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SOLVABILITY OF A SEQUENTIAL PROBLEM OF DUFFING
RAYLEIGH TYPE

AMIRA BENDAHOU1 AND ZOUBIR DAHMANI2

Abstract. In this work, we shall be concerned with a new fractional sequential problem
of Duffing Rayleigh type. The considered problem allows us to obtain the classical Duffing
Rayleigh equation as a special case under some particular values on its input data. An
existence and uniqueness result is proved by application of Banach contraction principle.
Then, we prove the existence of, at least, one solution for the problem. At the end, we
present some examples to show the applicability of the two main results.

1. Introduction

Fractional calculus theory is a mathematical analysis where the interaction of integrals
and derivatives of arbitrary order can be found. In recent years, considerable interest has
been observed and this theory finds its importance in numerical analysis, applied mathe-
matics and other areas of physics and engineering, see [1, 3, 5, 6, 8, 9, 17, 26]. The study of
existence and uniqueness of solutions for of non-linear fractional differential equations is
very important to understand the behavior of complex nonlinear physical phenomena. To
present a contribution, in this work, we shall be concerned with the study of a problem of
nonlinear differential equations of Duffing Rayleigh type. To be able to do this, we begin by
recalling that the Duffing Rayleigh equation (DRE for short) has played a very important
role in applied sciences. For more details, see the research works [4, 11, 19, 22, 27, 28]. The
DRE equation has the following forme:

X ′′ + (β1 + β2X
′2)X ′ + γX ′ + w2

0X + kX3 = w(t),
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where β1 and β2 denote some coefficients of linear and nonlinear damping, respectively, the
function h(X) = ω2

0X+kX3 is the strongly nonlinear function that represents restoring force,
with ω0 being the natural frequency and k the intensity of nonlinearity, w(t) is a Gaussian
noise with intensity 2D, while DαX (t) represents the fractional derivative. Progress has
been made in the studies of nonlinear Duffing Rayleigh oscillators. With fractional derivative
approaches, we begin by the paper [24], where Min Xiao et al. have used the collocation
method to study the following Rayleigh oscillator with a small fractional damping problem:{

X ′′ (t)− ε
(
1− (DαX (t))2

)
DαX (t) +X (t) = 0

0 < α ≤ 1, 0 < ε ≤ 1,
with

X (0) = A, X ′ (0) = B,

where the derivative DαX (t) is of Caputo.
Fractional Caputo modified DR oscillator is also discussed by the authors in [27]:

Dαx (t) = y
Dαy = ax− bx3 + ε [µy (1− |y|) + F cos (ωt)]
t ∈ [0, T ] , 0 < α ≤ 1,

Then, A.G.M. Selvam et al. [21] have been concerned with Ulam stability of the following
discrete forced fractional DRE equation:

DαX (t) + δX (t+ α) + η (X (t+ α))3 + h (t+ α) = 0
t ∈ [0, T ] ∩ N2−α, 1 < α ≤ 2
X (0) = A, X ′ (0) = B,

where Dα is of Caputo, δ and η are used to control the stiffness, h : Q→ R is the driving
force with A,B ∈ R+. Other papers dealing with Duffing oscillators can be found in the
recent papers [14, 18, 23]. In this paper, we continue with the study of DRE problem. So,
we consider the following problem:

Dα1 (Dα2 + β1) y (t) + β2f (t, y (t) , Dα3y (t)) + γg (t, y (t) , Dα4y (t))
+h(t, y (t)) = w(t), t ∈ [0, 1]
0 < α1 ≤ 1, 0 < α2 ≤ 1, 0 < α3 ≤ 1, 0 < α4 ≤ 1
γ > 0, β1 > 0, β2 > 0
y (0) = a0, y (1) = b0,

(1.1)

where Dα1 , Dα2 , Dα3 and Dα4 are the Caputo derivatives of orders α1, α2, α3, α4 and
f, g ∈ C

(
[0, 1] ,R2) , h ∈ C ([0, 1] ,R) , w ∈ C ([0, 1])

