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ON WEIGHTED MEANS AND MN-CONVEX FUNCTIONS
IMDAT ISCAN!

ABSTRACT. In this paper, we give more general definitions of weighted means and M N-
convex functions. Using these definitions, we also obtain some generalized results related
to the properties of M N-convex functions. The importance of this study is that the results
of this paper can be reduced to different convexity classes by considering the special cases
of M and N.

1. INTRODUCTION

The notions of convexity and concavity of a real-valued function of a real variable are
well known [16]. The generalized condition of convexity, i.e. M N-convexity with respect to
arbitrary means M and N, was proposed in 1933 by Aumann [2]. Recently many authors
have dealt with these generalizations. In particular, Niculescu [15] compared M N-convexity
with relative convexity. Andersen et al. [3] examined inequalities implied by M N-convexity.
In [3], Anderson et al. studied certain generalizations of these notions for a positive-valued
function of a positive variable as follows:

Definition 1.1. A function M : (0,00) x (0,00) — (0, 00) is called a Mean function if
(M1) M(u,v) = M(v,u),
(M2) M(u,u) = u,
(M3) u < M(u,v) < v whenever u < v,
(M4) M (Au, Av) = AM (u,v) for all A > 0.

Ezample 1.1. For u,v € (0, 00)

M(u,v) = A(u,v) = A= utvy

is the Arithmetic Mean,
M(u,v) = G(u,v) = G = uv
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is the Geometic Mean,

2
M(u,v) = H(u,v) = H = A_l(u_l,v_l) _ s

u—+v

is the Harmonic Mean,

M(’LL,’U) = L(U,’U) = = { lng:fnv U 7& v

u u=v

is the Logarithmic Mean,

is the Identric Mean,

1
avleu, ) = (252)7 pem\ {0}
G(u,v) = J/uv p=0

is the p-Power Mean, In particular, we have the following inequality

M(u,v) = Mp(u,v) = M, = {

M1 =H<My=G<L<I<A=M,.

Anderson et al. in [3] developed a systematic study to the classical theory of continuous
and midconvex functions, by replacing a given mean instead of the arithmetic mean.

Definition 1.2. Let M and N be two means defined on the intervals I C (0,00) and
J C (0, 00) respectively, a function f: I — J is called M N-midpoint convex if it satisfies

f(M(u,v)) <N (f(u), f(v))
for all u,v € I.

The concept of M N-convexity has been studied extensively in the literature from various
points of view (see e.g. [1,2,12,15]),

Let A (u,v,A\) = M+ (1 - Nv, G (u,v,\) = v ', H (u,v,\) = uv/(Au+ (1 —\)v) and
My (u,v,\) = (AP + (1 — )\)vp)l/p be the weighted arithmetic, geometric, harmonic , power
of order p means of two positive real numbers u and v with u # v for A € [0, 1], respectively.
M, (u, v, A) is continuous and strictly increasing with respect to A € R for fixed p € R\ {0}
and u,v > 0 with u > v. See [6,9, 12-15] for some kinds of convexity obtained by using
weighted means.

The aims of this paper, a general definition of weighted means and a general definition
of M N-convex functions via the weighted means is to give. In recent years, many studies
have been done by considering the special cases of M and N. The importance of this study
is that some properties of M N-convex functions and some related inequalities have been
proven in general terms.
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2. MAIN RESULTS

Definition 2.1. A function M : (0,00) x (0,00) x [0,1] — (0, 00) is called a weighted mean
function if
(WM1) M(u,v,\) = M(v,u,1—N),
(WM2) M(u,u,\) =u,
(WM3) u < M(u,v,\) < v whenever u < v and A € (0,1). Also {M (u,v,0), M(u,v,1)} =
{u,v}.
(WM4) M(au,av,\) = aM(u,v,A) for all a > 0,
(WM5) let A € [0,1] be fixed. Then M(u,v,\) < M(w,v,\) whenever v < w and
M (u,v,\) < M(u,w, \) whenever v < w.
(WMBS6) let u,v € (0,00) be fixed and u # v. Then M (u,v,.) is a strictly monotone and
continuous function on [0, 1].
(WMT7) M (M (u,v,X), M(z,w,\),s) =M (M(u,z,s), M(v,w,s),A) for all u,v, z,w € (0, 00)
and s, \ € [0, 1].
(WMS8) M (u,v,sA1 + (1 —s)\a) = M (M (u,v, 1), M(u,v, ), s) for all u,v € (0,00) and
S, A1, Ag € [0, 1].

