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ON A TRIGONOMETRIC INEQUALITY IN ACUTE TRIANGLES

JIAN LIU1

Abstract. In this paper, we provide four new proofs of a trigonometric inequality in
acute triangles, which is actually equivalent to an Oppenheim’s inequality. We also prove
several other inequalities which are equivalent to this inequality. Meanwhile, we establish
an inequality chain which involves the results of Oppenheim’s, the author’s and others.

1. Introduction

Let ABC be an acute (non-obtuse) triangle. In a Chinese paper [6], the author established
the following trigonometric inequality:∑(cosB + cosC

sinA

)2
≤ 4, (1.1)

where A,B,C are the angles of the acute triangle ABC and
∑

denotes the cyclic sum.
Equality in (1.1) holds if and only if the triangle ABC is equilateral or right isosceles.

It is worth noticing that Walker’s inequality (see [11], [13](p.248) and [15]) in acute
(non-obtuse) triangles can be easily derived from (1.1). Walker’s inequality says that for an
acute triangle ABC we have

s2 ≥ 2R2 + 8Rr + 3r2, (1.2)
where s,R and r are the semi-perimeter, circumradius and inradious of the triangle ABC,
respectively. In fact, using the inequality (1.1) and the Cauchy-Schwarz inequality we
immediately obtain ∑

sin2A ≥
(∑

cosA
)2
. (1.3)

But using related identities in the triangle ABC (see [13]), we easily get the following
identity: ∑

sin2A−
(∑

cosA
)2

= s2 − 2R2 − 8Rr − 3r2

2R2 . (1.4)

Key words and phrases. acute triangle, Walker’s inequality, Oppenheim’s inequality, Ciamberlini’s in-
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And, Walker’s inequality (1.2) follows from (1.3) and (1.4).
On the other hand, it is easy to show that∑

sin2A−
(∑

cosA
)2

= 3−
∑

(cosB + cosC)2. (1.5)

Hence, by (1.3) we again obtain the following beautiful inequality:∑
(cosB + cosC)2 ≤ 3. (1.6)

Recently, the author [12] obtained the following weighted generalization of this inequality:∑
x2 ≥

∑
(z cosB + y cosC)2, (1.7)

where x, y, z are arbitrary real numbers. Equality in (1.7) holds if and only if x : y : z =
sinA : sinB : sinC.

In (1.7), taking x = cosA, y = cosB, z = cosC, we get

4
∑

cos2B cos2C ≤
∑

cos2A, (1.8)

which was first proposed by A.Oppenheim in [14]. For a proof of (1.8), see the monograph
[13](p.31-32). The equality condition of (1.8) is the same as that of (1.1). It is more
interesting that inequality (1.1) is actually equivalent to Oppenheim’s inequality (1.8). We
will prove this statement in the following (see Remark 2.2 below). In addition, we will also
show that inequality (1.1) is actually a direct consequence of the weighted inequality (1.7).

The paper is organized as follows. In the next section, we will present four new proofs of
inequality (1.1). In Sect.3, we will prove several inequalities which are all equivalent to the
inequality (1.1). In Sect.4, we will establish an inequality chain which contains inequalities
(1.3), (1.6, (1.8), and others.

2. New proofs of inequality (1.1)

In [6], the author has proved the following identity:∑(cosB + cosC
sinA

)2

= s4 − (8R2 + 4Rr − 2r2)s2 + 64R4 + 96R3r + 52R2r2 + 12Rr3 + r4

4s2R2 . (2.1)

Hence, we have

Lemma 2.1. In any triangle ABC we have

4−
∑(cosB + cosC

sinA

)2
= −s

4 + (24R2 + 4Rr − 2r2)s2 − (2R+ r)2(4R+ r)2

4s2R2 . (2.2)

From the above identity, we see that inequality (1.1) is equivalent to the following in-
equality

Q0 ≡ −s4 + (24R2 + 4Rr − 2r2)s2 − (2R+ r)2(4R+ r)2 ≥ 0, (2.3)
which involves geometric elements R, r and s.

In [6], the author proved that for the acute triangle ABC the following inequality holds:

s2 ≥ R(4R+ r)2

5R− 4r , (2.4)
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which is a result parallel to Walker’s inequality (1.2). Then used (2.4) and Sondat’s funda-
mental triangle inequality (see [4] (inequality 13.8), [8] and [13])

T0 ≡ −s4 + (4R2 + 20Rr − 2r2)s2 − r(4R+ r)3 ≥ 0 (2.5)

(which is true for any triangle ABC) to complete the proof of the inequality (1.1).
In the following, we will give four new proofs of the inequality (1.1) based on Lemma 2.1.

2.1. The first new proof of inequality (1.1).
As usual, we denote the side lengths of the triangle ABC by a, b and c. Next, we will

first use the weighted inequality (1.7) to prove inequality (1.1). In fact, the author finds
that if we take x = (b+ c) cosA, y = (c+ a) cosB and z = (a+ b) cosC in (1.7), then the
inequality (2.3) can be obtained. The detailed proof is as follows:

Proof. We first prove the following two identities:

E1 ≡
∑

(b+ c)2 cos2A = s

2R (8R2 + 2Rr − r2 − s2), (2.6)

E2 ≡
∑

a cos2B cos2C = s

4R3

[
(−2R+ r)s2 + (2R+ r)(4R2 + r2)

]
. (2.7)

Using cos2A = 1− a2

4R2 , we easily get that

∑
(b+ c)2 cos2A = 2

∑
bc+ 2

∑
a2 − 1

2R2

(
abc

∑
a+

∑
b2c2

)
. (2.8)

And then using the following known identities (cf.[13]):∑
a = 2s, (2.9)

abc = 4Rrs, (2.10)∑
bc = s2 + 4Rr + r2, (2.11)∑
a2 = 2s2 − 8Rr − 2r2, (2.12)∑
b2c2 = s4 − 2r(4R− r)s2 + r2(4R+ r)2, (2.13)

we obtain identity (2.6) immediately.