The equation (1.1) is important since it is sequential and, on the other hand, it allows
us to obtain the above DRE equation as a special case under some particular values on its
input data like for instance when we take α1 = α2 = 1, α3 = 1, f(t, x, y) = y3, g(t, x, y) =
0, h(t, x) = ax+bx3. It is to note that this equation has no periodic conditions nor non locale
ones but it has two simple initial conditions and four Caputo derivatives; these two special
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cases allow us to obtain a new class of fractional DRE equations. More details about classical
and fractional DRE systems and Duffing oscillators can be found in [2, 10,12,13,16,20,25].

2. Definitions and lemmas

To study (1.1), we need some definitions and lemmas. For more details, see [15,17].

Definition 2.1. The Riemann Liouville integral of order α ≥ 0, for a continuous function
f : [0,∞[→ R is defined as:

Jαf (t) = 1
Γ (α)

∫ t

0
(t− u)α f (u) du, α > 0, t ≥ 0 (2.1)

J0f (t) = f (t) , t ≥ 0.

Definition 2.2. The Caputo derivative of order α for a function
y : [0,∞[→ R, which is at least n-times differentiable is the following:

Dαy (t) = Jn−αDny (t) , α > 0 (2.2)

= 1
Γ (n− α)

∫ t

0
(t− s)n−α−1 y(n) (s) ds,

for n := [α] + 1.

For the following two lemmas, one can consult the references [17].

Lemma 2.1. Let us take α > 0. Hence, the general solution Dαy(t) = 0
is given by

y (t) = c0 + c1t+ c2t
2 + . . .+ cn−1t

n−1, (2.3)

for ci ∈ R, i = 0 . . . n− 1, n = [α] + 1.

Lemma 2.2. Taking n ∈ N∗, and n− 1 < α ≤ n, hence,

JαDαy(t) = y(t) +
n−1∑
i=0

cit
i, (2.4)

ci are constants.

Now, we pass to prove the first result for the integral representation.

Lemma 2.3. Taking a function F ∈ C([0, 1]). Therefore, the problem
Dα1 (Dα2 + β1) y (t) = F (t)
t ∈ [0, 1]
0 < α1 ≤ 1, 0 < α2 ≤ 1
β1 > 0
y (0) = a0, y (1) = b0

(2.5)
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has

y (t) = 1
Γ (α2)

∫ t

0
(t− s)α2−1 ( 1

Γ (α1)

∫ s

0
(s− τ)α1−1 F (τ) dτ)− β1y (s))ds+ (a0 − b0) tα2

+ tα2

Γ (α2)

∫ 1

0
(1− s)α2−1 ( 1

Γ (α1)

∫ s

0
(s− τ)α1−1 F (τ) dτ)− β1y (s))ds+ a0

as solution.

Proof. We have
y (t) = Jα2Jα1F (t)− β1J

α2y (t)− Jα2c0 − c1,

where c0 and c1 are arbitrary constants to be determined.
By (2.5), we have

c1 = −a0

c0 = Γ (α2 + 1) (a0 − b0 + Jα2Jα1F (1)− β1J
α2y (1)).

The above lemma is proved. �

3. A Criterion for Existence and Uniqueness of Solutions

We will use the fixed point theorem to study this problem. To do this, we introduce the
following set:

X :=
{
y ∈ C ([0, 1] ,R) , Dα3y ∈ C ([0, 1] ,R) , Dα4y ∈ C ([0, 1] ,R)

}
,

||.||X = Max (||y||∞ , ||Dα3y||∞ , ||Dα4y||∞) ,
||y||∞ = sup

t∈[0,1]
(|y(t)|),∣∣∣∣Dα3y

∣∣∣∣
∞ = sup

t∈[0,1]
(|Dα3y(t)|),

||Dα4y||∞ = sup
t∈[0,1]

(|Dα4y(t)|).

it is a simple task to prove that it is a Banach space.
Then, over the above space, we define the nonlinear operator H by:

