Turkish Journal of INEQUALITIES

Available online at www.tjinequality.com

ON WEIGHTED MEANS AND MN-CONVEX FUNCTIONS

İMDAT İŞCAN¹

ABSTRACT. In this paper, we give more general definitions of weighted means and MNconvex functions. Using these definitions, we also obtain some generalized results related to the properties of MN-convex functions. The importance of this study is that the results of this paper can be reduced to different convexity classes by considering the special cases of M and N.

1. INTRODUCTION

The notions of convexity and concavity of a real-valued function of a real variable are well known [16]. The generalized condition of convexity, i.e. MN-convexity with respect to arbitrary means M and N, was proposed in 1933 by Aumann [2]. Recently many authors have dealt with these generalizations. In particular, Niculescu [15] compared MN-convexity with relative convexity. Andersen et al. [3] examined inequalities implied by MN-convexity. In [3], Anderson et al. studied certain generalizations of these notions for a positive-valued function of a positive variable as follows:

Definition 1.1. A function $M: (0,\infty) \times (0,\infty) \to (0,\infty)$ is called a Mean function if

- (M1) M(u,v) = M(v,u),
- (M2) M(u, u) = u,
- (M3) u < M(u, v) < v whenever u < v,
- (M4) $M(\lambda u, \lambda v) = \lambda M(u, v)$ for all $\lambda > 0$.

Example 1.1. For $u, v \in (0, \infty)$

$$M(u,v) = A(u,v) = A = \frac{u+v}{2}$$

is the Arithmetic Mean,

$$M(u,v) = G(u,v) = G = \sqrt{uv}$$

Key words and phrases. MN-convex functions, Means, Weighted means, Integral inequalities. 2010 Mathematics Subject Classification. Primary: 26A51. Secondary: 26E60.

²⁰¹⁰ Mathematics Subject Classification. Filmary. 20A51. Secon

Received: 23/10/2021 Accepted: 05/12/2021.

Cited this article as: İ. İşcan, On Weighted Means and MN-convex functions, Turkish Journal of Inequalities, 5(2) (2021), 70-81.

is the Geometric Mean,

$$M(u,v) = H(u,v) = H = A^{-1}(u^{-1},v^{-1}) = \frac{2uv}{u+v}$$

is the Harmonic Mean,

$$M(u,v) = L(u,v) = L = \begin{cases} \frac{u-v}{\ln u - \ln v} & u \neq v \\ u & u = v \end{cases}$$

is the Logarithmic Mean,

$$M(u,v) = I(u,v) = I = \begin{cases} \frac{1}{e} \left(\frac{u^u}{v^v}\right)^{\frac{1}{u-v}} & u \neq v \\ u & u = v \end{cases}$$

is the Identric Mean,

$$M(u,v) = M_p(u,v) = M_p = \begin{cases} A^{1/p}(u^p,v^p) = \left(\frac{u^p + v^p}{2}\right)^{1/p} & p \in \mathbb{R} \setminus \{0\} \\ G(u,v) = \sqrt{uv} & p = 0 \end{cases}$$

is the *p*-Power Mean, In particular, we have the following inequality

$$M_{-1} = H \le M_0 = G \le L \le I \le A = M_1$$

Anderson et al. in [3] developed a systematic study to the classical theory of continuous and midconvex functions, by replacing a given mean instead of the arithmetic mean.

Definition 1.2. Let M and N be two means defined on the intervals $I \subset (0, \infty)$ and $J \subset (0, \infty)$ respectively, a function $f: I \to J$ is called MN-midpoint convex if it satisfies

$$f(M(u,v)) \le N(f(u), f(v))$$

for all $u, v \in I$.

The concept of MN-convexity has been studied extensively in the literature from various points of view (see e.g. [1, 2, 12, 15]),

Let $A(u, v, \lambda) = \lambda u + (1 - \lambda)v$, $G(u, v, \lambda) = u^{\lambda}v^{1-\lambda}$, $H(u, v, \lambda) = uv/(\lambda u + (1 - \lambda)v)$ and $M_p(u, v, \lambda) = (\lambda u^p + (1 - \lambda)v^p)^{1/p}$ be the weighted arithmetic, geometric, harmonic, power of order p means of two positive real numbers u and v with $u \neq v$ for $\lambda \in [0, 1]$, respectively. $M_p(u, v, \lambda)$ is continuous and strictly increasing with respect to $\lambda \in \mathbb{R}$ for fixed $p \in \mathbb{R} \setminus \{0\}$ and u, v > 0 with u > v. See [6, 9, 12-15] for some kinds of convexity obtained by using weighted means.