Now, using cos2B = 1− b2

4R2 and cos2C = 1− c2

4R2 , we easily get

E2 =
∑

a− 1
4R2

(∑
a
∑

a2 −
∑

a3
)

+ abc

16R4

∑
bc. (2.14)

And, then using (2.9)-(2.11) and the known identity:∑
a3 = 2s(s2 − 6Rr − 3r2), (2.15)

we further obtain (2.7).
Let us compute the following sum in terms of R, r and s:

E3 ≡
∑

(2a+ b+ c)2 cos2B cos2C.
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Note that 2a+ b+ c = a+ 2s and

E3 =
∑

(a+ 2s)2 cos2B cos2C

=
∑

a2 cos2B cos2C + 4s
∑

a cos2B cos2C + 4s2∑ cos2B cos2C,

=4R2∏ cos2A
∑

tan2A+ 4s
∑

a cos2B cos2C + 4s2∏ cos2A
∑

sec2A,

where
∏

denote the cyclic products. Then using identity (2.7) and the following known
identities (see [13]):∏

cosA = s2 − (2R+ r)2

4R2 , (2.16)∑
tan2A = 4r2s2 − 2(s2 − r2 − 4Rr)

[
s2 − (2R+ r)2][

s2 − (2R+ r)2
]2 , (2.17)

∑
sec2A = (s2 + r2 − 4R2)2 − 8R(R+ r)

[
s2 − (2R+ r)2][

s2 − (2R+ r)2
]2 , (2.18)

we further obtain

E3 = 1
4R2E4, (2.19)

where

E4 =s6 − (26R2 + 4Rr − 2r2)s4 + (88R4 + 96R3r + 48R2r2

+ 12Rr3 + r4)s2 − 2(4R+ r)(2R+ r)2R2r.

Finally, it follows from (2.6) and (2.19) that

E1 − E3 = −s
4 + (24R2 + 4Rr − 2r2)s2 − (2R+ r)2(4R+ r)2

4R2 . (2.20)

Now, taking x = (b+ c) cosA, y = (c+ a) cosB and z = (a+ b) cosC in (1.7), we get∑
(b+ c)2 cos2A ≥

∑
(2a+ b+ c)2 cos2B cos2C,

which shows that E1 ≥ E3. Hence, by identity (2.20) we deduce that inequality (2.3)
holds for the acute triangle ABC. Further, by Lemma 2.1 we deduce that inequality (1.1)
holds. �

2.2. The second new proof of inequality (1.1).
In [11], the author remarked that Walker’s inequality (1.2) can be obtained from the

following identity:∑
(c2 + a2 − b2)(a2 + b2 − c2)(b− c)2 = 32r2s2(s2 − 2R2 − 8Rr − 3r2). (2.21)

Next, we will prove a similar identity which shows that the inequality (2.3) is valid for the
acute triangle ABC.

Proof. We compute the sum

F0 ≡
∑

b2c2(c2 + a2 − b2)(a2 + b2 − c2)(b− c)2
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in terms of R, r and s. First, it is easy to get that

F0 =2
∑

b3c3∑ a4 + 2(abc)2∑ b2c2 +
∑

a4∑ a6

− 4(abc)3∑ a−
∑

a2∑ a8 − 4
∑

b5c5 (2.22)

Using the previous identities (2.9)-(2.13) and the following known identities (see [10]):∑
a4 =2s4 − 4(4R+ 3r)s2r + 2(4R+ r)2r2, (2.23)∑
a6 =2s6 − 6(4R+ 5r)rs4 + 6(24R2 + 24Rr + 5r2)r2s2

− 2(4R+ r)3r3, (2.24)∑
a8 =2s8 − 8(4R+ 7r)rs6 + 20(16R2 + 24Rr + 7r2)r2s4

− 8(4R+ r)(32R2 + 32Rr + 7r2)r3s2 + 2(4R+ r)4r4, (2.25)∑
b3c3 =s6 − 3(4R− r)rs4 + 3r4s2 + (4R+ r)3r3, (2.26)∑
b5c5 =s10 − 5(4R− r)s8r + 10(8R2 − 4Rr + r2)s6r2

+ 10s4r6 + 5(4R+ r)2s2r6 + (4R+ r)5r5, (2.27)

we obtain that

F0 = 64r4s2
[
−s4 + (24R2 + 4Rr − 2r2)s2 − (2R+ r)2(4R+ r)2

]
, (2.28)

For the acute triangle ABC, it is clear that we have inequality:

F0 ≡
∑

b2c2(c2 + a2 − b2)(a2 + b2 − c2) ≥ 0.

Hence, inequality (2.3) follows from identity (2.28). And we further deduce by Lemma 2.1
that inequality (1.1) holds for the acute triangle ABC. �

2.3. The third new proof of inequality (1.1).
In the proof of (2.4) given in [6], the author used the following well-known inequality (see

[1]-[4]):
s2 ≥ 2R2 + 10Rr − r2 − 2(R− 2r)

√
R2 − 2Rr, (2.29)

which is actually equivalent to Sondat’s inequality (2.5).
Next, we will give a simpler proof of inequality (2.4), and then use Sondat’s inequality

(2.5) to finish the proof of inequality (1.1).

