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ON WEIGHTED MEANS AND MN-CONVEX FUNCTIONS

İMDAT İŞCAN1

Abstract. In this paper, we give more general definitions of weighted means and MN -
convex functions. Using these definitions, we also obtain some generalized results related
to the properties of MN -convex functions. The importance of this study is that the results
of this paper can be reduced to different convexity classes by considering the special cases
of M and N .

1. Introduction

The notions of convexity and concavity of a real-valued function of a real variable are
well known [16]. The generalized condition of convexity, i.e. MN -convexity with respect to
arbitrary means M and N , was proposed in 1933 by Aumann [2]. Recently many authors
have dealt with these generalizations. In particular, Niculescu [15] compared MN -convexity
with relative convexity. Andersen et al. [3] examined inequalities implied by MN -convexity.
In [3], Anderson et al. studied certain generalizations of these notions for a positive-valued
function of a positive variable as follows:

Definition 1.1. A function M : (0,∞)× (0,∞)→ (0,∞) is called a Mean function if
(M1) M(u, v) = M(v, u),
(M2) M(u, u) = u,

(M3) u < M(u, v) < v whenever u < v,

(M4) M(λu, λv) = λM(u, v) for all λ > 0.

Example 1.1. For u, v ∈ (0,∞)

M(u, v) = A(u, v) = A = u+ v

2
is the Arithmetic Mean,

M(u, v) = G(u, v) = G =
√
uv
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is the Geometic Mean,

M(u, v) = H(u, v) = H = A−1(u−1, v−1) = 2uv
u+ v

is the Harmonic Mean,

M(u, v) = L(u, v) = L =
{

u−v
lnu−ln v u 6= v

u u = v

is the Logarithmic Mean,

M(u, v) = I(u, v) = I =

 1
e

(
uu

vv

) 1
u−v u 6= v

u u = v

is the Identric Mean,

M(u, v) = Mp(u, v) = Mp =

 A1/p(up, vp) =
(
up+vp

2

)1/p
p ∈ R\ {0}

G(u, v) =
√
uv p = 0

is the p-Power Mean, In particular, we have the following inequality

M−1 = H ≤M0 = G ≤ L ≤ I ≤ A = M1.

Anderson et al. in [3] developed a systematic study to the classical theory of continuous
and midconvex functions, by replacing a given mean instead of the arithmetic mean.

Definition 1.2. Let M and N be two means defined on the intervals I ⊂ (0,∞) and
J ⊂ (0,∞) respectively, a function f : I → J is called MN -midpoint convex if it satisfies

f (M(u, v)) ≤ N (f(u), f(v))

for all u, v ∈ I.

The concept of MN -convexity has been studied extensively in the literature from various
points of view (see e.g. [1, 2, 12,15]),

Let A (u, v, λ) = λu+ (1−λ)v, G (u, v, λ) = uλv1−λ, H (u, v, λ) = uv/(λu+ (1−λ)v) and
Mp (u, v, λ) = (λup + (1− λ)vp)1/p be the weighted arithmetic, geometric, harmonic , power
of order p means of two positive real numbers u and v with u 6= v for λ ∈ [0, 1] , respectively.
Mp (u, v, λ) is continuous and strictly increasing with respect to λ ∈ R for fixed p ∈ R\ {0}
and u, v > 0 with u > v. See [6, 9, 12–15] for some kinds of convexity obtained by using
weighted means.

The aims of this paper, a general definition of weighted means and a general definition
of MN -convex functions via the weighted means is to give. In recent years, many studies
have been done by considering the special cases of M and N . The importance of this study
is that some properties of MN -convex functions and some related inequalities have been
proven in general terms.
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2. Main Results

Definition 2.1. A function M : (0,∞)× (0,∞)× [0, 1]→ (0,∞) is called a weighted mean
function if

(WM1) M(u, v, λ) = M(v, u, 1− λ),
(WM2) M(u, u, λ) = u,

(WM3) u < M(u, v, λ) < v whenever u < v and λ ∈ (0, 1) . Also {M(u, v, 0),M(u, v, 1)} =
{u, v} .