The aims of this paper, a general definition of weighted means and a general definition of MN-convex functions via the weighted means is to give. In recent years, many studies have been done by considering the special cases of M and N. The importance of this study is that some properties of MN-convex functions and some related inequalities have been proven in general terms.

2. Main Results

Definition 2.1. A function $M: (0, \infty) \times (0, \infty) \times [0, 1] \to (0, \infty)$ is called a weighted mean function if

- (WM1) $M(u, v, \lambda) = M(v, u, 1 \lambda),$
- (WM2) $M(u, u, \lambda) = u$,
- (WM3) $u < M(u, v, \lambda) < v$ whenever u < v and $\lambda \in (0, 1)$. Also $\{M(u, v, 0), M(u, v, 1)\} = \{u, v\}$.
- (WM4) $M(\alpha u, \alpha v, \lambda) = \alpha M(u, v, \lambda)$ for all $\alpha > 0$,
- (WM5) let $\lambda \in [0,1]$ be fixed. Then $M(u,v,\lambda) \leq M(w,v,\lambda)$ whenever $u \leq w$ and $M(u,v,\lambda) \leq M(u,\omega,\lambda)$ whenever $v \leq \omega$.
- (WM6) let $u, v \in (0, \infty)$ be fixed and $u \neq v$. Then M(u, v, .) is a strictly monotone and continuous function on [0, 1].
- (WM7) $M(M(u, v, \lambda), M(z, w, \lambda), s) = M(M(u, z, s), M(v, w, s), \lambda)$ for all $u, v, z, w \in (0, \infty)$ and $s, \lambda \in [0, 1]$.
- (WM8) $M(u, v, s\lambda_1 + (1 s)\lambda_2) = M(M(u, v, \lambda_1), M(u, v, \lambda_2), s)$ for all $u, v \in (0, \infty)$ and $s, \lambda_1, \lambda_2 \in [0, 1].$

Remark 2.1. According to the above definition every weighted mean function is a mean function with $\lambda = 1/2$. Also, By (WM6) we can say that for each $x \in [u, v] \subseteq (0, \infty)$ there exists a $\lambda \in [0, 1]$ such that $x = M(u, v, \lambda)$. Morever;

i.) If M(u, v, .) is a strictly increasing, then M(u, v, 0) = u and M(u, v, 1) = v whenever u < v (i.e. $M(u, v, \lambda)$ is in the positive direction)

ii.) If M(u, v, .) is a strictly deccreasing, then M(u, v, 0) = v and M(u, v, 1) = uwhenever u < v (i.e. $M(u, v, \lambda)$ is in the negative direction) and $M(u, v, .)([0, 1]) = [\min \{u, v\}, \max \{u, v\}]$.

Remark 2.2. Throughout this paper, we will assume that different weighted means have the same direction unless otherwise stated.

Example 2.1.

$$M(u, v, \lambda) = A(u, v, \lambda) = A_{\lambda} = (1 - \lambda)u + \lambda v$$

is the Weighted Arithmetic Mean,

$$M(u, v, \lambda) = G(u, v, \lambda) = G_{\lambda} = u^{1-\lambda} v^{\lambda}$$

is the Weighted Geometric Mean,

$$M(u, v, \lambda) = H(u, v, \lambda) = H_{\lambda} = A^{-1}(u^{-1}, v^{-1}, \lambda) = \frac{uv}{\lambda u + (1 - \lambda)v}$$

is the Weighted Harmonic Mean,

$$M(u,v,\lambda) = M_p(u,v,\lambda) = M_{p,\lambda} = \begin{cases} A^{1/p}(u^p,v^p,\lambda) = ((1-\lambda)x^p + \lambda y^p)^{1/p} & p \in \mathbb{R} \setminus \{0\} \\ G(u,v,\lambda) = u^{1-\lambda}v^\lambda & p = 0 \end{cases}$$

is the *p*-Power Mean. In particular, we have the following inequality

$$M_{-1,\lambda} = H_{\lambda} \le M_{0,\lambda} = G_{\lambda} \le M_{1,\lambda} = A_{\lambda} \le M_{p,\lambda}$$

for all $x, y \in (0, \infty), t \in [0, 1]$ and $p \ge 1$.