Proof. We first prove the acute triangle inequality (2.4), namely

(5R− 4r)s2 −R(4R+ r)2 ≥ 0, (2.30)

which can be rewritten as

2(R+ r)(s2 − 2R2 − 8Rr − 3r2) + 3(R− 2r)
[
s2 − (2R+ r)2

]
≥ 0. (2.31)

This inequality can be obtained from Walker’s inequality (1.2), Euler’s inequality

R ≥ 2r (2.32)

(which holds for any triangle), and Ciamberlini’s acute triangle inequality (see [5]):

s ≥ 2R+ r (2.33)
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(which follows from identity (2.16)). Hence inequality (2.30) is proved.
To prove the inequality (2.3), i.e., Q0 ≥ 0, we can rewrite Q0 as follows:

Q0 = T0 + 4R
[
(5R− 4r)s2 −R(4R+ r)3

]
. (2.34)

Thus, by Sondat’s inequality (2.5) and inequality (2.30), we conclude that the inequality
Q0 ≥ 0 holds for the acute triangle ABC. Further, by Lemma 2.1 we deduce that the
inequality (1.1) holds for the acute triangle ABC. �

2.4. The fourth new proof of inequality (1.1).
Next, we will use Oppenheim’s inequality (1.8) to prove inequality (1.1).

Proof. Obviously, Oppenheim’s inequality (1.8) is equivalent to

K0 ≡
∑

cos2A+ 8
∑

cosA
∏

cosA− 4
(∑

cosB cosC
)2
≥ 0.

Using the previous identity (2.16) and the following known identities (see [13]):∑
cosA = 1 + r

R
, (2.35)∑

cos2A = 6R2 + 4Rr + r2 − s2

2R2 , (2.36)∑
cosB cosC = s2 − 4R2 + r2

4R2 (2.37)

we get

K0 = −s
4 + (14R2 + 8Rr − 2r2)s2 − 36R4 − 56R3r − 30R2r2 − 8Rr3 − r4

4R4 . (2.38)

Hence, we obtain the following inequality:

Q1 ≡ −s4 + (14R2 + 8Rr − 2r2)s2 − 36R4 − 56R3r − 30R2r2 − 8Rr3 − r4 (2.39)

We now use Q1 ≥ 0 to prove Q0 ≥ 0. It is easy to check the following identity:

Q0 −Q1 = 2RM1, (2.40)

where
M1 = (5R− 2r)s2 − 14R3 − 20R2r − 11Rr2 − 2r3.

Since Q1 ≥ 0, to prove Q0 ≥ 0 we need to show that M1 ≥ 0. But we can rewrite M1 in
two ways as follows:

M1 = (5R− 2r)
[
s2 − (2R+ r)2

]
+ 2(3R+ 2r)(R2 − 2Rr − r2), (2.41)

M1 = (5R− 2r)(s2 − 2R2 − 8Rr − 3r2)− 4(R− 2r)(R2 − 2Rr − r2). (2.42)
If R2 − 2Rr− r2 ≥ 0, then by (2.41), Ciamberlini’s inequality (2.33), and Euler’s inequality
R ≥ 2r one sees that M1 ≥ 0 holds. If R2− 2Rr− r2 < 0, then by (2.42), Euler’s inequality,
Walker’s inequality (1.3) one also sees that M1 ≥ 0 holds. Therefore, we conclude that
inequality M1 ≥ 0 holds for all acute triangles. This completes the proof of Q0 ≥ 0. Finally,
by Lemma 2.1 we know that the inequality (1.1) holds. �

Remark 2.1. Indeed, inequality Q0 ≥ Q1 can be improved to Q0 ≥ 2Q1 (we omit the proof
here).
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Remark 2.2. Inequality (1.1) is equivalent to Oppenheim’s inequality (1.8). To show this
conclusion, it remains to prove that (1.8) can be proved by using (1.1) (since we have used
(1.1) to prove (1.8). It is easy to check the following identity

4Q1 −Q0 = 3T0 + 4RM2, (2.43)

where T0 is the same as in (2.5) and

M2 = (5R− 8r)s2 − 20R3 + 16R2r + 19Rr2 + 4r3.

In the same way used to prove M1 ≥ 0, it is easily shown that M2 ≥ 0 for all acute triangles.
Hence, by identity (2.43) and Sondat’s inequality (2.5) one deduces that 4Q1 ≥ Q0. And then
by Q0 ≥ 0 we have Q1 ≥ 0. This shows that Oppenheim’s inequality (1.8) can be derived
from inequality (1.1). Therefore, inequality (1.1) is actually equivalent to Oppenheim’s
inequality (1.8).

3. Several new equivalent forms of the inequalities (1.1)

In this section, we will prove several new inequalities which are equivalent to inequality
(1.1).

Theorem 3.1. Let ABC be an acute triangle, then∑
sin2 2A ≤

(∑
cosA

)2
, (3.1)

∑ cosB cosC
1 + cosA ≤ 1

2 . (3.2)

Both inequalities are equivalent to inequality (1.1). Equalities in (3.1) and (3.2) hold if and
only if the triangle ABC is equilateral or right isosceles.

Proof. (i) In order to prove the inequality (3.1), we first prove that for any triangle ABC
the following inequality holds: ∑

sin2A ≤
(∑

sin A2

)2
, (3.3)

that is ∑
sin2A ≤

∑
sin2 A

2 + 2
∏

sin A2
∑ 1

sin A2

.

In view of the well-known inequality

sin A2 ≤
a

b+ c
, (3.4)

we only need to prove that∑
sin2A ≤

∑
sin2 A

2 + 2
∏

sin A2
∑ b+ c

a
. (3.5)
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Using the following known identities(see [13]):∑
sin2A = s2 − 4Rr − r2

2R2 , (3.6)∑
sin2 A

2 = 2R− r
2R , (3.7)∏

sin A2 = r

4R, (3.8)∑ b+ c

a
= s2 − 2Rr + r2

2Rr , (3.9)

we easily know that the above inequality (3.5) is equivalent to

4R2 + 4Rr + 3r2 ≥ s2, (3.10)

which is the well-known Gerretsen inequality (see [4] and [1]). Thus, inequality (3.3) is
proved. When the triangle ABC is an acute triangle, we may make the substitution
A→ π−2A,B → π−2B,C → π−2C in (3.3) and then inequality (3.1) follows immediately.