(WM4) M(αu, αv, λ) = αM(u, v, λ) for all α > 0,
(WM5) let λ ∈ [0, 1] be fixed. Then M(u, v, λ) ≤ M(w, v, λ) whenever u ≤ w and

M(u, v, λ) ≤M(u, ω, λ) whenever v ≤ ω.
(WM6) let u, v ∈ (0,∞) be fixed and u 6= v. Then M(u, v, .) is a strictly monotone and

continuous function on [0, 1] .
(WM7) M (M(u, v, λ),M(z, w, λ), s) = M (M(u, z, s),M(v, w, s), λ) for all u, v, z, w ∈ (0,∞)

and s, λ ∈ [0, 1].
(WM8) M(u, v, sλ1 + (1 − s)λ2) = M (M(u, v, λ1),M(u, v, λ2), s) for all u, v ∈ (0,∞) and

s, λ1, λ2 ∈ [0, 1].

Remark 2.1. According to the above definition every weighted mean function is a mean
function with λ = 1/2. Also, By (WM6) we can say that for each x ∈ [u, v] ⊆ (0,∞) there
exists a λ ∈ [0, 1] such that x = M(u, v, λ). Morever;

i.) If M(u, v, .) is a strictly increasing, then M(u, v, 0) = u and M(u, v, 1) = v whenever
u < v (i.e. M(u, v, λ) is in the positive direction)

ii.) If M(u, v, .) is a strictly deccreasing, then M(u, v, 0) = v and M(u, v, 1) = u

whenever u < v (i.e. M(u, v, λ) is in the negative direction) and M(u, v, .)([0, 1]) =
[min {u, v} ,max {u, v}] .

Remark 2.2. Throughout this paper, we will assume that different weighted means have the
same direction unless otherwise stated.

Example 2.1.
M(u, v, λ) = A(u, v, λ) = Aλ = (1− λ)u+ λv

is the Weighted Arithmetic Mean,

M(u, v, λ) = G(u, v, λ) = Gλ = u1−λvλ

is the Weighted Geometic Mean,

M(u, v, λ) = H(u, v, λ) = Hλ = A−1(u−1, v−1, λ) = uv

λu+ (1− λ)v
is the Weighted Harmonic Mean,

M(u, v, λ) = Mp(u, v, λ) = Mp,λ =
{
A1/p(up, vp, λ) = ((1− λ)xp + λyp)1/p p ∈ R\ {0}

G(u, v, λ) = u1−λvλ p = 0
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is the p-Power Mean. In particular, we have the following inequality

M−1,λ = Hλ ≤M0,λ = Gλ ≤M1,λ = Aλ ≤Mp,λ

for all x, y ∈ (0,∞), t ∈ [0, 1] and p ≥ 1.

Proposition 2.1. If M : (0,∞) × (0,∞) × [0, 1] → (0,∞) is a weighted mean function,
then the following identities hold:

M (M (a,M(a, b, s), λ) ,M (b,M(a, b, s), λ) , s) = M(a, b, s), (2.1)

M (M(a, b, λ),M(b, a, λ), 1/2) = M(a, b, 1/2). (2.2)

Proof. If we take v = w = M(a, b, s), u = a and z = b in (WM7) and we use the property
(WM2), then we obtained the identity (2.1). By using similar method, if we take u = w = a,

v = z = b and s = 1/2 in (WM7) and we use the properties (WM1) and (WM2), then we
obtained the identity (2.2). �

Definition 2.2. Let M and N be two weighted means defined on the intervals I ⊆ (0,∞)
and J ⊆ (0,∞) respectively, a function f : I → J is called MN -convex (concave) if it
satisfies

f (M(u, v, λ)) ≤ (≥)N (f(u), f(v), λ)

for all u, v ∈ I and λ ∈ [0, 1] .

The condition (WM8) in Definition 2.1 shows us that the functionM(u, v, .) is bothMM -
convex and MM -concave on [0, 1] for fixed u, v ∈ (0,∞). It is easily seen that weighted
means mentioned in the Example 2.1 hold the condition (WM8).

We note that by considering the special cases of M and N , we obtain several different
convexity classes as AA-convexity (classical convexity), AG-convexity (log-convexity), GA-
convexity, GG-convexity (geometrically convexity), HA-convexity (harmonically convexity),
MpA-convexity (p-convexity),...,etc. For some convexity types, see ([6, 9, 14,15]).