Remark 2.1. According to the above definition every weighted mean function is a mean
function with A = 1/2. Also, By (WM6) we can say that for each z € [u,v] C (0,00) there
exists a A € [0, 1] such that z = M (u, v, ). Morever;

i.) If M(u,v,.) is a strictly increasing, then M (u,v,0) = u and M (u,v,1) = v whenever
u<wv (ie. M(u,v,\) is in the positive direction)

ii.) If M(u,v,.) is a strictly deccreasing, then M (u,v,0) = v and M(u,v,1) = u
whenever v < v (i.e. M(u,v,\) is in the negative direction) and M (u,v,.)([0,1]) =
[min {u, v}, max {u,v}].

Remark 2.2. Throughout this paper, we will assume that different weighted means have the
same direction unless otherwise stated.

Ezample 2.1.
M(u,v,\) = A(u,v,\) = Ay = (1= Nu+ v
is the Weighted Arithmetic Mean,
M(u,v,\) = G(u,v,\) = Gy = u! o

is the Weighted Geometic Mean,
M —H —Hy=A" o ) =
(u, v, \) (u, v, \) A (w07, A) T (=N

is the Weighted Harmonic Mean,

AVP(up 0P N) = (1 — N)a? + Ay?)YP p e R\ {0}

M (u,v,A) = Mp(u, v, A) = My \ = { G(u,v,A) = u! =0 p=0
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is the p-Power Mean. In particular, we have the following inequality
M_1\=Hy < Myy)=G)\< M= A\ < My,
for all z,y € (0,00),t € [0,1] and p > 1.

Proposition 2.1. If M : (0,00) x (0,00) x [0,1] — (0,00) is a weighted mean function,
then the following identities hold:

M (M (a, M (a,b,s),\),M (b, M(a,b,s),\),s) = M(a,b,s), (2.1)
M (M(a,b,\), M(b,a,\),1/2) = M(a,b,1/2). (2.2)

Proof. If we take v =w = M (a,b,s), w=a and z = b in (WMT7) and we use the property
(WM2), then we obtained the identity (2.1). By using similar method, if we take u = w = a,
v=z=band s =1/2 in (WM7) and we use the properties (WM1) and (WM2), then we
obtained the identity (2.2). O

Definition 2.2. Let M and N be two weighted means defined on the intervals I C (0, co)
and J C (0,00) respectively, a function f : I — J is called M N-convex (concave) if it
satisfies

f(M(u,v,0)) < () N (f(w), f(v),A)
for all u,v € I and X € [0,1].

The condition (WMS) in Definition 2.1 shows us that the function M (u,v,.) is both M M-
convex and M M-concave on [0, 1] for fixed u,v € (0,00). It is easily seen that weighted
means mentioned in the Example 2.1 hold the condition (WMS).

We note that by considering the special cases of M and N, we obtain several different
convexity classes as AA-convexity (classical convexity), AG-convexity (log-convexity), G A-
convexity, GG-convexity (geometrically convexity), H A-convexity (harmonically convexity),
M, A-convexity (p-convexity),...,etc. For some convexity types, see ([6,9,14,15]).

Definition 2.3. Let M and N be two weighted means defined on the intervals [u, v] C (0, c0)
and J C (0, 00) respectively and f : [u,v] — J be a function. We say that f is symmetric
with respect to M (u,v,1/2), if it satisfies

f(M(u,v,)\)) = f(M(u,v, 1- )‘))
for all A € [0,1].

Theorem 2.1. Let M and N be two weighted means defined on the intervals [u,v] C (0, 00)
and J C (0,00) respectively. If function f : [u,v] — J is M N-convez, then the function f
is bounded.