Now, we show that inequality (3.1) is equivalent to (1.1). Firstly, we use (3.1) to prove
inequality (1.1). Noting that∑

sin2 2A = 4
∑

sin2A− 4
∑

sin4A,

and using the Low of Sine and the previous identities (2.12) and (2.23), we get∑
sin2 2A = −s

4 + (4R2 + 8Rr + 6r2)s2 − r(4R+ r)(2R+ r)2

2R4 . (3.11)

Substituting (3.11) and the previous identity (2.35) into inequality (3.1), we can obtain the
following inequality

Q2 ≡ s4 − (4R2 + 8Rr + 6r2)s2 + 2R4 + 20R3r + 22R2r2 + 8Rr3 + r4 ≥ 0. (3.12)

which is equivalent to (3.1). We next use the above inequality to prove inequality (2.3), i.e.,
Q0 ≥ 0. It is easy to check that

Q0 = 3Q2 + 4T0 + 2eM4, (3.13)

where e = R− 2r,M4 = (10R− 6r)s2−R(35R2 + 20Rr+ 3r2). Thus, by Sondat’s inequality
(2.5), Euler’s inequality R ≥ 2r, and identity (3.13), to show Q0 ≥ 0 we need to prove that
M4 ≥ 0. We can rewrite M4 in two ways as follows:

M4 = (10R− 6r)
[
s2 − (2R+ r)2

]
+ (5R+ 6r)(R2 − 2Rr − r2), (3.14)

M4 = (10R− 6r)(s2 − 2R2 − 8Rr − 3r2)− 3(5R− 6r)(R2 − 2Rr − r2). (3.15)
Then, by Walker’s inequality (1.2), Euler’s inequality (2.32), and Ciamberlini’s inequality
(2.33), we immediately conclude that M4 ≥ holds for all acute triangles. Hence, inequality
Q0 ≥ 0 is proved.

Secondly, we use Q0 ≥ 0 to prove Q2 ≥ 0. It is easy to check that

8Q2 = Q0 +M5, (3.16)
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where

M5 = 9s4 − (56R2 + 68Rr + 46r2)s2 + 80R4 + 256R3r + 228R2r2 + 76Rr3 + 9r4.

Since Q0 ≥ 0, we need to prove that M5 ≥ 0. We consider the following two cases to finish
the proof of M5 ≥ 0.

Case 1. Suppose that R and r satisfy R2 − 2Rr − r2 ≥ 0.
It is easy to check that

M5 =9
[
s2 − (2R+ r)2

]2
+
[
s2 − (2R+ r)2

]
(16R2 + 4Rr − 28r2)

+ 4r(12R+ 7r)(R2 − 2Rr − r2). (3.17)

Thus, by the hypothesis, Ciamberlini’s inequality s > 2R + r, and R ≥ 2r one sees that
M5 ≥ 0 holds.

Case 2. Suppose that R and r satisfy R2 − 2Rr − r2 < 0.
It is easy to check that

M5 =9(s2 − 2R2 − 8Rr − 3r2)2 + (s2 − 2R2 − 8Rr − 3r2)(−20R2 + 76Rr
+ 8r2) + 4(R− 6r)(R− 2r)(R2 − 2Rr − r2). (3.18)

By the hypothesis R2 − 2Rr − r2 < 0, we have that R < (
√

2 + 1)r, which yields 6r > R

and 76r > 20R. Hence, by Walker’s inequality (1.2), Euler’s inequality, and the hypothesis
one sees that M5 ≥ 0 is true.

By combining the discussions of the above two cases, we conclude that M5 ≥ 0 holds
for all acute triangles. Thus, we have proved Q2 ≥ 0 by using Q0 ≥ 0. And, we therefore
complete the proof of the equivalence between inequalities Q0 ≥ 0 and Q2 ≥ 0. Hence, We
have proved that inequality (3.1) is equivalent to inequality (1.1).

(ii) We now prove inequality (3.2). If 4ABC is a right triangle, without loss of generality
we may assume that A = π/2. In this case, (3.2) becomes

cosB cosC ≤ 1
2 ,

which follows from the fact that cosB cosC ≤ sin2 A

2 for A = π/2. And the equality occurs
only when B = C = π/4. If 4ABC is an acute triangle (A,B,C 6= π/2), then we have∑ cosB cosC

1 + cosA

=
∑ cosB cosC

1− cosB cosC + sinB sinC

=
∑ 1√

(1 + tan2B)(1 + tan2C)− 1 + tanB tanC

≤
∑ 1

(1 + tanB tanC)− 1 + tanB tanC

= 1
2
∑

cotB cotC = 1
2 ,
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where we used the Cauchy-Schwarz inequality and the following identity∑
cotB cotC = 1. (3.19)

From the above discussions, we conclude that inequality (3.2) holds for any non-obtuse
triangle ABC. Also, its equality condition is as mentioned in Theorem 3.1.

Next, we prove that inequality (3.2) is equivalent to inequality (1.1). In fact, the author
finds the following identity relation:∑(cosB + cosC

sinA

)2
− 2

∑ cosB cosC
1 + cosA = 3, (3.20)

which clearly shows the claimed conclusion. This identity can be proved as follows: Putting
cosA = u, cosB = v, cosC = w, then (3.20) is equivalent to∑ (v + w)2

1− u2 − 2
∑ vw

1 + u
= 3,

i.e., ∑
(1− v2)(1− w2)(v + w)2 − 2

∏
(1− u)

∑
vw − 3

∏
(1− u2) = 0.

Expanding and factorizing gives(∑
u2 + 2

∏
u− 1

) (
2
∑

u2 −
∑

v2w2 − 3
)

= 0, (3.21)

which is required to prove. We recall that in any triangle ABC the following identity holds:∑
cos2A+ 2

∏
cosA = 1, (3.22)

so that ∑
u2 + 2

∏
u− 1 = 0. (3.23)

Hence, identity (3.21) holds and identity (3.20) is proved. This completes the proof of the
equivalence of inequalities (3.2) and (1.1). And we complete the proof of Theorem 3.1. �

Remark 3.1. By using the previous identities (2.16), (2.35)-(2.37), we can prove that∑ cosB cosC
1 + cosA − 1

2 = s4 − (24R2 + 4Rr − 2r2)s2 + (2R+ r)2(4R+ r)2

8s2R2 , (3.24)

which directly shows that inequality (3.2) is equivalent to (2.3).

