(a1) + x1 − a1
b1 − a1

f(b1) (3.10)

of f at a1 and b1 are recommended to be used.
By plugging the equality f(c1) = h(c1,k1)(c1), the affinity of h(c1,k1), and the inequality

h(c1,k1)(g̃(t)) ≤ f(g̃(t)) into the calculation

f

(
r0

∫ tb

ta

g̃(t) dt
)

= h(c1,k1)

(
r0

∫ tb

ta

g̃(t) dt
)

= r0

∫ tb

ta

h(c1,k1)
(
g̃(t)

)
dt

≤ r0

∫ tb

ta

f
(
g̃(t)

)
dt,

one gets the left-hand side of the inequality in (3.9). By plugging the inequality f(g̃(t)) ≤
h(a1,b1)(g̃(t)), the affinity of h(a1,b1), and the secant line equation in (3.10) for x1 = c1 into
the calculation

r0

∫ tb

ta

f
(
g̃(t)

)
dt ≤ r0

∫ tb

ta

h(a1,b1)
(
g̃(t)

)
dt

= h(a1,b1)

(
r0

∫ tb

ta

g̃(t) dt
)

= b1 − c1
b1 − a1

f(a1) + c1 − a1
b1 − a1

f(b1),

one gets the right-hand side of the inequality in (3.9). By connecting the above inequalities,
one reaches the double inequality in (3.9).

If c1 = a1 or c1 = b1, then the function g̃ is almost everywhere equal to c1, and the trivial
double inequality f(c1) ≤ f(c1) ≤ f(c1) represents the inequality in (3.9). �
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If X = R, and so [a, b] ⊂ R, then using the interval midpoint c = (a+ b)/2, and applying
the substitution x = (a+ b)/2 + r0(b− a)t to the first and second member in formula (3.9),
we get the inequality

f

(
1

b− a

∫ b

a
g(x) dx

)
≤ 1

b− a

∫ b

a
f(g(x)) dx

≤ b1 − c1
b1 − a1

f(a1) + c1 − a1
b1 − a1

f(b1),
(3.11)

where c1 =
∫ b

a g(x) dx/(b− a). The left-hand side of this inequality presents a version of the
integral form of very significant Jensen’s inequality (see [5]).

The discrete form of Jensen’s inequality was introduced in [4]. The connections of the
classical forms of the Jensen and Hermite-Hadamard inequalities were presented in [8].
The functional forms of these inequalities concerning convex functions on the triangle were
considered in [9].

4. Introducing a norm

It is supposed that the space X is endowed with some norm ‖ ‖. We use this norm to
determine the unit vector and directional derivative, and we certainly apply it to inequalities.

Let x = (1− t)a+ tb ∈ [a, b] be an interval point. Then taking the norm of the equation
x− a = t(b− a), it follows that t = ‖x− a‖/‖b− a‖, and so we have the representation

x = ‖b− x‖
‖b− a‖

a+ ‖x− a‖
‖b− a‖

b. (4.1)

Let v = (b−a)/‖b−a‖ be the directional unit point of the interval [a, b], and let c ∈ [a, b]
be an interval point. Then using

r0 = 1
‖b− a‖

, t0 = ‖c− a‖
‖b− a‖

, ta = −‖c− a‖, tb = ‖b− c‖,

the representation in formula (1.2) takes the form

[a, b] =
{
c+ tv = ‖b− c‖ − t

‖b− a‖
a+ ‖c− a‖+ t

‖b− a‖
b : −‖c− a‖ ≤ t ≤ ‖b− c‖

}
. (4.2)

Let v = (b− a)/‖b− a‖, let c ∈ (a, b) be an interval interior point, and let f : [a, b]→ R
be a function. The directional derivative of f over v at c is the number

∂f

∂v
(c) = f ′v(c) = lim

t→0
f(v,c)(t) = lim

t→0

f(c+ tv)− f(c)
t

, (4.3)

provided that the limit exists. If the function f is convex, then it has the left and right
directional derivatives over v at c, the slopes set [f ′v(c−), f ′v(c+)] is nonempty, and so f has
a support line at c.

