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ON HARDY-TYPE INTEGRAL INEQUALITIES WITH NEGATIVE
PARAMETER

BOUHARKET BENAISSA' AND HUSEYIN BUDAK?

ABSTRACT. In 2007, Bicheng Yang [4] introduced a new Hardy-type integral inequality
of p < 0. In this paper, we give new solid-type integral inequalities with two negative
parameters p,q < 0.

1. INTRODUCTION

In 2007, Bicheng Yang [!] presented a new Hardy-type integral inequality with negative
parameter:

Theorem 1.1. Ifp < 0,r #0, f >0 and 0 < [§7t"(tf(t))Pdt < oo, define the function
F(z) as

F(z) = /Omf(t)dt, forr<1l; F(x)= /;o ft)dt, forr > 1.

Then one has

/ 2T PP (2)d < ( ) / T (LF ()Pt (1.1)
0 ‘7’ — 1| 0
— P
where the constant factor (| p1‘> is the best possible.
r—
The inequality above was generalized in [1]. In 2014, Banyat Sroysang [3] made a direct

generalization of the original Hardy inequalities:

Theorem 1.2. Let f >0, ¢ >0, 0<r<1,p>1,¢>p—r(p—1) and F(x) :/ f(t)dt.
0

If —— is non-increasing, then

9(x)
= Er(a) ! * (af (@)
A e el S R
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Theorem 1.3. Let f >0, g >0, r>0,0<p<1,¢>p+r(p—1) and F(z /f
If

is non-decreasing, then

g(w)

* F(a) ! = (@] (@)
b @ e e 09

The aim of this paper is to give a new some Hardy-type integral inequalities which are
an extension of the inequalities cited in theorems above. The structure of this study takes
the form of three sections with an introduction. In the second section we give the proofs
of our main results for parameters negatives p; ¢ < 0, in the third section we present some
applications to the theorems. In [2], the following corollary was proved and it is useful in
the proofs of main theorems.

Corollary 1.1. (Reverse Holder’s inequality.)
Let ¢ C R™ be a measurable set and p < 0, we suppose that u, v are measurable on €. If
u € Ly(e) and v € Ly(e) (p' is the conjugate parameter), then

1
Y

/\u )| dz > (/\u \de) (/ ()P d:c) . (1.4)

2. MAIN RESULTS

In this section, we present our results, the Theorem 2.1 and Theorem 2.2.

Theorem 2.1. Let f,g > 0 measurable functwns on (0,400), r, p, ¢ <0, 1—(1—r)(1—
p)—q <0 and F(z) = / Flt)de. If — ( )
0

© [P(z) 1 o (z.f(z))P
/0 g9°(x) de = (I=r)(1—p)+q—1)1—rp-! /0 91(z) dr (2.1)

Proof. By the reverse Holder inequality, we obtain

is non-decreasing on (0,+00), then

then

Therefore
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) L a0 ([T e
/0 i) ™S (1—r)P—1/0 g (@)t (/0 ¢ fp(t)dt) dz

1 oo 00
- - r(p—1) fp —q,.(1-r)(p—1)
(1— )1 /0 t fP(t) (/t g(z) dl‘) dt.

q
> is non-increasing on (¢, 00), we get

By the assumption ( v
9(x)

/OO g(z) 0PNy = /Oo gI=p=1)=q( x))qdm
t

t g(z
< <t>q/°° LD,
~\g(t)/) Ji
< 1 ) t(r—l)(l—p)+1
C\1=-n(1-p) +q-1 g1(t)
We obtain that
oo [P 1 oo P fP(¢
[, L0
o 9%z) (A=r)A=p)+qg-1)@=r)P="Jo gi(t)
Theorem 2.2. Let f,g > 0 measurable functions on (0,4+00), p,q <0, r > 1 and F(z) =
/ F()dt.
If s non-increasing on (0,400), then
9(x)

 FP(z) |  (uf(2))?
I T ey ey e e el Ml

1 1
Proof. By using the reverse Holder inequality for — + — =1, we get
p P

Flz) = /; 9tV f(t)dt

([T ([ o)

(=1 (1-p) /oo =D 2 (1) dt.

and then

(r—1)p-1
We deduce that

1 00 t
= — r(p=1) rp g (r—1)(1—p)
(r—1)p—1 /0 AR () (/0 g~ (z)x dm) dt.

(2.2)
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q
Since (m) is non-decreasing on (0, ), it follows that

g9(z)
t t r \4
/ g (@)D gy — / L)1) g <) de
0 0 g9(z)

< (t>q/tx(r—1><1—p>—qu
“\g)/) Jo

B 1 tr=1)(1-p)+1
B ((T— (1 -p) —q+1> ge(t)

this gives us that

[e%) Fp(IE) 1 e tpfp(t)
I @) S DA —p) gt D D I gi(t) "

3. APPLICATIONS

<

If we put ¢ = p in Theorem 2.1, we get
Corollary 3.1. Let f,g >0, r <0, p<0 and F(x) = / f(t)de,
0
if

is non-decreasing, then
LG8 e =i (hg)

(i) for g(x) = x™, m < 1, one has

/ooo (i(rf)ydx = - 1)(11 — oyl /ooo (ff)l)pdm

(ii) for g(x) = x, one has
[ b [

Let Hf(x) = :1/090 f(t)dt (Hardy operator),

9(x)

In particular,

Remark 3.1. if we take r = %, m =0 in (3.2) and (3.3), we get

[T ers@yis< () [ @)y i

Spper < (L) [T e,
0 p—1/ Jo

Remark 3.2. we take r = % and m =1+ % in (3.2), then

/OOO Y H )P (2)de < <pz>p/ooo 2L fP(2)da.
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If we put ¢ = p in the theorem (2.2), we get
Corollary 3.2. Let f,g >0, p<0, r>1 and F(x) = / f(t)dt.
If

is non-increasing, then
[ e [ (220

(i) for g(z) = x", one has

9(x)

In particular,

1

/OOO (z7"F(x))’ dx < — /OOO (¢ (f (2)))” da,

T r(l=p)(r—1)
(ii) for g(x) = z, one has

/O‘X’ (F(xx))pda? < a —p)(i” Ty /Ooo FP(2)dz.

1 oo
Let Hi f(z) = —/ f(t)dt (the dual Hardy operator),
T Jzx

Remark 3.3. we choose r =2 in (3.8) and (3.9), we get
UH f(x)) dx < 7/ -1
| (@ @) de < sty (@) e

(o.9] 1 o0
/0 (H Y (@)de < 5 /0 fP(x)dz.
Remark 3.4. we take r =1 — ;17 in (3.8) and (3.9), then
o0 1 [e.e]
/0 x(Hyf)P(z)dx < (1_]))2(_1))11/0 xfP(x)dx,
/0 S Hy )P (2)de < _p)21 /0  P(2)da.
Remark 3.5. For p < 0 we have

p p \"! < p >p < p
1+—)(1— —_— > (1 — ) > =
<+p—1>( p)<p—1> z(1=p) p—1/ —\p-—-1

Takingrzl—i—%in (3.8) and (3.9), we get

/ooo 215 (Hy )P () < (T)p /ooo o e

| sy < (p;l) | @

(1

(=p)~P

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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