Hy (t) = 1
Γ (α1 + α2)

∫ t

0
(t− s)α1+α2−1 F (s) ds− β1

Γ (α2)

∫ t

0
(t− s)α2−1 y(s)ds

+ tα2

Γ (α1 + α2)

∫ 1

0
(1− s)α1+α2−1 F (s) ds− β1

tα2

Γ (α2)

∫ 1

0
(1− s)α2−1 y(s)ds

+ (a0 − b0) tα2 + a0.
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We use also the following expression:

DδHy (t)

= 1
Γ (α1 + α2 − δ)

∫ t

0
(t− s)α1+α2−δ−1 F (s) ds− β1

Γ (α2 − δ)

∫ t

0
(t− s)α2−δ−1 y(s)ds

+ tα2−δΓ (α2 + 1)
Γ (α1 + α2) Γ (α2 − δ + 1)

∫ 1

0
(1− s)α1+α2−1 F (s) ds− β1

tα2−δΓ (α2 + 1)
Γ (α2) Γ (α2 − δ + 1)

×
[∫ 1

0
(1− s)α2−1 y(s)ds

]
+ (a0 − b0) t

α2−δΓ (α2 + 1)
Γ (α2 − δ + 1) .

We consider the following hypotheses which are only sufficient:
(A1): The functions f and g defined on [0, 1]× R2 are continuous,

and h defined on [0, 1]× R is also continuous.
(A2): There exist constants Lf , Lg, Lh > 0, such that for, t ∈ [0, 1] ; y1, y

∗
1, y2, y

∗
2 ∈ R

|f (t, y1, y
∗
1)− f (t, y2, y

∗
2)| ≤ Lf (|y1 − y2|+ |y∗1 − y∗2|) ;

|g (t, y1, y
∗
1)− g (t, y2, y

∗
2)| ≤ Lg (|y1 − y2|+ |y∗1 − y∗2|) ;

|h (t, y1)− h (t, y2)| ≤ Lh |y1 − y2| .

(A3): There exist constants Mf1,Mf2,Mg1,Mg2,Mh nonnegative, such that for any
t ∈ [0, 1] ;x, y ∈ R we have:

|f(t, x, y)| ≤ Mf1 |x|+Mf2 |y|
|g(t, x, y)| ≤ Mg1 |x|+Mg2 |y|
|h(t, y)| ≤ Mh |y| .

(A4): The function w is such that ||w||∞ = Mw.

We note that the above hypotheses are just sufficient to prove the theorem. It is to note
also that we can take Caratheodory functions/ times Lypshitz functions/ or exponential
Lypshitz functions...
Let us now consider the values:

D1 = 2υ4
Γ (α1 + α2 + 1) + 2β1

Γ (α2 + 1) ,

D2 = υ4( 1
Γ (α1 + α2 − δ + 1) + Γ (α2 + 1)

Γ (α2 − δ + 1) Γ (α1 + α2 + 1)) + β1( 1
Γ (α2 − δ + 1) + 1

Γ (α2 + 1)),
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where,

υ1 = β2Mf1 + γMg1 +Mh; υ2 = β2Mf2; υ3 = γMg2; υ4 = (β2Lf + γLg + Lh) ;

Λ1 = 2υ1

Γ (α1 + α2 + 1) + 2β1

Γ (α2 + 1) ; Λ2 = 2υ2

Γ (α1 + α2 + 1) ; Λ3 = 2υ3

Γ (α1 + α2 + 1) ;

Λ4 = υ1

Γ (α1 + α2 − δ + 1) + υ1Γ (α2 + 1)
Γ (α2 − δ + 1) Γ (α1 + α2 + 1) + β1

(
1

Γ (α2 − δ + 1) + 1
Γ (α2 + 1)

)
;

Λ5 = υ2

Γ (α1 + α2 − δ + 1) + υ2Γ (α2 + 1)
Γ (α2 − δ + 1) Γ (α1 + α2 + 1) ;

Λ6 = υ3

Γ (α1 + α2 − δ + 1) + υ3Γ (α2 + 1)
Γ (α2 − δ + 1) Γ (α1 + α2 + 1) ;

ε1 = 2Mw

Γ (α1 + α2 + 1) + |b0|+ 2 |a0| ;

ε2 = Γ (α2 + 1)
Γ (α2 − δ + 1) |b0 + a0|+Mw( 1

Γ (α1 + α2 − δ + 1) + Γ (α2 + 1)
Γ (α2 − δ + 1) Γ (α1 + α2 + 1)).