The equation of the support line h(c,k) of f at c with a slope k ∈ [f ′v(c−), f ′v(c+)] remains
in the same form as in equation (3.1),

h(c,k)(c+ tv) = kt+ f(c).
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The equation of the secant line h(a,b) of f at a and b can be expressed in the form

h(a,b)(c+ tv) = ‖b− c‖ − t
‖b− a‖

f(a) + ‖c− a‖+ t

‖b− a‖
f(b).

If c+ tv = x ∈ [a, b], then taking the norm of tv = x− c, it follows that

t = ∓‖x− c‖ = ‖x− a‖ − ‖c− a‖,

and thus the equations of the support and secant line segments are

h(c,k)(x) = k(‖x− a‖ − ‖c− a‖) + f(c) (4.4)

and
h(a,b)(x) = ‖b− x‖

‖b− a‖
f(a) + ‖x− a‖

‖b− a‖
f(b). (4.5)

Including the norm, Lemma 3.1 and Theorem 3.1 can be stated as follows.

Lemma 4.1. Let v = (b− a)/‖b− a‖, let c ∈ (a, b) be a point, let f : [a, b]→ R be a convex
function, and let k ∈ [f ′v(c−), f ′v(c+)] be a number.

Then the double inequality

k(‖x− a‖ − ‖c− a‖) + f(c) ≤ f(x) ≤ ‖b− x‖
‖b− a‖

f(a) + ‖x− a‖
‖b− a‖

f(b) (4.6)

holds for every x ∈ [a, b].

Theorem 4.1. Let v = (b − a)/‖b − a‖, let c ∈ (a, b) be a point, let f : [a, b] → R be a
convex function, and let k ∈ [f ′v(c−), f ′v(c+)] be a number.

Then we have the double inequality
‖b−c‖−‖c−a‖

2 k+f(c) ≤ 1
‖b−a‖

∫ ‖b−c‖

−‖c−a‖
f

(‖b−c‖−t
‖b− a‖

a+ ‖c−a‖+t
‖b− a‖

b

)
dt

≤ f(a) + f(b)
2 .

(4.7)

Putting c = (a+ b)/2 in the double inequality in (4.7), the following is obtained.

Corollary 4.1. Each convex function f : [a, b]→ R satisfies the double inequality

f

(
a+ b

2

)
≤ 1
‖b−a‖

∫ ‖b−a‖/2

−‖b−a‖/2
f

((1
2−

t

‖b−a‖

)
a+
(1

2 + t

‖b−a‖

)
b

)
dt

≤ f(a) + f(b)
2 .

(4.8)

If [a, b] ⊂ R is the interval of real numbers, then applying the substitution

x =
(1

2 −
t

b− a

)
a+

(1
2 + t

b− a

)
b = a+ b

2 + t

to the middle member in formula (4.8), we gain the Hermite-Hadamard inequality in (3.8).
Using the norm, Theorem 3.2 can be formulated as follows.
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Theorem 4.2. Let v = (b − a)/‖b − a‖, let c ∈ [a, b] be a point, let g : [a, b] → R be a
bounded function such that the related function g̃ : [−‖c− a‖, ‖b− c‖]→ R defined by

g̃(t) = g
(‖b− c‖ − t
‖b− a‖

a+ ‖c− a‖+ t

‖b− a‖
b
)

is integrable, let

c1 = 1
‖b− a‖

∫ ‖b−c‖

−‖c−a‖
g̃(t) dt,

and let [a1, b1] ⊂ R be an interval containing the image of g.
Then each convex function f : [a1, b1]→ R satisfies the double inequality

f

( 1
‖b− a‖

∫ ‖b−c‖

−‖c−a‖
g̃(t) dt

)
≤ 1
‖b− a‖

∫ ‖b−c‖

−‖c−a‖
f
(
g̃(t)

)
dt

≤ b1 − c1
b1 − a1

f(a1) + c1 − a1
b1 − a1

f(b1).