Proposition 2.1. If $M : (0, \infty) \times (0, \infty) \times [0, 1] \rightarrow (0, \infty)$ is a weighted mean function, then the following identities hold:

$$M(M(a, M(a, b, s), \lambda), M(b, M(a, b, s), \lambda), s) = M(a, b, s),$$
(2.1)

$$M(M(a, b, \lambda), M(b, a, \lambda), 1/2) = M(a, b, 1/2).$$
(2.2)

Proof. If we take v = w = M(a, b, s), u = a and z = b in (WM7) and we use the property (WM2), then we obtained the identity (2.1). By using similar method, if we take u = w = a, v = z = b and s = 1/2 in (WM7) and we use the properties (WM1) and (WM2), then we obtained the identity (2.2).

Definition 2.2. Let M and N be two weighted means defined on the intervals $I \subseteq (0, \infty)$ and $J \subseteq (0, \infty)$ respectively, a function $f : I \to J$ is called MN-convex (concave) if it satisfies

$$f(M(u, v, \lambda)) \le (\ge) N(f(u), f(v), \lambda)$$

for all $u, v \in I$ and $\lambda \in [0, 1]$.

The condition (WM8) in Definition 2.1 shows us that the function M(u, v, .) is both MM-convex and MM-concave on [0, 1] for fixed $u, v \in (0, \infty)$. It is easily seen that weighted means mentioned in the Example 2.1 hold the condition (WM8).

We note that by considering the special cases of M and N, we obtain several different convexity classes as AA-convexity (classical convexity), AG-convexity (log-convexity), GAconvexity, GG-convexity (geometrically convexity), HA-convexity (harmonically convexity), M_pA -convexity (p-convexity),...,etc. For some convexity types, see ([6,9,14,15]).

Definition 2.3. Let M and N be two weighted means defined on the intervals $[u, v] \subseteq (0, \infty)$ and $J \subseteq (0, \infty)$ respectively and $f : [u, v] \to J$ be a function. We say that f is symmetric with respect to M(u, v, 1/2), if it satisfies

$$f(M(u, v, \lambda)) = f(M(u, v, 1 - \lambda))$$

for all $\lambda \in [0, 1]$.

Theorem 2.1. Let M and N be two weighted means defined on the intervals $[u, v] \subseteq (0, \infty)$ and $J \subseteq (0, \infty)$ respectively. If function $f : [u, v] \to J$ is MN-convex, then the function fis bounded.

Proof. Let $K = \max \{f(u), f(v)\}$. For any $z = M(u, v, \lambda)$ in the interval [u, v], By using MN-convexity of f and (WM3) we have

$$f(z) \le N\left(f(u), f(v), \lambda\right) \le K.$$

The function f is also bounded from below. For any $z \in (u, v]$, there exists a $\lambda_0 \in (0, 1]$ such that $z = M(u, v, \lambda_0)$, then by using MN-convexity of f and (2.2) we have

$$f(M(u, v, 1/2)) = f(M(z, M(v, u, \lambda_0), 1/2)) \le N(f(z), f(M(v, u, \lambda_0)), 1/2).$$
(2.3)

On the other hand, if $f(z) = f(M(v, u, \lambda_0))$, then $N(f(z), f(M(v, u, \lambda_0)), 1/2) = f(z)$ and thus the function f is also bounded from below.

If $f(z) \neq f(M(v, u, \lambda_0))$, then there exists $\mu_0 \in (0, 1)$ such that

$$N(f(z), f(M(v, u, \lambda_0)), 1/2) = \mu_0 f(z) + (1 - \mu_0) f(M(v, u, \lambda_0)).$$

By the inequality (2.3) and using K as the upper bound, we have

$$f(z) \geq \frac{1}{\lambda_0} \left[f(M(u, v, 1/2)) - (1 - \lambda_0) f(M(v, u, \lambda_0)) \right] \\ \geq \frac{1}{\lambda_0} \left[f(M(u, v, 1/2)) - (1 - \lambda_0) K \right] = k.$$

Thus, we obtain $f(z) \ge \max\{k, f(u)\}$ for any $z \in [u, v]$. This completes the proof. \Box

Theorem 2.2. Let M and N be two weighted means defined on the intervals $I \subseteq (0, \infty)$ and $J \subseteq (0, \infty)$ respectively. If the functions $f, g: I \to J$ are MN-convex, then N(f(.), g(.), 1/2) is a MN-convex function.