Theorem 3.1. The problem (1.1) has a unique solution on [0, 1] if (A2), (A4) and Max {D1, D2} <
1.

Proof. In the following we not that δ takes the order derivative values α3 and α4. For (x, y) ∈ X×X,
we can write:

sup
t∈[0,1]

|Hx (t)−Hy (t)| ≤ ( 2υ4

Γ (α1 + α2 + 1) + 2β1

Γ (α2 + 1)) |x(t)− y(t)|

≤ D1 |x(t)− y(t)|

Then, one can see that the following inequality is valid:

||Hx (t)−Hy (t)||∞ ≤ D1 ||x(t)− y(t)||X .

We have also

sup
t∈[0,1]

∣∣DδHx (t)−DδHy(t)
∣∣ ≤ υ4( 1

Γ (α1 + α2 − δ + 1) + Γ (α2 + 1)
Γ (α2 − δ + 1) Γ (α1 + α2 + 1)) |x(t)− y(t)|

+β1( 1
Γ (α2 − δ + 1) + 1

Γ (α2 + 1)) |x(t)− y(t)|

≤ D2 |x(t)− y(t)| .

So, we obtain ∣∣∣∣DδHx (t)−DδHy(t)
∣∣∣∣
∞ ≤ D2 ||x(t)− y(t)||X .

Therefore, we can write

||Hx (t)−Hy (t)||X ≤ D ||x(t)− y(t)||X .
According to Banach theorem, there is a unique solution for (1.1). �

Now, we present to the reader the following second main result.

Theorem 3.2. The validation of hypotheses (A1), (A3) and (A4) allows us to state that (1.1) has
at least a solution.
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Proof. We can use Schaefer theorem.

Continuity:
We start by showing that H is continuous over X.
We have:

||Hyn (t)−Hy (t)||∞ ≤ D1 ||yn(t)− y(t)||X , (3.1)

and ∣∣∣∣DδHyn (t)−DδHy(t)
∣∣∣∣
∞ ≤ D2 ||yn(t)− y(t)||X . (3.2)

By (3.1) and (3.2), we can obtain:

||Hyn (t)−Hy (t)||X ≤ D ||yn(t)− y(t)||X .

Therefore, we conclude that:

||Hyn (t)−Hy (t)||X → 0, n→∞.

Then, we confirm that H is continuous over X.

Boundedness:
Using the sup norm, we can write

||Hy (t)||∞ ≤ Λ1 ||y (t)||X + Λ2 ||Dα3y (t)||X + Λ3 ||Dα4y (t)||X + ε1 < +∞.

Also, we have

sup
t∈[0,1]

∣∣DδHy (t)
∣∣ ≤ Λ4 |y (t)|+ Λ5 |Dα3y (t)|+ |Dα4y (t)|Λ6 + ε2.