Proof. Let K = max{f(u), f(v)}. For any z = M(u,v,\) in the interval [u,v], By using
M N-convexity of f and (WM3) we have

f(z) SN (f(u), f(v),A) < K.
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The function f is also bounded from below. For any z € (u,v], there exists a A\g € (0, 1]
such that z = M (u, v, A\g), then by using M N-convexity of f and (2.2 ) we have

f (M(u7v7 1/2)) =f (M (Z7 M(U7u7 )‘0)7 1/2)) <N (f(Z), f (M(U7u7 )‘0)) ) 1/2) : (2'3)

On the other hand, if f(z) = f (M (v,u, X)), then N (f(2), f (M (v,u,Xo)),1/2) = f(z) and
thus the function f is also bounded from below.
If f(2) # f(M(v,u, o)), then there exists ug € (0,1) such that

N (f(z)a f (M(v,u, )‘0)) ) 1/2) = ,U(]f(z) + (1 - MO)f (M(U>u7 )\0)) .
By the inequality (2.3) and using K as the upper bound, we have

FG) 2 o1 (O, 1/2) = (1= ) (M0, 20)
> LI (M(0.1/2) - (1= o)K] =k
Thus, we obtain f(z) > max {k, f(u)} for any z € [u,v]. This completes the proof. O

Theorem 2.2. Let M and N be two weighted means defined on the intervals I C (0,00) and
J C (0, 00) respectively. If the functions f,g: I — J are M N-convez, then N(f(.),9(.),1/2)
is a M N -convez function.

Proof. Since f and g are M N-convex functions, we have

f(M(u,v,X)) < N (f(u), f(v),A)
and
9 (M(u,v,A)) <N (g(u),g(v),A)

for all u,v € I and A € [0,1]. Then by (WM5) and (WMT7) we have
N(f(), (), 1/2)(M (u, v, N))

N (f (M(u,v,X)), 9 (M(u,v,X)),1/2)

NN (f(u), f(v), A), N (g(u), g(v), A),1/2)
N(N(f()9(),1/2)(u), N(f(),9(),1/2)(v), A) .

This completes the proof. ]

IN

We can give the following results for different convexity classes by considering the special
cases of M and N.

Corollary 2.1. Let I,J C (0,00) and f,g: 1 — J .

i.) If f and g are convex functions, then A(f(.),q9(.),1/2) = (f + g)/2 is also convex
function.

ii.) If f and g are GA-convex functions, then A(f(.),q(.),1/2) = (f + g)/2 is also
GA-convex function.

iii.) If f and g are harmonically convex functions, then A(f(.),g(.),1/2) = (f+g)/2 is
also harmonically convex function.

w.) If f and g are p-convex functions, then A(f(.),q(.),1/2) = (f+g)/2 is also p-convex
function.
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v.) If f and g are log-convex functions, then G(f(.),g(.),1/2) = \/fg is also log-convex
function.

vi.) If f and g are GG-convex functions, then G(f(.),g(.),1/2) = \/fg is also GG-convex
function.

vii.) If f and g are HG-convez functions, then G(f(.),g(.),1/2) = \/fg is also HG-convex
function.

vigi.) If f and g are AH-convex functions, then H(f(.),g(.),1/2) =2fg/(f + g) is also
AH -convex function.

Remark 2.3. In Corollary 2.1, we gave results only for some convexity types. It is possible
to increase the results by considering another special cases of M and N.

Theorem 2.3. Let M and N be two weighted means defined on the intervals I C (0,00)
and J C (0,00) respectively. If f: I — J is a M N-convex function and o > 0, then af is
a M N -convex function.

Proof. By using M N-convexity of f and (WM4), we have

af (M(u,v,A)) < aN (f(u), f(v),A) < N (af(u),af(v),A).
This completes the proof. ]

Theorem 2.4. Let M, N and K be three weighted means defined on the intervals I C
(0,00),J C (0,00) and L C (0,00) respectively. If f: I — J is a M N-convex function and
g:J C(0,00) — L is nondecreasing and N K -convex function, then go f is a MK -convex
function.

Proof. By using M N-convexity of f , we have
f(M(u,v,0)) < N (f(u), f(v),A).

Since g is N K-convex and nondecreasing function

g (f (M(u,v,2))) < g(N(f(u), f(v),A) < K (g(f(u),g(f(v),A)-
This completes the proof. ]

Theorem 2.5. Let M and N be two weighted means defined on the intervals I C (0, 00)
and J C (0,00) respectively. If the function f : I — J is MN-convex and N < A (A is
the weighted arithmetic mean), then f satisfies Lipschitz condition on any closed interval
[a,b] contained in the interior I° of I. Consequently, f is absolutely continuous on |a,b]
and continuous on 1°.