Definition 2.3. LetM and N be two weighted means defined on the intervals [u, v] ⊆ (0,∞)
and J ⊆ (0,∞) respectively and f : [u, v]→ J be a function. We say that f is symmetric
with respect to M(u, v, 1/2), if it satisfies

f (M(u, v, λ)) = f (M(u, v, 1− λ))

for all λ ∈ [0, 1] .

Theorem 2.1. Let M and N be two weighted means defined on the intervals [u, v] ⊆ (0,∞)
and J ⊆ (0,∞) respectively. If function f : [u, v]→ J is MN -convex, then the function f
is bounded.

Proof. Let K = max {f(u), f(v)} . For any z = M(u, v, λ) in the interval [u, v] , By using
MN -convexity of f and (WM3) we have

f(z) ≤ N (f(u), f(v), λ) ≤ K.
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The function f is also bounded from below. For any z ∈ (u, v] , there exists a λ0 ∈ (0, 1]
such that z = M(u, v, λ0), then by using MN -convexity of f and (2.2 ) we have

f (M(u, v, 1/2)) = f (M (z,M(v, u, λ0), 1/2)) ≤ N (f(z), f (M(v, u, λ0)) , 1/2) . (2.3)

On the other hand, if f(z) = f (M(v, u, λ0)) , then N (f(z), f (M(v, u, λ0)) , 1/2) = f(z) and
thus the function f is also bounded from below.

If f(z) 6= f (M(v, u, λ0)) , then there exists µ0 ∈ (0, 1) such that

N (f(z), f (M(v, u, λ0)) , 1/2) = µ0f(z) + (1− µ0)f (M(v, u, λ0)) .

By the inequality (2.3) and using K as the upper bound, we have

f(z) ≥ 1
λ0

[f (M(u, v, 1/2))− (1− λ0)f (M(v, u, λ0))]

≥ 1
λ0

[f (M(u, v, 1/2))− (1− λ0)K] = k.

Thus, we obtain f(z) ≥ max {k, f(u)} for any z ∈ [u, v]. This completes the proof. �

Theorem 2.2. Let M and N be two weighted means defined on the intervals I ⊆ (0,∞) and
J ⊆ (0,∞) respectively. If the functions f, g : I → J are MN -convex, then N(f(.), g(.), 1/2)
is a MN -convex function.

Proof. Since f and g are MN -convex functions, we have

f (M(u, v, λ)) ≤ N (f(u), f(v), λ)

and
g (M(u, v, λ)) ≤ N (g(u), g(v), λ)

for all u, v ∈ I and λ ∈ [0, 1] . Then by (WM5) and (WM7) we have

N(f(.), g(.), 1/2)(M(u, v, λ))
= N (f (M(u, v, λ)) , g (M(u, v, λ)) , 1/2)
≤ N (N (f(u), f(v), λ) , N (g(u), g(v), λ) , 1/2)
= N (N(f(.), g(.), 1/2)(u), N(f(.), g(.), 1/2)(v), λ) .

This completes the proof. �

We can give the following results for different convexity classes by considering the special
cases of M and N .

Corollary 2.1. Let I, J ⊆ (0,∞) and f, g : I → J .
i.) If f and g are convex functions, then A(f(.), g(.), 1/2) = (f + g)/2 is also convex

function.
ii.) If f and g are GA-convex functions, then A(f(.), g(.), 1/2) = (f + g)/2 is also

GA-convex function.
iii.) If f and g are harmonically convex functions, then A(f(.), g(.), 1/2) = (f + g)/2 is

also harmonically convex function.
iv.) If f and g are p-convex functions, then A(f(.), g(.), 1/2) = (f + g)/2 is also p-convex

function.
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v.) If f and g are log-convex functions, then G(f(.), g(.), 1/2) =
√
fg is also log-convex

function.
vi.) If f and g are GG-convex functions, then G(f(.), g(.), 1/2) =

√
fg is also GG-convex

function.
vii.) If f and g are HG-convex functions, then G(f(.), g(.), 1/2) =

√
fg is also HG-convex

function.
viii.) If f and g are AH-convex functions, then H(f(.), g(.), 1/2) = 2fg/(f + g) is also

AH-convex function.