Proof. Since f and g are MN-convex functions, we have

$$f(M(u, v, \lambda)) \le N(f(u), f(v), \lambda)$$

and

$$g(M(u, v, \lambda)) \le N(g(u), g(v), \lambda)$$

for all $u, v \in I$ and $\lambda \in [0, 1]$. Then by (WM5) and (WM7) we have

$$N(f(.), g(.), 1/2)(M(u, v, \lambda))$$

$$= N(f(M(u, v, \lambda)), g(M(u, v, \lambda)), 1/2)$$

$$\leq N(N(f(u), f(v), \lambda), N(g(u), g(v), \lambda), 1/2)$$

$$= N(N(f(.), g(.), 1/2)(u), N(f(.), g(.), 1/2)(v), \lambda).$$

This completes the proof.

We can give the following results for different convexity classes by considering the special cases of M and N.

Corollary 2.1. Let $I, J \subseteq (0, \infty)$ and $f, g: I \to J$.

i.) If f and g are convex functions, then A(f(.), g(.), 1/2) = (f + g)/2 is also convex function.

ii.) If f and g are GA-convex functions, then A(f(.),g(.),1/2) = (f+g)/2 is also GA-convex function.

iii.) If f and g are harmonically convex functions, then A(f(.), g(.), 1/2) = (f+g)/2 is also harmonically convex function.

iv.) If f and g are p-convex functions, then A(f(.), g(.), 1/2) = (f+g)/2 is also p-convex function.

v.) If f and g are log-convex functions, then $G(f(.), g(.), 1/2) = \sqrt{fg}$ is also log-convex function.

vi.) If f and g are GG-convex functions, then $G(f(.), g(.), 1/2) = \sqrt{fg}$ is also GG-convex function.

vii.) If f and g are HG-convex functions, then $G(f(.), g(.), 1/2) = \sqrt{fg}$ is also HG-convex function.

viii.) If f and g are AH-convex functions, then H(f(.), g(.), 1/2) = 2fg/(f+g) is also AH-convex function.

Remark 2.3. In Corollary 2.1, we gave results only for some convexity types. It is possible to increase the results by considering another special cases of M and N.

Theorem 2.3. Let M and N be two weighted means defined on the intervals $I \subseteq (0, \infty)$ and $J \subseteq (0, \infty)$ respectively. If $f : I \to J$ is a MN-convex function and $\alpha > 0$, then αf is a MN-convex function.

Proof. By using MN-convexity of f and (WM4), we have

$$\alpha f\left(M(u, v, \lambda)\right) \le \alpha N\left(f(u), f(v), \lambda\right) \le N\left(\alpha f(u), \alpha f(v), \lambda\right).$$

This completes the proof.

Theorem 2.4. Let M, N and K be three weighted means defined on the intervals $I \subseteq (0, \infty), J \subseteq (0, \infty)$ and $L \subseteq (0, \infty)$ respectively. If $f : I \to J$ is a MN-convex function and $g : J \subseteq (0, \infty) \to L$ is nondecreasing and NK-convex function, then $g \circ f$ is a MK-convex function.

Proof. By using MN-convexity of f, we have

$$f(M(u, v, \lambda)) \le N(f(u), f(v), \lambda).$$

Since g is NK-convex and nondecreasing function

$$g\left(f\left(M(u,v,\lambda)\right)\right) \le g\left(N\left(f(u),f(v),\lambda\right)\right) \le K\left(g(f(u)),g(f(v)),\lambda\right).$$

This completes the proof.