Remark 3.2. From the previous inequalities (1.3) and (3.1), we deduce that∑
sin2A ≥

∑
sin2 2A (3.25)

holds for the acute triangle ABC. Similar to the proof of the equivalence of (1.1) and (3.1),
we can also prove that inequality (3.25) is actually equivalent to (1.1). On the other hand,
by the angle transforms it can be seen that (3.25) is equivalent to the following inequality:∑

cos2 A

2 ≥
∑

sin2A, (3.26)

which holds for any triangle ABC. Incidentally, inequality (3.26) can be generalized to the
following ternary quadratic inequality (see [9]):∑

x2 cos2 A

2 ≥
∑

yz sin2A (3.27)
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where x, y, z are arbitrary real numbers. And, by (3.27) we easily know again that the acute
triangle inequality (3.25) can be generalized to∑

x2 sin2A ≥
∑

yz sin2 2A, (3.28)

with equality if and only if x = y = z and the triangle ABC is equilateral or x = y = z and
the triangle ABC is right isosceles.

In the following Theorem 3.2, we will point out that the trigonometric inequality (1.1)
is equivalent to the two geometric inequalities. In what follows, we denote the altitudes of
the triangle ABC by ha, hb, hc and denote the radiff of excircles of the triangle ABC by
ra, rb, rc. In addition, denote the area of the triangle ABC by S.

Theorem 3.2. Let ABC be an acute triangle, then∑
(ha + ra)2 ≤ 4s2, (3.29)∑ (b+ c)2

a2 (s− b)2(s− c)2 ≤ 4S2. (3.30)

Both inequalities of (3.29) and (3.30) are equivalent to inequality (1.1). Equalities in (3.29)
and (3.30) hold if and only if the triangle ABC is equilateral or right isosceles.

Proof. We first prove that in any triangle ABC the following identity holds:
cosB + cosC

sinA = ha + ra

s
, (3.31)

Let wa be the lengths of the bisector of ∠BAC, then it is easy to obtain

ha = wa cos B − C2 (3.32)

and
S = 1

2(b+ c)wa sin A2 . (3.33)
So we have

cosB + cosC
sinA =

cos B − C2
cos A2

= ha

wa cos A2

=
ha(b+ c) sin A2

2S cos A2

= b+ c

a
tan A2 .

On the other hand, by the known formula ha = 2S/a, ra = S/(s− a), and S = rs, we have
ha + ra

s
= 1
s

(2S
a

+ S

s− a

)
= (b+ c)S
a(s− a)s = (b+ c)r

a(s− a) = b+ c

a
tan A2 .

Hence, identity (3.31) is proved and it shows that inequality (1.1) is equivalent to inequality
(3.29).

Since
ha + ra = (b+ c)S

a(s− a) , (3.34)

one sees that inequality (3.29) is equivalent to∑ (b+ c)2

a2(s− a)2 ≤
4s2

S2 .
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Multiplying both sides by
∏

(s− a)2 and using Heron’s formula

S =
√
s(s− a)(s− b)(s− c), (3.35)

we obtain inequality (3.30). Thus, we have proved that both inequalities (3.29) and (3.30)
are equivalent to inequality (1.1).

Next, we will prove inequality (3.30). By Heron’s formula and s = (a+ b+ c)/2, it is easy
to see that (3.30) is equivalent to

M6 ≡ 4
∑

a
∏

(b+ c− a)a2 −
∑

b2c2(b+ c)2(c+ a− b)2(a+ b− c)2 ≥ 0. (3.36)

Without loss of generality we may assume that a = max{a, b, c}, i.e., a ≥ b and a ≥ c. After
analyzing, we obtain the identity:

M6 =2b2c2(b− c)2(b+ c− a)
[
b(a2 − b2) + c(a2 − c2) + abc

]
+ (b2 + c2 − a2)(a− b)(a− c)M7, (3.37)

where

M7 =(b2 + c2)a4 + (−b3 − c3 + b2c+ c2b)a3

− (b4 + c4 + b3c+ bc3 − 4b2c2)a2

+ (b5 + c5 − b4c− c4b)a+ b5c+ bc5 − 2b3c3.

Therefore, to prove M6 ≥ 0 for the acute triangle ABC we only need to prove that the
strict inequality M7 > 0 holds for any triangle ABC. Putting b + c − a = 2x, c + a − b =
2y, a+ b− c = 2z, then we have a = y + z, b = z + x, c = x+ y(x, y, z > 0). Also, it is easy
to get

M7 =4(y − z)2x4 + 12(y + z)(y − z)2x3 + (8y4 + 12zy3 − 8y2z2

+ 12z3y + 8z4)x2 + 8yz(y + z)3x+ 8y2z2(y + z)2.

Noting that y4 + z4− y2z2 > 0, we see that M7 > 0 holds. Thus, the inequalities (3.36) and
(3.30) are proved. Moreover, from identity (3.37) we easily obtain the equality conditions of
(3.30) as stated in Theorem 3.2. This completes the proof of Theorem 3.2. �

Remark 3.3. By identity (3.31), we see that inequalities (1.6) is equivalent to∑
(ha + ra)2 sin2A ≤ 3s2. (3.38)

Remark 3.4. We can prove that inequality (3.30) is better than the following known inequality
(see [13]):

(4S)6 ≥ 27
∏

(b2 + c2 − a2)2, (3.39)

which is true for the acute triangle ABC.
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4. An inequality chain

Considering relations between inequality (1.1) and Oppenheim’s inequality (1.8), the
author first finds that

16
∑

cos2B cos2C∑
cos2A

≤
∑(cosB + cosC

sinA

)2
. (4.1)

Further, we find that the above inequality can be refined and extended to the following
inequality chain.