Which implies that

∣∣∣∣DδHy (t)
∣∣∣∣
∞ ≤ Λ4 ||y (t)||X + Λ5 ||Dα3y (t)||X + Λ6 ||Dα4y (t)||X + ε2 < +∞,

Putting r = max {ε1 + ε2,Λ1 + Λ4,Λ2 + Λ5,Λ3 + Λ6} ,
then by the X−norm definition, it yields that

||Hy||X < r < +∞, (3.3)

where, y is supposed to in the ball Xr := {y ∈ X, ‖y‖X < r} .
Therefore, H is uniformly bounded over Xr.
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Equi-continuity:
Let t1, t2 ∈ [0, 1] that t1 < t2. Then, we have

|Hy (t1)−Hy (t2)|

= | 1
Γ (α1 + α2)

∫ t1

0
(t1 − s)α1+α2−1

F (s) ds− β1

Γ (α2)

∫ t1

0
(t1 − s)α2−1

y(s)ds

+ tα2
1

Γ (α1 + α2)

∫ 1

0
(1− s)α1+α2−1

F (s) ds− β1
tα2
1

Γ (α2)

∫ 1

0
(1− s)α2−1

y(s)ds

+ (a0 − b0) tα2
1 −

1
Γ (α1 + α2)

∫ t2

0
(t2 − s)α1+α2−1

F (s) ds

+ β1

Γ (α2)

∫ t2

0
(t2 − s)α2−1

y(s)ds− tα2
2

Γ (α1 + α2)

∫ 1

0
(1− s)α1+α2−1

F (s) ds

+β1
tα2
2

Γ (α2)

∫ 1

0
(1− s)α2−1

y(s)ds− (a0 − b0) tα2
2 |

= | 1
Γ (α1 + α2)

∫ t1

0
(t1 − s)α1+α2−1

F (s) ds− 1
Γ (α1 + α2)

∫ t2

t1

(t2 − s)α1+α2−1
F (s) ds

− 1
Γ (α1 + α2)

∫ t2

0
(t2 − s)α1+α2−1

F (s) ds+ (tα2
1 − t

α2
2 )

Γ (α1 + α2)

∫ 1

0
(1− s)α1+α2−1

F (s) ds

+β1
(tα2

2 − t
α2
1 )

Γ (α2)

∫ 1

0
(1− s)α2−1

y(s)ds− β1

Γ (α2)

∫ t1

0
(t1 − s)α2−1

y(s)ds

+ β1

Γ (α2)

∫ t2

t1

(t2 − s)α2−1
y(s)ds+ β1

Γ (α2)

∫ t2

0
(t2 − s)α2−1

y(s)ds

+ (a0 − b0) (tα2
1 − t

α2
2 )|.

Thanks to (A1), we can write

||Hy (t1)−Hy (t2)||∞ → 0, as t1 → t2.

Also, we can observe that:∣∣DδHy (t1)−DδHy (t2)
∣∣

= | 1
Γ (α1 + α2 − δ)

∫ t1

0
(t1 − s)α1+α2−δ−1

F (s) ds

− 1
Γ (α1 + α2 − δ)

∫ t2

t1

(t2 − s)α1+α2−δ−1
F (s) ds− 1

Γ (α1 + α2 − δ)

∫ t2

0
(t2 − s)α1+α2−δ−1

F (s) ds

− β1

Γ (α2 − δ)

∫ t1

0
(t1 − s)α2−δ−1

y(s)ds+ β1

Γ (α2 − δ)

∫ t2

t1

(t2 − s)α2−δ−1
y(s)ds

+ β1

Γ (α2 − δ)

∫ t2

0
(t2 − s)α2−δ−1

y(s)ds+ (tα2−δ
1 − tα2−δ

2 )Γ (α2 + 1)
Γ (α1 + α2) Γ (α2 − δ + 1)

∫ 1

0
(1− s)α1+α2−1

F (s) ds

+β1
(tα2−δ

2 − tα2−δ
1 )Γ (α2 + 1)

Γ (α2) Γ (α2 − δ + 1)

∫ 1

0
(1− s)α2−1

y(s)ds

− (a0 − b0) (tα2−δ
2 − tα2−δ

1 )Γ (α2 + 1)
Γ (α2 − δ + 1) |.

Consequently, ∣∣∣∣DδHy (t1)−DδHy (t2)
∣∣∣∣
∞ → 0, as t1 → t2
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As a consequence of the above three steps and thanks to Arzela-Ascoli theorem, we conclude that
H is completely continuous.

