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A STUDY ON LEAST SQUARES ESTIMATION WITH INEQUALITY
CONSTRAINT

FATMA BUĞLEM YALÇIN1

Abstract. In this paper, the least-squares estimators are obtained by imposing inequality
constraints on parameter vector in classical regression model and using genaralized inverses
of matrices. Additionally, the Kantorovich type inequality for a special matrix is expressed.

1. Introduction

In many fields, the data collected through the application is examined and it is desired
to find a function that models this data. It may not always be possible to find the function
that fits the data exactly. The regression analysis is a method of finding the function that
best fits these datas [15].

The ordinary least squares (OLS) method is one of most commonly used methods in
regression analysis [14]. The famous mathematician C. F. Gauss used firstly this method to
determine the orbit of the Cres asteroid [4]. The OLS method is one of the methods used
in determining the relationships between variables in many science such as mathematics,
sociology, engineering, medicine and agriculture [6]. The OLS method has become a subject
that mathematicians and other scientists have been work on (see. [1, 2, 8, 10,12,16]).

The OLS method is the optimal method according to the Gauss-Markov Theorem, since
it aims to minimize the sum of squares error (SSE). When some assumptions are provided
for the data, the method provides reliable estimates [7]. However, it can sometimes produce
misleading results. Therefore, it may be necessary to impose a linear equality or an inequality
constraint on the parameter. It is aimed to minimize the SSE again [5, 11,13].

In this study, our aim is to find the inequality constrained least squares (ICLS) estimation
in linear models by means of the Moore-Penrose g-inverse, which is a special case of the
generalized inverse of matrices. And it is to prove the Kantorovich type inequality for
the matrix consisting of the difference between the variance of the ICLS estimator and
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the variance of the OLS estimator. Firstly, let’s obtain the ICLS estimator by using the
Lagrange method.

2. Inequality Constrained Least Squares Estimation

Consider a general linear model

ω = ϕθ + ε (2.1)
where ϕ is an s×t matrix of known constant and rank(ϕ) = t ≤ s, ω is an s×1 observable

random vector, θ is a t× 1 vector of parameters to be estimated, ε is a random error vector
with E(ε) = 0, cov(ε) = σ2I and σ2 is an unknown positive parameter. As is known, the
OLS estimator θ̂ is obtained by minimizing with the regard to θ:

θ̂ = (ϕ′
ϕ)−1ϕ

′
ω (2.2)

and

σ̂2 = (ω − ϕθ̂)′(ω − ϕθ̂)
s− rank(ϕ) (2.3)

is an unbiased estimator of σ2 where the estimated error vector is ε̂ = ω − ϕθ̂. E(θ̂) = θ

and var(θ̂) = σ2(ϕ′
ϕ)−1 is obtained.

Consider q-linear inequality constraints

ξθ ≥ η (2.4)
imposed on coefficients where ξ is a matrix of known constant, rank(ξq×t) = q, and η is

a q × 1 known vector. We can write 2.4 as

ξθ − µ = η (2.5)
where µ is q × 1 surplus vector, θ isn’t otherwise constrained. The ICLS estimation is

obtained by minimizing the following objective function

ε
′
ε = (ω − ϕθ)′(ω − ϕθ) (2.6)

subject to ξθ − µ = η. Constructed the Lagrange function

= = ω
′
ω − 2θ′

ϕ
′
ω + θ

′
ϕ

′
ϕθ − α′(η − ξθ + δ) (2.7)

where α′ is an q × 1 vector of Lagrange multipliers. By using the result in [17], differenti-
ation of the Lagrange function with respect to θ and α yields the following conditions

− 2ϕ′
ω + 2ϕ′

ϕθ + ξ
′
α, (2.8)

ξθ − µ− η = 0. (2.9)
Now pre-multiplying equation 2.8 by ξ(ϕ′

ϕ)−1 gives that
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− 2ξ(ϕ′
ϕ)−1ϕ

′
ω + 2ξθ + ξ(ϕ′

ϕ)−1ξ
′
α = 0. (2.10)