Theorem 4.1. Let ABC be an acute triangle ABC, then

16
∑

cos2B cos2C∑
cos2A

≤
4
∑

sin2 2A∑
sin2A

≤
4
∑

sin2 2A(∑
cosA

)2 ≤ 8
∑ cosB cosC

1 + cosA

≤ −
8
∑

cosB cosC∑
cos 2A

≤
4
(∑

cosA
)2∑

sin2A
≤
∑(cosB + cosC

sinA

)2

≤ 1 +
∑

(cosB + cosC)2 ≤ 3−
2
∑

cosB cosC∑
cos 2A

≤ 3 +
∑(cosB + cosC

sinA

)2
cos2A ≤ 4. (4.2)

All the equalities in (4.2) hold if and only if the acute triangle ABC is equilateral or right
isosceles.

Obviously, the above inequality chain (4.2) gives a refinement of the equivalent form of
Oppenheim’s inequality (1.8). It contains the previous inequalities (1.1), (1.3), (1.6), (1.8),
(3.1), and (3.2) etc. The last inequality of (4.2) is equivalent to

∑(cosB + cosC
sinA

)2
cos2A ≤ 1. (4.3)

Also, by identity (3.31) one sees that inequality (4.3) is equivalent to∑
(ha + ra)2 cos2A ≤ s2. (4.4)

which adding inequality (3.38) gives the previous inequality (3.29).
In addition, the following inequality

∑(cosB + cosC
sinA

)2
cos 2A ≥ −2 (4.5)

can be easily obtained from (4.2).
In order to prove Theorem 4.1, we first give some identities.
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Putting

k1 =
4
∑

cos2B cos2C∑
cos2A

, k2 =

∑
sin2 2A∑
sin2A

,

k3 =

∑
sin2 2A(∑
cosA

)2 , k4 = 2
∑ cosB cosC

1 + cosA ,

k5 = −
2
∑

cosB cosC∑
cos 2A

, k6 =

(∑
cosA

)2∑
sin2A

,

k7 = 1
4
∑(cosB + cosC

sinA

)2
, k8 = 1

4 + 1
4
∑

(cosB + cosC)2 ,

k9 = 3
4 −

∑
cosB cosC

2
∑

cos 2A
, k10 = 3

4 + 1
4
∑(cosB + cosC

sinA

)2
cos2A,

then we have

Lemma 4.1. In any triangle ABC, the following identities hold:

k1 = s4 + (−16R2 − 8Rr + 2r2)s2 + (12R2 + 4Rr + r2)(2R+ r)2

2R2(6R2 + 4Rr + r2 − s2) , (4.6)

k2 = −s
4 + (4R2 + 8Rr + 6r2)s2 − r(4R+ r)(2R+ r)2

R2(s2 − 4Rr − r2) , (4.7)

k3 = −s
4 + (4R2 + 8Rr + 6r2)s2 − r(4R+ r)(2R+ r)2

2R2(R+ r)2 , (4.8)

k4 = s4 + (−20R2 − 4Rr + 2r2)s2 + (2R+ r)2(4R+ r)2

4s2R2 , (4.9)

k5 = 4R2 − r2 − s2

6R2 + 8Rr + 2r2 − 2s2 , (4.10)

k6 = 2(R+ r)2

s2 − 4Rr − r2 . (4.11)

k7 = s4 − (8R2 + 4Rr − 2r2)s2 + 64R4 + 96R3r + 52R2r2 + 12Rr3 + r4

16s2R2 , (4.12)

k8 = 10R2 + 8Rr + 3r2 − s2

8R2 , (4.13)

k9 = 22R2 + 24Rr + 5r2 − 7s2

8(3R2 + 4Rr + r2 − s2) , (4.14)

k10 = 3s4 − (12R2 + 20Rr + 4r2)s2 + (2R+ r)2(4R+ r)2

16s2R2 . (4.15)

The above identities can be obtained by using the previous identities, we omit the details.
The proof of the third inequality of (4.2) will be used the following lemma.
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Lemma 4.2. In an acute triangle ABC, we have

s2 ≥ 16Rr − 3r2 − 4r3

R
, (4.16)

with equality if and only if the acute triangle ABC is equilateral or right isosceles.

Inequality (4.16) was first established by the author in a Chinese paper [7]. In the recent
paper [11], the author gave a new direct proof.

We are now ready to prove Theorem 4.1.

Proof. Clearly, inequality chain (4.2) is equivalent to

k1 ≤ k2 ≤ k3 ≤ k4 ≤ k5 ≤ k6 ≤ k7 ≤ k8 ≤ k9 ≤ k10 ≤ 1. (4.17)

Next, we will prove each of these inequalities in turn.
(I) By identities (4.6) and (4.7) given in Lemma 4.1, it is easy to obtain

k2 − k1 = [s2 − (2R+ r)2][s4 − 2r(4R+ 7r)s2 + r2(4R+ r)2]
2R2(s2 − 4Rr − r2)(6R2 + 4Rr + r2 − s2) . (4.18)

In view of Ciamberlini’s inequality (2.33) and Gerretsen’s inequality (3.10), to prove k2 ≥ k1
we only need to prove that

X1 ≡ s4 − 2r(4R+ 7r)s2 + r2(4R+ r)2 ≥ 0, (4.19)

which can be rewritten as follows:

X1 =(s2 + 8Rr)(s2 − 16Rr + 5r2) + 19r2(4R2 + 4Rr + 3r2 − s2)
+ 4r2(17R+ 7r)(R− 2r).

Thus, by Euler’s inequality R ≥ 2r and Gerretsen’s inequality (see [13]):

s2 ≥ 16Rr − 5r2, (4.20)

which holds for all triangles, one sees that X1 ≥ 0 is true for any triangle ABC. Hence
inequality k2 ≥ k1 is proved.

(II) The second inequality of (4.2) is equivalent to the previous inequality (1.3). Thus, it
holds for the acute triangle ABC.

(III) By identities (4.8) and (4.9), we easily obtain

4s2R2(R+ r)2(k4 − k3) = X2, (4.21)

where

X2 =2s6 − (7R2 + 14Rr + 11r2)s4 + (−20R4 − 12R3r + 14R2r2

+ 16Rr3 + 4r4)s2 + (4R+ r)2(2R+ r)2(R+ r)2.