A Priori Boundedness:
Let y ∈ S, such that S := {x ∈ X,x = λHx; 0 < λ < 1}. Then, y = λHy for a certain 0 < λ < 1.
So, we have for any t ∈ [0, 1] :

‖y‖∞ = λ ||Hy (t)||∞
≤ λ (Λ1 ||y (t)||X + Λ2 ||Dα3y (t)||X + Λ3 ||Dα4y (t)||X + ε1) .

On the other hand,

∣∣∣∣Dδy (t)
∣∣∣∣
∞ = λ

∣∣∣∣DδHy (t)
∣∣∣∣
∞

≤ λ(Λ4 ||y (t)||X + Λ5 ||Dα3y (t)||X + Λ6 ||Dα4y (t)||X + ε2).

Consequently, S is bounded.
Using the Schaefer fixed point theorem, H has a fixed point which is a solution of (1.1). �

4. Two Illustrative Examples

To be sequential differential examples, it is important to note that following two problems need
to satisfy that the sum of their order derivatives of the left hand sides are not in the interval [0, 1].

Example 4.1. We consider the following problem:
D0.99 (D0.35 + 0.25

)
y (t) + 0.005

(
2|y(t)|

(300+t)(1+|y(t)|) + |Dα3y(t)|
(150+t)(1+|Dα3y(t)|)

)
+ sin(2y(t)−Dα4y(t))

36(t2+t+1) + 2|y(t)|
(15+t2)(1+|y(t)|) = cos 2t

t ∈ [0, 1]
y (0) = a0, y (1) = b0,

where

f(t, u, v) =
(

2 |u|
(300 + t) (1 + |u|) + |v|

(150 + t) (1 + |v|)

)
g(t, u, v) = sin(2u− v)

36 (t2 + t+ 1)

h(t, u) = 2 |u|
(15 + t2) (1 + |u|)

w(t) = cos 2t,

and, also we take

δ = 0.12, D1 = 0.79353, D2 = 0.79350
D := Max {D1, D2} = 0.79353

The conditions of Theorem 3.1 are valid. Thus, problem (1.1) has a unique solution on [0, 1].

Example 4.2. As a second illustrative example, we consider the problem:
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D0.85 (D0.97 + 1

5
)
y (t) + 1

300

(
|y(t)|

(300+t2|y(t)|) + |Dα3y(t)|
(9+|Dα3y(t)|)

)
+ 2

7

(
cos(y(t)+2)
280(t+e−2t) + t3+|Dα4y(t)|

50 + ln(t+ 1)
)

+ sin(y(t))
(450+t)et2+1 = ln(t+ 2)

t ∈ [0, 1]
y (0) = a0, y (1) = b0,

such that,

f(t, u, v) = |u|
(300 + t2 |u|) + |v|

(9 + |v|) ,

g(t, u, v) = cos(u+ 2)
280 (t+ e−2t) + t3 + |v|

50 + ln(t+ 1),

h(t, u) = sin(u)
(450 + t) et2+1 ,

w(t) = ln(t+ 2)

and

δ = 0.004, D1 = 0.653 61, D2 = 0.654 56
D := Max {D1, D2} = 0.654 56.

Thanks to Theorem 3.1, we can state that (1) has a unique solution on [0, 1].

5. Conclusion

In this work, a DRE equation with four Caputo derivatives and two initial conditions has been
considered. First, we have established an integral equivalence to the considered differential problem.
Then, by means of fixed point theory, we have proved a uniqueness result. Then, based on Schaefer
theorem, some sufficient conditions have been established to ensure the existence of solutions for the
problem. At the end, some examples are discussed to illustrate the applicability of the first main
result. In the future, we continue to work on the above problem and to study the stability of its
solutions; the Ulam-Hyers and Ulam Hyers Rassias stabilities will be considered. For the interested
reader, there is another way to work on the above problem; it can be generalized by introducing
some convergent series on the right hand side of (1). The existence and uniqueness of solutions for
the resulting problem can be investigated...
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