Remark 2.3. In Corollary 2.1, we gave results only for some convexity types. It is possible
to increase the results by considering another special cases of M and N.

Theorem 2.3. Let M and N be two weighted means defined on the intervals I ⊆ (0,∞)
and J ⊆ (0,∞) respectively. If f : I → J is a MN -convex function and α > 0, then αf is
a MN -convex function.

Proof. By using MN -convexity of f and (WM4), we have

αf (M(u, v, λ)) ≤ αN (f(u), f(v), λ) ≤ N (αf(u), αf(v), λ) .

This completes the proof. �

Theorem 2.4. Let M,N and K be three weighted means defined on the intervals I ⊆
(0,∞), J ⊆ (0,∞) and L ⊆ (0,∞) respectively. If f : I → J is a MN -convex function and
g : J ⊆ (0,∞)→ L is nondecreasing and NK-convex function, then g ◦ f is a MK-convex
function.

Proof. By using MN -convexity of f , we have

f (M(u, v, λ)) ≤ N (f(u), f(v), λ) .

Since g is NK-convex and nondecreasing function

g (f (M(u, v, λ))) ≤ g (N (f(u), f(v), λ)) ≤ K (g(f(u)), g(f(v)), λ) .

This completes the proof. �

Theorem 2.5. Let M and N be two weighted means defined on the intervals I ⊆ (0,∞)
and J ⊆ (0,∞) respectively. If the function f : I → J is MN -convex and N ≤ A (A is
the weighted arithmetic mean), then f satisfies Lipschitz condition on any closed interval
[a, b] contained in the interior I◦ of I. Consequently, f is absolutely continuous on [a, b]
and continuous on I◦.

Proof. Choose ε > 0 so that a− ε and b+ ε belong to I, and let m1 and m2 be the lower and
upper bounds for f on [a− ε, b+ ε] . If u and v are distinct points of [a, b] and we choose a
point z such that

v = M(u, z, λ), λ = |v − u|
ε+ |v − u| ,

then
f(v) ≤ N (f(u), f(z), λ) ≤ A (f(u), f(z), λ) = f(u) + λ [f(z)− f(u)]
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f(v)− f(u) ≤ λ [f(z)− f(u)] ≤ λ(m2 −m1) < |v − u|
ε

(m2 −m1) = K |v − u|

where K = (m2 − m1)/ε. Since this is true for any u, v ∈ [a, b], we conclude that
|f(v)− f(u)| ≤ K |v − u| as desired.

Next we recall that f is absolutely continuous on [a, b] if corresponding to any ε > 0, we
can produce a δ > 0 such that for any collection {(ai, bi)}n1 of disjoint open subintervals of
[a, b] with

∑n
i=1 (bi − ai) < δ,

∑n
i=1 |f(bi)− f(ai)| < ε. Clearly the choice δ = ε/K meets

this requirement.
Finally the continuity of f on I◦ is a consequence of the arbitrariness. �

Theorem 2.6. Let M and N be two weighted means defined on the intervals I ⊆ (0,∞)
and J ⊆ (0,∞) respectively. If function fα : I → J be an arbitrary family of MN -convex
functions and let f(u) = supα fα(u). If K = {x ∈ I : f(x) <∞} is nonempty, then K is an
interval and f is MN -convex function on K.

Proof. Let λ ∈ [0, 1] and u, v ∈ K be arbitrary. Then

f (M (u, v, λ))
= sup

α
fα (M (u, v, λ))

≤ sup
α

(N (fα(u), fα(v), λ))

≤ N

(
sup
α
fα(u), sup

α
fα(v), λ

)
= N (f(u), f(v), λ) <∞.

This shows simultaneously that K is an interval, since it contains every point between any
two of its points, and that f is MN -convex function on K. This completes the proof of
theorem. �

Theorem 2.7 (Hermite-Hadamard’s inequalities for MN -convex functions). Let M and N
be two weighted means defined on the intervals I ⊆ (0,∞) and J ⊆ (0,∞) respectively. If
function f : I → J is MN -convex and the following integral exists, then we have

f (M(u, v, 1/2)) ≤
∫ 1

0
N (f (M(u, v, λ)) , f (M(u, v, 1− λ)) , 1/2) dλ ≤ N (f(u), f(v), 1/2)

(2.4)
for all u, v ∈ I with u < v.