In order to prove X2 ≥ 0, we let

s0 = s2 − (2R+ r)2,

s1 = s2 − 2R2 − 8Rr − 3r2,

s2 = (5R− 4r)s2 −R(4R+ r)2.
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Then by Ciamberlini’s inequality (2.33), Walker’s inequality (1.2), and the previous inequal-
ity (2.30) we have s0 ≥ 0, s1 ≥ 0, and s2 ≥ 0 respectively. After analyzing, we obtain the
following identity

(5R− 4r)X2 = s0
[
2(5R− 4r)s2

1 + (9R2 + 26Rr + 3r2)s2
]

+X3, (4.22)

where

X3 =(24R5 + 104R4r − 336R3r2 + 228R2r3 + 376Rr4 + 92r5)s2

− 4(6R5 + 16R4r − 61R3r2 + 65R2r3 + 83Rr4 + 19r5)(2R+ r)2.

From (4.22), it can be seen that to prove X2 ≥ 0 it remains to show that X3 ≥ 0. We
next consider the following two cases to complete the proof of X3 ≥ 0.

Case 1. R and r satisfy R2 − 2Rr − r2 > 0.
Let e = R− 2r, then by Euler’s inequality R ≥ 2r we have

24R5 + 104R4r − 336R3r2 + 228R2r3 + 376Rr4 + 92r5

= 24e5 + 344e4r + 1456e3r2 + 2628e2r3 + 2504er4 + 1500r5 > 0. (4.23)

Thus, by Ciamberlini’s inequality s ≥ 2R+ r and the hypothesis, we know

X3 ≥ (24R5 + 104R4r − 336R3r2 + 228R2r3 + 376Rr4 + 92r5)(2R+ r)2

− 4(6R5 + 16R4r − 61R3r2 + 65R2r3 + 83Rr4 + 19r5)(2R+ r)2

= 4r(5R− 4r)(R2 − r2 − 2Rr)(2R+ r)3 > 0.

Case 2. R and r satisfy R2 − 2Rr − r2 ≤ 0.
In this case, by Lemma 4.2 and inequality (4.23), to prove X3 ≥ 0 we need to prove that

(24R5 + 104R4r − 336R3r2 + 228R2r3 + 376Rr4 + 92r5)(16R2r − 3Rr2 − 4r3)
−4R(6R5 + 16R4r − 61R3r2 + 65R2r3 + 83Rr4 + 19r5)(2R+ r)2 ≥ 0.

After arranging, we know the above inequality is equivalent to

−4(R− 2r)(R2 − 2Rr − r2)(24R5 + 88R4r − 292R3r2 − 2R2r3 + 163Rr4 + 46r5) ≥ 0,

which can be rewritten as follows

−4e(R2 − 2Rr − r2)(24e5 + 328e4r + 1372e3r2 + 2278e2r3 + 1387er4 + 204r5) ≥ 0.

By Euler’s inequality e ≥ 0 and the hypothesis, we know that the above inequality holds.
Combining the discussions of the above two cases, we conclude that inequality X3 ≥ 0

holds for all acute triangles. This completes the proof of X2 ≥ 0, and inequality k4 ≥ k3 is
proved.

(IV) By Lemma 4.1, it is easy to obtain the following identity

k5 − k4 = (s+ 2R+ r)(s− 2R− r)X4
4s2R2(s2 − 3R2 − 4Rr − r2) , (4.24)

where

X4 = −s4 + (21R2 + 4Rr − 2r2)s2 − (R+ r)(3R+ r)(4R+ r)2.
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By Ciamberlini’s inequality s ≥ 2R+ r, to prove k5 ≥ k4 we need to prove X4 ≥ 0. But, X4
can be rewritten as

X4 = T0 +R
[
(17R− 16r)s2 − 3R(4R+ r)2

]
, (4.25)

where T0 is the same as in (2.5). Thus, it remains to prove that

s2 ≥ 3R(4R+ r)2

17R− 16r . (4.26)

Since
R(4R+ r)2

5R− 4r − 3R(4R+ r)2

17R− 16r = 2R(4R+ r)2(R− 2r)
(5R− 4r)(17R− 16r) ≥ 0,

thus by the previous inequality (2.4) we deduce that inequality (4.26) holds. Hence, inequal-
ity k5 ≥ k4 is proved.

(V) From identities (4.10) and (4.11), we obtain

k6 − k5 = (6R2 + 4Rr + r2 − s2)(s2 − 2R2 − 8Rr − 3r2)
2(s2 − 4Rr − r2)(s2 − 3R2 − 4Rr − r2) . (4.27)

Thus, by Gerretsen’s inequality (3.10), Walker’s inequality (1.2), and Ciamberlini’s inequality
(2.33), we see that k6 ≥ k5 holds for the acute triangle ABC.

(VI) The seventh inequality of (4.2) is actually valid for any triangle ABC and can be
easily obtained by using the Cauchy-Schwarz inequality.

(VII) By Lemma 4.1, we have

k8 − k7 =
[
s2 − (2R+ r)2] [3(4R2 + 4Rr + 3r2 − s2) + 4(R+ r)(R− 2r)

]
16s2R2 . (4.28)

Then by (2.33), (3.10), and Euler’s inequality R ≥ 2r, one sees that k8 ≥ k7 holds for the
acute triangle ABC.

(VIII) By Lemma 4.1, we get

k9 − k8 = (s+ 2R+ r)(s− 2R− r)(s2 − 2R2 − 8Rr − 3r2)
8(s2 − 3R2 − 4Rr − r2) . (4.29)

Thus by (1.2) and (2.33) we see that k9 ≥ k8 holds.
(IX) It follows from identities (4.14) and (4.15) that

k10 − k9 = X5
16s2R2(s2 − 3R2 − 4Rr − r2) , (4.30)

where

X5 =3s6 − (35R2 + 32Rr + 7r2)s4 + (4R+ r)(2R+ r)(18R2 + 18Rr + 5r2)s2

− (R+ r)(3R+ r)(4R+ r)2(2R+ r)2.