(4.9)

If X = R, and thus [a, b] ⊂ R, then using the interval midpoint c = (a + b)/2, and
applying the substitution x = (a+ b)/2 + t to the first and second member in (3.9), we get
the inequality in (3.11).

More details on convex functions on the real line and normed linear space can be found
in frequently quoted books [11] and [10]. Some inequalities of the Hermite-Hadamard type
for h-convex functions defined on convex subsets in vector spaces, as well as the norm
inequalities, were obtained in [1].

5. Subderivative, subdifferential and subtangent

Let X be a real normed space, let I ⊆ X be an interval containing a pair of different points
a and b, let v = (b− a)/‖b− a‖ be the related unit point, and let L{o,v} be the line space
in X spanned by the origin o and unit point v. Let f : I→ R be a convex function, and let
c ∈ I be an interval interior point. The notions that follow want to be recommended.

The subderivative set of f over v at c contains numbers between the left and right
directional derivatives. It is the set

I = Der(v,c)f = [f ′v(c−), f ′v(c+)] (5.1)

whose numbers are called subderivatives or slopes of f over v at c.
The subdifferential collection of f over v at c contains linear functionals on the line space

L{o,v} attached to subderivatives. It is the collection

D = Dif(v,c)f =
{
h : L{o,v} → R |h(tv) = kt with k ∈ I

}
(5.2)

whose functionals are called subdifferentials of f over v at c. This means that a linear
functional h : L{o,v} → R belongs to D if and only if it satisfies the inequality

f ′v(c−) t ≤ h(tv) ≤ f ′v(c+) t (5.3)
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for every t ≥ 0. The collection D is convex set in the vector space of all linear functionals on
L{o,v}. Namely, if h1(tv) = k1t and h2(tv) = k2t with k1, k2 ∈ I, then a convex combination
h = α1h1 + α2h2 satisfies h(tv) = (α1k1 + α2k2)t with k = α1k1 + α2k2 ∈ I.

The subtangent collection of f over v at c contains affine functions on the line c+ L{o,v}
attached to subderivatives. It is the collection

T = Tan(v,c)f =
{
h : c+ L{o,v} → R |h(c+ tv) = kt+ f(c) with k ∈ I

}
(5.4)

whose functions are called subtangents or support lines of f over v at c. This implies that
an affine function h : c+ L{o,v} → R belongs to T if and only if it satisfies the inequality

f ′v(c−) t+ f(c) ≤ h(c+ tv) ≤ f ′v(c+) t+ f(c) (5.5)

for every t ≥ 0. According to Lemma 3.1, each function h ∈ T satisfies the inequality
h(c+ tv) ≤ f(c+ tv) for every number t such that c+ tv ∈ I. The collection T is convex set
in the vector space of all affine functions on c+ L{o,v}.

If X = R, then I is the interval of real numbers, v = 1 is the unit, and so the directional
derivative of f over v at c is reduced to the usual derivative of f at c. In this case, the
subderivative set I, subderivative collection D, and subtangent collection T of f at c are as
follows:

I = Dercf = [f ′(c−), f ′(c+)] (5.6)

D = Difcf =
{
h : R→ R |h(x) = kx with k ∈ I

}
(5.7)

T = Tancf =
{
h : R→ R |h(x) = k(x− c) + f(c) with k ∈ I

}
(5.8)

Formula (5.7) follows from formula (5.2) by using v = 1 and t = x, as well as formula (5.8)
follows from formula (5.4) by using v = 1 and c+ t = x.

The notion of the subdifferential was introduced by Moreau and Rockafellar in the early
1960s (see [6] and [12]) as follows. Given a convex function f on the open interval of
real numbers and an interval point c, the subdifferential of f at c is the set ∂f(c) =
[f ′(c−), f ′(c+)]. The concept of the subdifferential of a convex function on the open set in
a real normed space can be found in [7].
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