Since the matrix ξ(ϕ′
ϕ)−1ξ

′ is positive definite, by using θ̂ = (ϕ′
ϕ)−1ϕ

′
ω, we get

α = −2(ξ(ϕ′
ϕ)−1ξ

′)−1(η + µ− ξθ̂) (2.11)
By substituting this value in 2.8, we obtain the ICLS estimator θ̂icls of θ:

θ̂icls = θ̂ + (ϕ′
ϕ)−1ξ

′(ξ(ϕ′
ϕ)−1ξ

′)−1(η + δ − ξθ̂). (2.12)
θ̂icls is unbiased for θ. This expression is the same as in [3]. As to the variance-covariance
matrix of θ̂icls, we have

var(θ̂icls) = E[(θ̂icls − θ)(θ̂icls − θ)
′ ] = σ2Micls(ϕ

′
ϕ)−1(Micls)

′ (2.13)
where the matrix Micls = [I−(ϕ′

ϕ)−1ξ
′(ξ(ϕ′

ϕ)−1ξ
′)−1ξ] is idempotent but not symmetric.

Now let’s get the ICLS estimator by another method. We will use the Moore-Penreose
generalized inverse in matrices for this.

3. The Inequality Constrained Least Squares Estimation via The
Moore-Penrose Generalized Inverse

Under the constraints 2.5 and the condition rank(ξq×t) = q, by using Moore-Penrose
generalized inverse ξ+ = ξ

′(ξξ′)−1 of ξ (ξ+ is unique), we get the solution

θ̂icls = ξ+(η + µ) + (I − ξ+ξ)θ̂. (3.1)
If we use (ϕ′

ϕ)−1ξ
′ [ξ(ϕ′

ϕ)−1ξ
′ ]−1 in place of ξ+, then this g-inverse satisfies the three

properties of Moore-Penrose generalized inverse. Therefore, we get
θ̂icls = {(ϕ′

ϕ)−1ξ
′ [ξ(ϕ′

ϕ)−1ξ
′ ]−1}(η + µ) + (I − {(ϕ′

ϕ)−1ξ
′ [ξ(ϕ′

ϕ)−1ξ
′ ]−1}ξ)θ̂

= θ̂ + (ϕ′
ϕ)−1ξ

′ [ξ(ϕ′
ϕ)−1ξ

′ ]−1(η + µ− ξθ̂). (3.2)
The covariance matrix of the ICLS estimator is obtained in the following forms:

var(θ̂icls) = σ2(ϕ′
ϕ)−1 + σ2[−(ϕ′

ϕ)−1ξ+ξ − ξ+ξ(ϕ′
ϕ)−1 + ξ+ξ(ϕ′

ϕ)−1ξ+ξ], (3.3)

and
var(θ̂)− var(θ̂icls) = σ2[(ϕ′

ϕ)−1ξ+ξ + ξ+ξ(ϕ′
ϕ)−1 − ξ+ξ(ϕ′

ϕ)−1ξ+ξ]. (3.4)
Now let’s analyse φ = (ϕ′

ϕ)−1ξ+ξ + ξ+ξ(ϕ′
ϕ)−1 − ξ+ξ(ϕ′

ϕ)−1ξ+ξ matrix consisting of the
difference of var(θ̂) and var(θ̂icls).

Let be choose xεC(ξ′) = N(I − ξ′
ξ

′+) vector where C(ξ′) is column space of ξ′ and N is
null space. Therefore x = ξ

′
y, yεRq and xεRt. Using Moore-Penrose g-inverse, we have

x
′
φx = y

′
ξ[(ϕ′

ϕ)−1ξ+ξ + ξ+ξ(ϕ′
ϕ)−1 − ξ+ξ(ϕ′

ϕ)−1ξ+ξ]ξ′
y

= y
′ [ξ(ϕ′

ϕ)−1ξ+ξξ
′ + ξξ+ξ(ϕ′

ϕ)−1ξ
′ − ξξ+ξ(ϕ′

ϕ)−1ξ+ξξ
′ ]y

= y
′ [ξ(ϕ′

ϕ)−1ξ
′ + ξ(ϕ′

ϕ)−1ξ
′ − ξ(ϕ′

ϕ)−1ξ
′ ]y = y

′ [ξ(ϕ′
ϕ)−1ξ

′ ]
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for ∀xεRt. Since rank(ϕ) = t, the matrices (ϕ′
ϕ), (ϕ′

ϕ)−1 and ξ(ϕ′
ϕ)−1ξ

′ are positive
definite. Then φ is a positive definite matrix. Thus, the variance of the ICLS estimator is
the variance of the OLS estimator minus a positive definite matrix.