We can rewrite X5 as follows:

X5 = 11R2T0 + 3s0s
2
1 + 2X6, (4.31)

where s0, s1, T0 are the same as above and

X6 =7r(2R+ r)s4 + (20R4 − 152R3r − 158R2r2 − 108Rr3 − 20r4)s2

− 72R6 + 296R5r + 616R4r2 + 688R3r3 + 410R2r4 + 118Rr5 + 13r6.



18 JIAN LIU

Since s0 ≥ 0 and T0 ≥ 0, to prove X5 ≥ 0 it remains to show that X6 ≥ 0. Similar to the
proof of inequality X3 ≥ 0, we next consider two cases to finish the proof of X6 ≥ 0.

We let s0 = s2 − (2R+ r)2 and then it is easy to check the following identity:

X6 =7r(2R+ r)s2
0 + 4(2R2 + 2Rr − 5r2)(R2 − 2Rr − r2)R2

+ s0
[
10(R2 − 2Rr − r2)(2R2 + 3r2) + 36Rr3 + 24r4

]
. (4.32)

In view of Euler’s inequality R ≥ 2r and Ciamberlini’s inequality (2.34), we see that if
R2 − 2Rr − r2 > 0 then X6 ≥ 0 holds. Thus, it remains to prove that if R2 − 2Rr − r2 ≤ 0
then X6 ≥ 0.

We let s1 = s2 − 2R2 − 8Rr − 3r2, then by Walker’s inequality we have s1 ≥ 0. Now, it
is easy to check that

X6 =7r(2R+ r)s2
1 +X7s1 − 4(R− 2r)(R2 − 2Rr − r2)

·
[
4(2R− r)(R2 − 2Rr − r2)− 9Rr2 − 6r3

]
, (4.33)

where X7 = 20R4 − 96R3r + 94R2r2 + 88Rr3 + 22r4. We first show that X7 > 0 holds for
any triangle ABC. In fact, it easy to check that

X7 = 2(e2 − r2)2 + 64e3r + 2e2r2 + 2(9e4 − 24er3 + 62r4), (4.34)

where e = R − 2r. When e ≥ 2r, it is obvious that 9e4 − 24er3 > 0. When e < 2r, it is
obvious that −24er3+62r4 > 0. We therefore conclude that inequality 9e4−24er3+62r4 > 0
for any triangle ABC. Hence, inequality X7 > 0 is proved.

Note that s1 ≥ 0, 2R− r > 0 and X7 > 0, from (4.33) one sees that if R2 − 2Rr − r2 ≤ 0
then X6 ≥ 0. So we have proved that X6 ≥ 0 holds for all acute triangles. Hence, X5 ≥ 0
and X10 ≥ X9 are proved.

(X) Finally, we prove inequality k10 ≤ 1. It is easy to obtain the following identity;

1− k10 =
[
s2 − (2R+ r)2] [3(4R2 + 4Rr + 3r2 − s2) + 4(R− 2r)(R+ r)

]
16s2R2 . (4.35)

Then by Euler’s inequalityR ≥ 2r, Ciamberlini’s inequality (2.33), and Gerretsen’s inequality
(3.10) we see that k10 ≤ 1 holds.

From the above deduction of inequality chain (4.2), it is easy to determine the equality
condition for every inequality in (4.2). The proof of Theorem 4.1 is completed. �

Remark 4.1. The first inequality of (4.2) can also be proved by using the following simple
method: Letting x = cos2A, y = cos2B, z = cos2C, then the first inequality of (4.2)
becomes

16
∑

yz∑
x
−

16
∑

x(1− x)∑
(1− x)

≤ 0,

which is equivalent to (
1−

∑
x
)∑

(y − z)2(
3−

∑
x
)∑

x
≥ 0. (4.36)
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Recall that in the acute triangle ABC we have the following known inequality (see [4]):∑
sin2A > 2, (4.37)

and then it follows that
∑
x < 1. Again, note that x, y, z > 0, we see that inequality (4.36)

holds and the first inequality of (4.2) is proved.

Remark 4.2. Inequality (4.5) is equivalent to

∑ cos2 B − C
2

cos2 A

2

cos 2A ≥ −2. (4.38)

Motivated by this inequality, the author finds that the following inequality∑ cos 2A

cos2 A

2

≤ −2 (4.39)

holds for the acute triangle ABC. In fact, it is easy to prove the following identity:∑ cos 2A

cos2 A

2

+ 2 = R(4R+ r)2 − (5R− 4r)s2

Rs2 , (4.40)

which shows that inequality (4.39) is equivalent to the previous inequality (2.4).

Remark 4.3. From the previous identity (2.34) and (4.40), we conclude that Sondat’s fun-
damental inequality (2.5) is equivalent to the following trigonometric inequality:∑(cosB + cosC

sinA

)2
−
∑ cos 2A

cos2 A

2

≤ 6, (4.41)

or equivalently

∑ cos2 B − C
2 − cos 2A

cos2 A

2

≤ 6. (4.42)

In fact, if real numbers A,B,C satisfy A + B + C = π, then we can prove the following
identity (we omit the proof here):

6−
∑ cos2 B − C

2 − cos 2A

cos2 A

2

=

∏
(sinB − sinC)2∏

sin2A
, (4.43)

Therefore, both inequalities (4.41) and (4.42) are actually valid for real numbers A,B,C
satisfying A+B +C = π. Therefore, replacing A,B,C by π − 2A, π − 2B, π − 2C in (4.42)
respectively, we deduce that that the following inequality∑ cos2(B − C)− cos 4A

sin2A
≤ 6 (4.44)

holds for any triangle ABC. In fact, inequality (4.44) is also equivalent to Sondat’s funda-
mental triangle inequality (2.5).
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