Theorem 2.5. Let M and N be two weighted means defined on the intervals $I \subseteq (0, \infty)$ and $J \subseteq (0, \infty)$ respectively. If the function $f: I \to J$ is MN-convex and $N \leq A$ (A is the weighted arithmetic mean), then f satisfies Lipschitz condition on any closed interval [a, b] contained in the interior I° of I. Consequently, f is absolutely continuous on [a, b]and continuous on I° .

Proof. Choose $\varepsilon > 0$ so that $a - \varepsilon$ and $b + \varepsilon$ belong to I, and let m_1 and m_2 be the lower and upper bounds for f on $[a - \varepsilon, b + \varepsilon]$. If u and v are distinct points of [a, b] and we choose a point z such that

$$v = M(u, z, \lambda), \ \lambda = \frac{|v - u|}{\varepsilon + |v - u|},$$

then

$$f(v) \le N\left(f(u), f(z), \lambda\right) \le A\left(f(u), f(z), \lambda\right) = f(u) + \lambda\left[f(z) - f(u)\right]$$

 \square

İMDAT İŞCAN

$$f(v) - f(u) \le \lambda [f(z) - f(u)] \le \lambda (m_2 - m_1) < \frac{|v - u|}{\varepsilon} (m_2 - m_1) = K |v - u|$$

where $K = (m_2 - m_1)/\varepsilon$. Since this is true for any $u, v \in [a, b]$, we conclude that $|f(v) - f(u)| \leq K |v - u|$ as desired.

Next we recall that f is absolutely continuous on [a, b] if corresponding to any $\varepsilon > 0$, we can produce a $\delta > 0$ such that for any collection $\{(a_i, b_i)\}_1^n$ of disjoint open subintervals of [a, b] with $\sum_{i=1}^n (b_i - a_i) < \delta$, $\sum_{i=1}^n |f(b_i) - f(a_i)| < \varepsilon$. Clearly the choice $\delta = \varepsilon/K$ meets this requirement.

Finally the continuity of f on I° is a consequence of the arbitrariness.

Theorem 2.6. Let M and N be two weighted means defined on the intervals $I \subseteq (0, \infty)$ and $J \subseteq (0, \infty)$ respectively. If function $f_{\alpha} : I \to J$ be an arbitrary family of MN-convex functions and let $f(u) = \sup_{\alpha} f_{\alpha}(u)$. If $K = \{x \in I : f(x) < \infty\}$ is nonempty, then K is an interval and f is MN-convex function on K.

Proof. Let $\lambda \in [0, 1]$ and $u, v \in K$ be arbitrary. Then

$$f(M(u, v, \lambda))$$

$$= \sup_{\alpha} f_{\alpha} (M(u, v, \lambda))$$

$$\leq \sup_{\alpha} (N(f_{\alpha}(u), f_{\alpha}(v), \lambda))$$

$$\leq N \left(\sup_{\alpha} f_{\alpha}(u), \sup_{\alpha} f_{\alpha}(v), \lambda \right)$$

$$= N(f(u), f(v), \lambda) < \infty.$$

This shows simultaneously that K is an interval, since it contains every point between any two of its points, and that f is MN-convex function on K. This completes the proof of theorem.

Theorem 2.7 (Hermite-Hadamard's inequalities for MN-convex functions). Let M and N be two weighted means defined on the intervals $I \subseteq (0, \infty)$ and $J \subseteq (0, \infty)$ respectively. If function $f: I \to J$ is MN-convex and the following integral exists, then we have

$$f(M(u,v,1/2)) \le \int_0^1 N(f(M(u,v,\lambda)), f(M(u,v,1-\lambda)), 1/2) \, d\lambda \le N(f(u), f(v), 1/2)$$
(2.4)

for all $u, v \in I$ with u < v.

Proof. Since $f: I \to \mathbb{R}$ is a *MN*-convex function, by using (2.2) we have

$$\begin{array}{ll} f\left(M(u,v,1/2)\right) &=& f\left(M\left(M(u,v,\lambda),M(u,v,1-\lambda),1/2\right)\right) \\ &\leq& N\left(f\left(M(u,v,\lambda)\right),f\left(M(u,v,1-\lambda)\right),1/2\right) \end{array}$$

for all $u, v \in I$ and $\lambda \in [0, 1]$. Further, integrating for $\lambda \in [0, 1]$, we have

$$f(M(u, v, 1/2)) \le \int_0^1 N(f(M(u, v, \lambda)), f(M(u, v, 1 - \lambda)), 1/2) d\lambda.$$
(2.5)

Thus, we obtain the left-hand side of the inequality (2.4) from (2.5).