Proof. Choose € > 0 so that a —e and b+ ¢ belong to I, and let m; and mo be the lower and
upper bounds for f on [a —e,b+ ¢] . If w and v are distinct points of [a, b] and we choose a

point z such that
v —ul

v=M(u,z,\), \=——,
e+ |v—ul

then
f0) < N (f(u), f(2),A) < A(f(u), f(2),A) = f(u) + A[f(2) = [(u)]
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v — ul

f) = f(u) < X[f(2) = f(w)] < A(ma —mq) <
where K = (mg2 — mq)/e. Since this is true for any uw,v € [a,b], we conclude that
|f(v) = f(u)| < K |v — ul as desired.

Next we recall that f is absolutely continuous on [a, 8] if corresponding to any € > 0, we

(mg —my) = K |v—ul

can produce a § > 0 such that for any collection {(a;,b;)}] of disjoint open subintervals of
[a,b] with > (b —a;) < 6, >oiy | f(bi) — f(ai)| < e. Clearly the choice 6 = ¢/K meets
this requirement.

Finally the continuity of f on I° is a consequence of the arbitrariness. O

Theorem 2.6. Let M and N be two weighted means defined on the intervals I C (0,00)
and J C (0,00) respectively. If function fo : I — J be an arbitrary family of M N -convex
functions and let f(u) = sup,, fo(u). If K ={x € 1: f(x) < oo} is nonempty, then K is an
interval and f is M N -convez function on K.

Proof. Let A € [0,1] and u,v € K be arbitrary. Then
f (M (u,v, X))
= sup fa (M (’LL,U, )‘))
< Sgp (N (foe(u)7 fa(v)7 )‘))

< N<Sgpfa(u)asgpfa(v)7)‘)
= N (), F0),3) < oo

This shows simultaneously that K is an interval, since it contains every point between any
two of its points, and that f is M N-convex function on K. This completes the proof of
theorem. g

Theorem 2.7 (Hermite-Hadamard’s inequalities for M N-convex functions). Let M and N
be two weighted means defined on the intervals I C (0,00) and J C (0,00) respectively. If
function f: I — J is M N-convex and the following integral exists, then we have

f(M(u,v,1/2)) / N (f (M(u,v,\)), f(M(u,v,1=2X)),1/2)d\ < N (f(u), f(v),1/2)

(2.4)
for all u,v € I with u < wv.
Proof. Since f : I — R is a M N-convex function, by using (2.2) we have
f(M(u,v,1/2)) = f (M (M(u,v,A), M(u,v,1 = A),1/2))
< N(f(M(u,v,N), f (M(u,v,1—=1)),1/2)
for all u,v € I and A € [0, 1]. Further, integrating for A\ € [0, 1], we have
£ (M(u,v,1/2)) / N (f (M(u,0,0), f (M(u,0,1 = \)),1/2) dA. (2.5)

Thus, we obtain the left-hand side of the inequality (2.4) from (2.5).
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Secondly, By using M N-convexity of f and (WM5) with (2.2), we get

N (f (M(u,0,7)), f (M(u,0,1=X)),1/2)
N(N(f(u), f(0),A), N(f(u), f(v),1 = X),1/2)
N (f(u), f(v),1/2).

Integrating this inequality with respect to A over [0, 1], we obtain the right-hand side of the
inequality (2.4). This completes the proof. O

We can give the following some results for different convexity classes by considering the
special cases of M and N. It is possible to increase the results by considering another special
cases of M and N.

Corollary 2.2. Let I,J C (0,00) and f: 1 — J .

i.) If f is convex function (i.e. if M = N = A (A is the weighted arithmetic mean)), then
we have the following well-known celebrated Hermite-Hadamard’s inequalities for convex
functions

fao2) = 7(*0)
< /A Al 0, 0) s f (A, 0,1 = N)),1/2) dA

= 72(1)_71 / f@)+ flu+v—2x)dz

- g, s

A(f(u), f(v),1/2) =

IN

1) + S ()
2

ii.) If f is G A-convex function, then we have the following Hermite-Hadamard’s inequal-
ities for GA-convex functions (see [7, Theorem 3.1. with s = 1])

f(G(u7U71/2)) = f(M)
< /0A(f(G(u,v,/\)),f(G(u,v,l—/\)),1/2)d)\

uv dzx
- lnv—lnu / fx )
B f(x
- lnv—lnu/J T dx

< AG), 1), 1/2) =TI
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iii.) If f is harmonically convex function, then we have the following Hermite-Hadamard’s
inequalities for harmonically-convex functions (see [6, 2.4. Theorem])

f(H(u,v,1/2)) = f( 2uv )