4. The Kantorovich Inequality for The Difference Matrix

Let us prove Kantorovich type inequality for the matrix which is the difference between
the variance of the ICLS estimator and the variance of the OLS estimator (See [9] for
Kantorovich type equality).

Theorem 4.1. Let φ be an positive definite matrix which is the difference between the
variance of the ICLS estimator and the variance of the OLS estimator, λ1 and λt be φ’s
largest and smallest eigenvalues. If ϕ′ is an t× s matrix such that (ϕ′)∗ϕ′ = Is, then

(ϕ′)∗[(ϕ′
ϕ)−1ξ+ξ + ξ+ξ(ϕ′

ϕ)−1 − ξ+ξ(ϕ′
ϕ)−1ξ+ξ]2ϕ′

≤ (λ1 + λt)2

4λ1λt
[(ϕ′)∗((ϕ′

ϕ)−1ξ+ξ + ξ+ξ(ϕ′
ϕ)−1 − ξ+ξ(ϕ′

ϕ)−1ξ+ξ)ϕ′ ]2, (4.1)

(ϕ′)∗[(ϕ′
ϕ)−1ξ+ξ + ξ+ξ(ϕ′

ϕ)−1 − ξ+ξ(ϕ′
ϕ)−1ξ+ξ]2ϕ′

−[(ϕ′)∗((ϕ′
ϕ)−1ξ+ξ + ξ+ξ(ϕ′

ϕ)−1 − ξ+ξ(ϕ′
ϕ)−1ξ+ξ)ϕ′ ]2

≤ 1
4(λ1 − λt)2Is, (4.2)

(ϕ′)∗[(ϕ′
ϕ)−1ξ+ξ + ξ+ξ(ϕ′

ϕ)−1 −
ξ+ξ(ϕ′

ϕ)−1ξ+ξ]2ϕ′−[(ϕ′)∗((ϕ′
ϕ)−1ξ+ξ + ξ+ξ(ϕ′

ϕ)−1 − ξ+ξ(ϕ′
ϕ)−1ξ+ξ)ϕ′ ]2

≤ (
√
λ1 −

√
λt)2[(ϕ′)∗((ϕ′

ϕ)−1ξ+ξ + ξ+ξ(ϕ′
ϕ)−1 − ξ+ξ(ϕ′

ϕ)−1ξ+ξ)ϕ′ ] (4.3)
(Here ϕ∗ is the conjugate transpose of ϕ)