Proof. Since f : I → R is a MN -convex function, by using (2.2) we have

f (M(u, v, 1/2)) = f (M (M(u, v, λ),M(u, v, 1− λ), 1/2))
≤ N (f (M(u, v, λ)) , f (M(u, v, 1− λ)) , 1/2)

for all u, v ∈ I and λ ∈ [0, 1]. Further, integrating for λ ∈ [0, 1], we have

f (M(u, v, 1/2)) ≤
∫ 1

0
N (f (M(u, v, λ)) , f (M(u, v, 1− λ)) , 1/2) dλ. (2.5)

Thus, we obtain the left-hand side of the inequality (2.4) from (2.5).
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Secondly, By using MN -convexity of f and (WM5) with (2.2), we get

N (f (M(u, v, λ)) , f (M(u, v, 1− λ)) , 1/2)
≤ N (N(f(u), f(v), λ), N(f(u), f(v), 1− λ), 1/2)
= N (f(u), f(v), 1/2) .

Integrating this inequality with respect to λ over [0, 1], we obtain the right-hand side of the
inequality (2.4). This completes the proof. �

We can give the following some results for different convexity classes by considering the
special cases ofM and N . It is possible to increase the results by considering another special
cases of M and N.

Corollary 2.2. Let I, J ⊆ (0,∞) and f : I → J .
i.) If f is convex function (i.e. if M = N = A (A is the weighted arithmetic mean)), then

we have the following well-known celebrated Hermite-Hadamard’s inequalities for convex
functions

f (A(u, v, 1/2)) = f

(
u+ v

2

)
≤

∫ 1

0
A (f (A(u, v, λ)) , f (A(u, v, 1− λ)) , 1/2) dλ

= 1
2(v − u)

∫ v

u
f(x) + f(u+ v − x)dx

= 1
v − u

∫ v

u
f(x)dx

≤ A (f(u), f(v), 1/2) = f(u) + f(v)
2 .

ii.) If f is GA-convex function, then we have the following Hermite-Hadamard’s inequal-
ities for GA-convex functions (see [7, Theorem 3.1. with s = 1])

f (G(u, v, 1/2)) = f
(√
uv
)

≤
∫ 1

0
A (f (G(u, v, λ)) , f (G(u, v, 1− λ)) , 1/2) dλ

= 1
2(ln v − ln u)

∫ v

u
f(x) + f(uv

x
)dx
x

= 1
ln v − ln u

∫ v

u

f(x)
x

dx

≤ A (f(u), f(v), 1/2) = f(u) + f(v)
2 .
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iii.) If f is harmonically convex function, then we have the following Hermite-Hadamard’s
inequalities for harmonically-convex functions (see [6, 2.4. Theorem])

f (H(u, v, 1/2)) = f

( 2uv
u+ v

)
≤

∫ 1

0
A (f (H(u, v, λ)) , f (H(u, v, 1− λ)) , 1/2) dλ

= uv

2 (v − u)

∫ v

u
f(x) + f

([
u−1 + v−1 − x−1

]−1
)
dx

x2

= uv

v − u

∫ v

u

f(x)
x2 dx

≤ A (f(u), f(v), 1/2) = f(u) + f(v)
2 .

iv.) If f is p-convex function (p 6= 0), then we have the following Hermite-Hadamard’s
inequalities for p-convex functions (see [9, Theorem 2])

f (Mp(u, v, 1/2)) = f

([
up + vp

2

]1/p
)

≤
∫ 1

0
A (f (Mp(u, v, λ)) , f (Mp(u, v, 1− λ)) , 1/2) dλ

= p

2 (vp − up)

∫ v

u
f(x) + f

(
[up + vp − xp]1/p

) dx

x1−p

= p

vp − up
∫ v

u

f(x)
x1−pdx

≤ A (f(u), f(v), 1/2) = f(u) + f(v)
2 .