U+ v
< /A H(u,0, ), f (H(u, 0,1 — ), 1/2) dA
- v_u/f (e =) S
_ w7 ),
v—u :U2
< A<f<u>,f<v>,1/2>:W-

w.) If f is p-convex function (p # 0), then we have the following Hermite-Hadamard’s
inequalities for p-convex functions (see [9, Theorem 2|)

F(My0,1/2)) = f([“é}”)

< [ A My, 0) 7 (a1 =), 1/2)

- P ) /uv fla)+ f ({up P — xp]l/p) dr

zl-p

IA
h
—~
-
—~
<
:_/
=
<
:—/
—
~
N
I

v.) If f is log-convex function, then we have the following Hermite-Hadamard’s inequalities
for log-convex functions (see [5, Theorem 2.1])

flato 1) = 7 (")

< /G A, 0, ), f (Al 0,1 — A)),1/2) dA

= v—u/ \/f flu+v—z)de

< G(f(w), f(v),1/2) =/ f(u) f(v).
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vi.) If f is GG-convex function, then we have the following Hermite-Hadamard’s inequal-
ities for GG-convex functions (see [3, the inequality (7)])

f(G(uvv71/2)) = f(\/ﬁ)
< /G G(u,v,N)), f(G(u,v,1—=X)),1/2)dA

_ [ frer ()2
a lnu T

< G(f(u), f(v),1/2) = f

vii.) If f is HG-convex function, then we have

fH@e1/2) = ()

u-+v

< /1G(f(H(u,v,>\)),f(H(u,v,l —))),1/2)dA

< G(f(U), (v),1/2) = \/ f(u) f(v).

viii.) If f is AH-convex function, then we have

fae ) = f(57)

IN

/1H (f Au,v,A)),f(A(u,v,l—)\)),1/2)d>\

flu+v—2x)
v—u/ f(z —|—fu+v—x)dx
< AU, )12 = IO

Theorem 2.8. Let M and N be two weighted means defined on the intervals [u,v] C (0, 00)
and J C (0,00) respectively. If function f : [u,v] — J is M N-convex and symmetric with
respect to M (u,v,1/2), then we have

f(M(u,0,1/2)) < fz) <N (f(u), f(v),1/2) (2.6)

forallx € I.

Proof. Let x € [u,v] be arbitrary point. Then there exists a A € [0,1] such that x =
M (u,v, ). Since f : [u,v] — J is a M N-convex function and symmetric with respect to

M (u,v,1/2), by using (2.2) we have
f(M(u,v,1/2)) = f(M(M(u,v,\), M(u,v,1—X),1/2))
< N(f(M(u,v,)\)),f(M(u,v,l—)\)),1/2)
= f(o).
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Thus, we obtain the left-hand side of the inequality (2.6). Secondly, By using M N-convexity
of f and (WM5) with (2.2), we get
flz) = N (f (M(u,v,A)), f (M(u,v,1=1X),1/2)
< N(N(f(u), f(v), A), N(f(u), f(v),1 = A),1/2)
— N (f(u), f(0),1/2).
This completes the proof. O
We can give the following some results for different convexity classes by considering the

special cases of M and N. It is possible to increase the results by considering another special
cases of M and N.

Corollary 2.3. Let I,J C (0,00) and f:1 — J .
i.) If f is a convex function and symmetric with respect to (u+ v)/2, then we have the
following inequalities for convex functions (see |1, Theorem 2|)

(50 ¢ g < ZEIL

2
i.) If f is a GA-convex function and symmetric with respect to \/uv, then we have the
following inequalities for convex functions (see [10, Theorem 2.9])
f(u) + f(v)

f (V) < f(z) < ==

i\
2

P
iii.) If f is a p-convex function and symmetric with respect to ( , then we have

the following inequalities for conver functions (see [11, Theorem 2.2 ])

f (V Hp]l/p) < jioy < LI,

2 2

3. CONCLUSION

The aim of this article is to determine that a mean is called the weighted mean when it
meets what conditions, and also is to give a general definition of M N-convex functions. The
importance of this study is that some properties of M N-convex functions and some related
inequalities have been proven in general terms via this general definition of M N-convex
functions.
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