Proof. Since 0 ≤ (λ1It − (ϕ′
ϕ)−1ξ+ξ − ξ+ξ(ϕ′

ϕ)−1 + ξ+ξ(ϕ′
ϕ)−1ξ+ξ)((ϕ′

ϕ)−1ξ+ξ +
ξ+ξ(ϕ′

ϕ)−1 − ξ+ξ(ϕ′
ϕ)−1ξ+ξ − λtIt), we get

[(ϕ′
ϕ)−1ξ+ξ + ξ+ξ(ϕ′

ϕ)−1 − ξ+ξ(ϕ′
ϕ)−1ξ+ξ]2

≤ (λ1 + λt)[(ϕ
′
ϕ)−1ξ+ξ + ξ+ξ(ϕ′

ϕ)−1 − ξ+ξ(ϕ′
ϕ)−1ξ+ξ]− λ1λtIt

and

(ϕ′)∗[(ϕ′
ϕ)−1ξ+ξ + ξ+ξ(ϕ′

ϕ)−1 − ξ+ξ(ϕ′
ϕ)−1ξ+ξ]2ϕ′

≤ (λ1 + λt)(ϕ
′)∗[(ϕ′

ϕ)−1ξ+ξ + ξ+ξ(ϕ′
ϕ)−1 − ξ+ξ(ϕ′

ϕ)−1ξ+ξ]ϕ′ − λ1λtIs. (4.4)
We can write the right-hand side of 4.4 as

(λ1 + λt)(ϕ
′)∗[(ϕ′

ϕ)−1ξ+ξ + ξ+ξ(ϕ′
ϕ)−1 − ξ+ξ(ϕ′

ϕ)−1ξ+ξ]ϕ′ − λ1λtIs

= (λ1+λt)2

4λ1λt
[(ϕ′)∗((ϕ′

ϕ)−1ξ+ξ + ξ+ξ(ϕ′
ϕ)−1 − ξ+ξ(ϕ′

ϕ)−1ξ+ξ)ϕ′ ]2

−{
√
λ1λtIs − λ1+λt

2
√
λ1λt

[(ϕ′)∗((ϕ′
ϕ)−1ξ+ξ + ξ+ξ(ϕ′

ϕ)−1 − ξ+ξ(ϕ′
ϕ)−1ξ+ξ)ϕ′ ]}2

= [(ϕ′)∗((ϕ′
ϕ)−1ξ+ξ + ξ+ξ(ϕ′

ϕ)−1 − ξ+ξ(ϕ′
ϕ)−1ξ+ξ)ϕ′ ]2 + 1

4(λ1 − λt)2Is

−{(ϕ′)∗((ϕ′
ϕ)−1ξ+ξ + ξ+ξ(ϕ′

ϕ)−1 − ξ+ξ(ϕ′
ϕ)−1ξ+ξ)ϕ′ − λ1+λt

2 Is}2

= [(ϕ′)∗((ϕ′
ϕ)−1ξ+ξ + ξ+ξ(ϕ′

ϕ)−1 − ξ+ξ(ϕ′
ϕ)−1ξ+ξ)ϕ′ ]2
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+(
√
λ1 −

√
λt)2(ϕ′)∗((ϕ′

ϕ)−1ξ+ξ + ξ+ξ(ϕ′
ϕ)−1 − ξ+ξ(ϕ′

ϕ)−1ξ+ξ)ϕ′

−[
√
λ1λtIs − (ϕ′)∗((ϕ′

ϕ)−1ξ+ξ + ξ+ξ(ϕ′
ϕ)−1 − ξ+ξ(ϕ′

ϕ)−1ξ+ξ)ϕ′ ]2

We have 4.1, 4.2 and 4.3. The proof is complete. �

Corollary 4.1. Under the assumptions of 4.1, we have the following inequalities such that
(ξ′)∗ξ′ = Iq

(ξ′)∗[(ϕ′
ϕ)−1ξ+ξ + ξ+ξ(ϕ′

ϕ)−1 − ξ+ξ(ϕ′
ϕ)−1ξ+ξ]2ξ′

≤ (λ1 + λt)2

4λ1λt
[(ξ′)∗((ϕ′

ϕ)−1ξ+ξ + ξ+ξ(ϕ′
ϕ)−1 − ξ+ξ(ϕ′

ϕ)−1ξ+ξ)ξ′ ]2 (4.5)

(ξ′)∗[(ϕ′
ϕ)−1ξ+ξ + ξ+ξ(ϕ′

ϕ)−1 − ξ+ξ(ϕ′
ϕ)−1ξ+ξ]2ξ′

−[(ξ′)∗((ϕ′
ϕ)−1ξ+ξ + ξ+ξ(ϕ′

ϕ)−1 − ξ+ξ(ϕ′
ϕ)−1ξ+ξ)ξ′ ]2

≤ 1
4(λ1 − λt)2Iq (4.6)

(ξ′)∗[(ϕ′
ϕ)−1ξ+ξ + ξ+ξ(ϕ′

ϕ)−1 − ξ+ξ(ϕ′
ϕ)−1ξ+ξ]2ξ′

−[(ξ′)∗((ϕ′
ϕ)−1ξ+ξ + ξ+ξ(ϕ′

ϕ)−1 − ξ+ξ(ϕ′
ϕ)−1ξ+ξ)ξ′ ]2

≤ (
√
λ1 −

√
λt)2[(ξ′)∗((ϕ′

ϕ)−1ξ+ξ + ξ+ξ(ϕ′
ϕ)−1 − ξ+ξ(ϕ′

ϕ)−1ξ+ξ)ξ′ ] (4.7)
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