Secondly, By using MN-convexity of f and (WM5) with (2.2), we get

$$N(f(M(u, v, \lambda)), f(M(u, v, 1 - \lambda)), 1/2)$$

$$\leq N(N(f(u), f(v), \lambda), N(f(u), f(v), 1 - \lambda), 1/2)$$

$$= N(f(u), f(v), 1/2).$$

Integrating this inequality with respect to λ over [0, 1], we obtain the right-hand side of the inequality (2.4). This completes the proof.

We can give the following some results for different convexity classes by considering the special cases of M and N. It is possible to increase the results by considering another special cases of M and N.

Corollary 2.2. Let $I, J \subseteq (0, \infty)$ and $f: I \to J$.

i.) If f is convex function (i.e. if M = N = A (A is the weighted arithmetic mean)), then we have the following well-known celebrated Hermite-Hadamard's inequalities for convex functions

$$\begin{split} f\left(A(u,v,1/2)\right) &= f\left(\frac{u+v}{2}\right) \\ &\leq \int_0^1 A\left(f\left(A(u,v,\lambda)\right), f\left(A(u,v,1-\lambda)\right), 1/2\right) d\lambda \\ &= \frac{1}{2(v-u)} \int_u^v f(x) + f(u+v-x) dx \\ &= \frac{1}{v-u} \int_u^v f(x) dx \\ &\leq A\left(f(u), f(v), 1/2\right) = \frac{f(u) + f(v)}{2}. \end{split}$$

ii.) If f is GA-convex function, then we have the following Hermite-Hadamard's inequalities for GA-convex functions (see [7, Theorem 3.1. with s = 1])

$$\begin{split} f\left(G(u,v,1/2)\right) &= f\left(\sqrt{uv}\right) \\ &\leq \int_{0}^{1} A\left(f\left(G(u,v,\lambda)\right), f\left(G(u,v,1-\lambda)\right), 1/2\right) d\lambda \\ &= \frac{1}{2(\ln v - \ln u)} \int_{u}^{v} f(x) + f\left(\frac{uv}{x}\right) \frac{dx}{x} \\ &= \frac{1}{\ln v - \ln u} \int_{u}^{v} \frac{f(x)}{x} dx \\ &\leq A\left(f(u), f(v), 1/2\right) = \frac{f(u) + f(v)}{2}. \end{split}$$

İMDAT İŞCAN

iii.) If f is harmonically convex function, then we have the following Hermite-Hadamard's inequalities for harmonically-convex functions (see [6, 2.4. Theorem])

$$\begin{split} f\left(H(u,v,1/2)\right) &= f\left(\frac{2uv}{u+v}\right) \\ &\leq \int_0^1 A\left(f\left(H(u,v,\lambda)\right), f\left(H(u,v,1-\lambda)\right), 1/2\right) d\lambda \\ &= \frac{uv}{2\left(v-u\right)} \int_u^v f(x) + f\left(\left[u^{-1}+v^{-1}-x^{-1}\right]^{-1}\right) \frac{dx}{x^2} \\ &= \frac{uv}{v-u} \int_u^v \frac{f(x)}{x^2} dx \\ &\leq A\left(f(u), f(v), 1/2\right) = \frac{f(u)+f(v)}{2}. \end{split}$$

iv.) If f is p-convex function $(p \neq 0)$, then we have the following Hermite-Hadamard's inequalities for p-convex functions (see [9, Theorem 2])

$$\begin{split} f\left(M_{p}(u,v,1/2)\right) &= f\left(\left[\frac{u^{p}+v^{p}}{2}\right]^{1/p}\right) \\ &\leq \int_{0}^{1} A\left(f\left(M_{p}(u,v,\lambda)\right), f\left(M_{p}(u,v,1-\lambda)\right), 1/2\right) d\lambda \\ &= \frac{p}{2\left(v^{p}-u^{p}\right)} \int_{u}^{v} f(x) + f\left(\left[u^{p}+v^{p}-x^{p}\right]^{1/p}\right) \frac{dx}{x^{1-p}} \\ &= \frac{p}{v^{p}-u^{p}} \int_{u}^{v} \frac{f(x)}{x^{1-p}} dx \\ &\leq A\left(f(u), f(v), 1/2\right) = \frac{f(u)+f(v)}{2}. \end{split}$$