v.) If f is log-convex function, then we have the following Hermite-Hadamard’s inequalities
for log-convex functions (see [5, Theorem 2.1])

f (A(u, v, 1/2)) = f

(
u+ v

2

)
≤

∫ 1

0
G (f (A(u, v, λ)) , f (A(u, v, 1− λ)) , 1/2) dλ

= 1
v − u

∫ v

u

√
f(x)f(u+ v − x)dx

≤ G (f(u), f(v), 1/2) =
√
f(u)f(v).
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vi.) If f is GG-convex function, then we have the following Hermite-Hadamard’s inequal-
ities for GG-convex functions (see [8, the inequality (7)])

f (G(u, v, 1/2)) = f
(√
uv
)

≤
∫ 1

0
G (f (G(u, v, λ)) , f (G(u, v, 1− λ)) , 1/2) dλ

= 1
ln v − ln u

∫ v

u

√
f(x)f

(
uv

x

)
dx

x

≤ G (f(u), f(v), 1/2) =
√
f(u)f(v).

vii.) If f is HG-convex function, then we have

f (H(u, v, 1/2)) = f

( 2uv
u+ v

)
≤

∫ 1

0
G (f (H(u, v, λ)) , f (H(u, v, 1− λ)) , 1/2) dλ

= uv

v − u

∫ v

u

√
f(x)f

(
[u−1 + v−1 − x−1]−1

)dx
x2

≤ G (f(u), f(v), 1/2) =
√
f(u)f(v).

viii.) If f is AH-convex function, then we have

f (A(u, v, 1/2)) = f

(
u+ v

2

)
≤

∫ 1

0
H (f (A(u, v, λ)) , f (A(u, v, 1− λ)) , 1/2) dλ

= 2
v − u

∫ v

u

f(x)f(u+ v − x)
f(x) + f(u+ v − x)dx

≤ A (f(u), f(v), 1/2) = f(u) + f(v)
2 .

Theorem 2.8. Let M and N be two weighted means defined on the intervals [u, v] ⊆ (0,∞)
and J ⊆ (0,∞) respectively. If function f : [u, v] → J is MN -convex and symmetric with
respect to M(u, v, 1/2), then we have

f (M(u, v, 1/2)) ≤ f(x) ≤ N (f(u), f(v), 1/2) (2.6)

for all x ∈ I.

Proof. Let x ∈ [u, v] be arbitrary point. Then there exists a λ ∈ [0, 1] such that x =
M(u, v, λ). Since f : [u, v] → J is a MN -convex function and symmetric with respect to
M(u, v, 1/2), by using (2.2) we have

f (M(u, v, 1/2)) = f (M (M(u, v, λ),M(u, v, 1− λ), 1/2))
≤ N (f (M(u, v, λ)) , f (M(u, v, 1− λ)) , 1/2)
= f(x).
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Thus, we obtain the left-hand side of the inequality (2.6). Secondly, By usingMN -convexity
of f and (WM5) with (2.2), we get

f(x) = N (f (M(u, v, λ)) , f (M(u, v, 1− λ) , 1/2)
≤ N (N(f(u), f(v), λ), N(f(u), f(v), 1− λ), 1/2)
= N (f(u), f(v), 1/2) .

This completes the proof. �

We can give the following some results for different convexity classes by considering the
special cases ofM and N . It is possible to increase the results by considering another special
cases of M and N.

Corollary 2.3. Let I, J ⊆ (0,∞) and f : I → J .
i.) If f is a convex function and symmetric with respect to (u+ v)/2, then we have the

following inequalities for convex functions (see [4, Theorem 2])

f

(
u+ v

2

)
≤ f(x) ≤ f(u) + f(v)

2 .

ii.) If f is a GA-convex function and symmetric with respect to
√
uv, then we have the

following inequalities for convex functions (see [10, Theorem 2.9])

f
(√
uv
)
≤ f(x) ≤ f(u) + f(v)

2 .

iii.) If f is a p-convex function and symmetric with respect to
(
up+vp

2

)1/p
, then we have

the following inequalities for convex functions (see [11, Theorem 2.2 ])

f

([
up + vp

2

]1/p
)
≤ f(x) ≤ f(u) + f(v)

2 .

3. Conclusion

The aim of this article is to determine that a mean is called the weighted mean when it
meets what conditions, and also is to give a general definition of MN -convex functions. The
importance of this study is that some properties of MN -convex functions and some related
inequalities have been proven in general terms via this general definition of MN -convex
functions.
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