v.) If f is log-convex function, then we have the following Hermite-Hadamard's inequalities for log-convex functions (see [5, Theorem 2.1])

$$\begin{split} f\left(A(u,v,1/2)\right) &= f\left(\frac{u+v}{2}\right) \\ &\leq \int_0^1 G\left(f\left(A(u,v,\lambda)\right), f\left(A(u,v,1-\lambda)\right), 1/2\right) d\lambda \\ &= \frac{1}{v-u} \int_u^v \sqrt{f(x)f(u+v-x)} dx \\ &\leq G\left(f(u), f(v), 1/2\right) = \sqrt{f(u)f(v)}. \end{split}$$

vi.) If f is GG-convex function, then we have the following Hermite-Hadamard's inequalities for GG-convex functions (see [8, the inequality (7)])

$$\begin{split} f\left(G(u,v,1/2)\right) &= f\left(\sqrt{uv}\right) \\ &\leq \int_0^1 G\left(f\left(G(u,v,\lambda)\right), f\left(G(u,v,1-\lambda)\right), 1/2\right) d\lambda \\ &= \frac{1}{\ln v - \ln u} \int_u^v \sqrt{f(x) f\left(\frac{uv}{x}\right)} \frac{dx}{x} \\ &\leq G\left(f(u), f(v), 1/2\right) = \sqrt{f(u) f(v)}. \end{split}$$

vii.) If f is HG-convex function, then we have

$$\begin{split} f\left(H(u,v,1/2)\right) &= f\left(\frac{2uv}{u+v}\right) \\ &\leq \int_0^1 G\left(f\left(H(u,v,\lambda)\right), f\left(H(u,v,1-\lambda)\right), 1/2\right) d\lambda \\ &= \frac{uv}{v-u} \int_u^v \sqrt{f(x)f\left([u^{-1}+v^{-1}-x^{-1}]^{-1}\right)} \frac{dx}{x^2} \\ &\leq G\left(f(u), f(v), 1/2\right) = \sqrt{f(u)f(v)}. \end{split}$$

viii.) If f is AH-convex function, then we have

$$\begin{split} f\left(A(u,v,1/2)\right) &= f\left(\frac{u+v}{2}\right) \\ &\leq \int_{0}^{1} H\left(f\left(A(u,v,\lambda)\right), f\left(A(u,v,1-\lambda)\right), 1/2\right) d\lambda \\ &= \frac{2}{v-u} \int_{u}^{v} \frac{f(x)f(u+v-x)}{f(x)+f(u+v-x)} dx \\ &\leq A\left(f(u), f(v), 1/2\right) = \frac{f(u)+f(v)}{2}. \end{split}$$

Theorem 2.8. Let M and N be two weighted means defined on the intervals $[u, v] \subseteq (0, \infty)$ and $J \subseteq (0, \infty)$ respectively. If function $f : [u, v] \to J$ is MN-convex and symmetric with respect to M(u, v, 1/2), then we have

$$f(M(u, v, 1/2)) \le f(x) \le N(f(u), f(v), 1/2)$$
(2.6)

for all $x \in I$.

Proof. Let $x \in [u, v]$ be arbitrary point. Then there exists a $\lambda \in [0, 1]$ such that $x = M(u, v, \lambda)$. Since $f : [u, v] \to J$ is a *MN*-convex function and symmetric with respect to M(u, v, 1/2), by using (2.2) we have

$$\begin{array}{lll} f\left(M(u,v,1/2)\right) &=& f\left(M\left(M(u,v,\lambda),M(u,v,1-\lambda),1/2\right)\right) \\ &\leq& N\left(f\left(M(u,v,\lambda)\right),f\left(M(u,v,1-\lambda)\right),1/2\right) \\ &=& f(x). \end{array}$$

Thus, we obtain the left-hand side of the inequality (2.6). Secondly, By using MN-convexity of f and (WM5) with (2.2), we get

$$f(x) = N(f(M(u, v, \lambda)), f(M(u, v, 1 - \lambda), 1/2))$$

$$\leq N(N(f(u), f(v), \lambda), N(f(u), f(v), 1 - \lambda), 1/2)$$

$$= N(f(u), f(v), 1/2).$$

This completes the proof.

We can give the following some results for different convexity classes by considering the special cases of M and N. It is possible to increase the results by considering another special cases of M and N.

Corollary 2.3. Let $I, J \subseteq (0, \infty)$ and $f: I \to J$.

i.) If f is a convex function and symmetric with respect to (u + v)/2, then we have the following inequalities for convex functions (see [4, Theorem 2])

$$f\left(\frac{u+v}{2}\right) \le f(x) \le \frac{f(u)+f(v)}{2}.$$

ii.) If f is a GA-convex function and symmetric with respect to \sqrt{uv} , then we have the following inequalities for convex functions (see [10, Theorem 2.9])

$$f\left(\sqrt{uv}\right) \le f(x) \le \frac{f(u) + f(v)}{2}$$

iii.) If f is a p-convex function and symmetric with respect to $\left(\frac{u^p+v^p}{2}\right)^{1/p}$, then we have the following inequalities for convex functions (see [11, Theorem 2.2])

$$f\left(\left[\frac{u^p + v^p}{2}\right]^{1/p}\right) \le f(x) \le \frac{f(u) + f(v)}{2}$$

3. Conclusion

The aim of this article is to determine that a mean is called the weighted mean when it meets what conditions, and also is to give a general definition of MN-convex functions. The importance of this study is that some properties of MN-convex functions and some related inequalities have been proven in general terms via this general definition of MN-convex functions.

References

- J. Aczél, A generalization of the notion of convex functions, Norske Vid. Selsk. Forhd., Trondhjem, 19(24) (1947), 87–90.
- G. Aumann, Konvexe Funktionen und Induktion bei Ungleichungen zwischen Mittelverten, Bayer. Akad. Wiss.Math.-Natur. Kl. Abh., Math. Ann., 109 (1933), 405–413.
- [3] G.D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl., 335 (2007), 1294–1308.
- [4] S.S. Dragomir, Symmetrized convexity and Hermite-Hadamard type inequalities, Journal of Mathematical Inequalities, 10(4) (2016), 901–918.
- [5] S.S. Dragomir, B. Mond, Integral inequalities of Hadamard type for log-convex functions, Demonstratio Mathematica, 31(2) (1998), 354–364.

- [6] İ. İşcan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43(6) (2014), 935–942.
- [7] İ. İşcan, Hermite-Hadamard type inequalities for GA-s-convex functions, Le Matematiche, LXIX (2014), Fasc. II, 129–146.
- [8] İ. İşcan, On Some New Hermite-Hadamard type inequalities for s-geometrically convex functions, International Journal of Mathematics and Mathematical Sciences, 2014 (2014), Article ID 163901, 8 pages.
- [9] İ. İşcan, Ostrowski type inequalities for p-convex functions, New Trends in Mathematical Sciences, 4(3) (2016), 140-150.
- [10] İ. İşcan, Symmetrized GA-convexity and Related Some Integral Inequalities, Filomat, 33(13) (2019), 4121-4136.
- [11] İ. İşcan, Symmetrized p-convexity and related some integral inequalities, TWMS J. App. and Eng. Math., 10(4) (2020), 1036–1048.
- [12] J. Matkowski, Convex functions with respect to a mean and a characterization of quasi-arithmetic means, Real Anal. Exchange 29 (2003/2004), 229–246.
- [13] T.Z. Mirković, New inequalities of Wirtinger type for convex and MN-convex functions, Facta Universitatis Ser. Math. Inform. 34(2) (2019), 165–173.
- [14] C.P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl., 3(2) (2000), 155–167.
- [15] C.P. Niculescu, Convexity according to means, Math. Inequal. Appl. 6 (2003), 571–579.
- [16] A.W. Roberts, D.E. Varberg, Convex Functions, Academic Press, New York, 1973.

¹DEPARTMENT OF MATHEMATICS, FACULTY OF ARTS AND SCIENCES, GIRESUN UNIVERSITY, 28200, GIRESUN, TURKEY *E-mail address*: imdat.iscan@giresun.edu.tr