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SOME GENERALIZED OPIAL TYPE INEQUALITIES FOR
INTERVAL-VALUED FUNCTION

CANDAN CAN BILIŞIK1, MEHMET ZEKI SARIKAYA1, AND HÜSEYIN BUDAK1

Abstract. In this paper, we first present some Opial type inequalities for real valued
functions and prove a new Opial type inequalities. Then by using these Oial inequalities
and the definitions of the gH-derivatives, we establish some generalization of Opial type
inequalities for interval valued functions

1. Introduction

In the year 1960, Opial established the following interesting integral inequality[19]:

Theorem 1.1. Let x(t) ∈ C(1) [0, h] be such that x(0) = x(h) = 0, and x(t) > 0 in (0, h) .
Then, the following inequality holds

h∫
0

∣∣x(t)x′(t)
∣∣ dt ≤ h

4

h∫
0

(
x′(t)

)2
dt (1.1)

The constant h/4 is best possible.

Several integral inequalities involving integrable functions and their derivatives, such as
Wirtinger’s inequality, Ostrowski’s inequality and Opial’s inequality, among others, have
been well studied during the past century (see [1–3,6,11–14,17] and their references [20–24,
27,28]). All these works have provided fundamental tools to the development of many areas
in mathematical analysis. Interval analysis was introduced as an attempt to handle interval
uncertainty that appears in many mathematical or computer models of some deterministic
real-world phenomena. The first monograph dealing with interval analysis was given by
Moore [18]. Moore is recognized to be the first to use intervals in computational mathematics,
now called numerical analysis. He also extended and implemented the arithmetic of intervals
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to computers. The main theoretical and practical results in the interval analysis can be
found in several works .

The concept of Hukuhara derivative is old and well known [15], but the concept of
G-derivative was recently introduced by Bede and Gal [4]. Using this new concept of
derivative, the class of fuzzy differential equations has been extended and studied in some
papers such as: [16, 18, 26]. The major shortcomings of the H-derivative are well known.
To eliminate these shortcomings, several notions of derivative of an interval-valued function
were introduced. We remark that H-derivative is a very restrictive concept (see [4,10]). On
the other hand, it is well-known that gH-derivative is a very general concept on derivative
for interval-valued functions, see [4, 10, 26]. Some concepts of derivatives for an interval-
valued function, like G-derivative [4], gH-derivative [16, 26], and π−derivative [25], were
analyzed in [16,18]. It is known that, if the set of switching points is finite, then the notions
of G-differentiability, gH-differentiability and π-differentiability coincide for an interval-
valued function (see [16, 18, 26]). For this reason, in this paper we use only the notion of
gH-differentiability.

In this direction, motivated by [3, 7–9] and by [4, 10, 16, 26], we establish some Opial-
type integral inequalities for gH-differentiable interval-valued functions which is the main
objective of this article. The structure of this paper is as follows. In Section 2, we give
the definitions of the gH-derivatives and introduce several useful notations interval valued
function used our main results. Moreover the algebraic meaning of the square of an interval
is established which becomes a fundamental part for obtaining the Opial-type integral
inequalities for interval-valued functions. Also the concept of piecewise continuously gH-
differentiable interval-valued function is introduced in Section 2. In Section 3, the main
result is presented.

2. Definitions and properties for interval valued functions of derivative

Let R be the one-dimensional Euclidean space. Let KC denote the family of all bounded
closed intervals of R, that is,

KC = {[a, b] |a, b ∈ R and a ≤ b} .
The space (KC , dH) , where dH is the Pompei- Hausdorff metric given by

dH ([a1, a2] , [b1, b2]) = max {|a1 − b1| , |a2 − b2|}

for all [a1, a2] , [b1, b2] ∈ KC , is a complete metric space. A quasinorm ‖.‖ in KC is defined
by ‖A‖= dH (A, [0, 0]) for all A ∈ KC . The equality

∥∥A2∥∥ = ‖A‖2 holds for all A ∈ KC and
is used throughout this article.

Stefani and Bede introduced the concept of generalized Hukuhara difference of two sets
A,B ∈ KC (gH difference for short ) as follows

A	gH B = C ⇐⇒
{

(a) A = B + C
or (b) B = A+ (−1)C

}
In case(a), the gH difference is coincident with the H difference. Thus, the gH difference is
a generalization of the H difference. On the other hand, gH difference exists for any two
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intervals A =
[
a,
−

−
a

]
, B =

[
b,
−

−
b

]
∈ KC and

A	gH B =
[
min

{
a
−
− b
−

}
,max

{
−
a −

−
b

}]
.

Using the gH difference, Stefanini and Bede introduced a differentiability concept for
interval valued functions, which is more suitable than the H- differentiability. The following
definitions and theorems with respect to H derivative and gH derivative were referred in
(see [26]).
F : T ⊆ R → KC given by F (x) = [f(x), g(x)] for all x ∈ T, where f, g : T → R are

real valued functions, with f(x) ≤ g(x) for all x ∈ T, it is called an interval function. The
functions f and g are called the lower and the upper(endpoint) functions of F , respectively.

Definition 2.1. Let F : T → KC be an interval valued function. L∈KC is called a limit of
F at x0 ∈ T if for every ε > 0 there exists δ (ε, x0) = δ > 0 such that H(F (x), L) < ε for all
x ∈ T with 0 < |x− x0| < δ.This is denoted by lim

x→x0
F (x) = L.

Theorem 2.1. Let F : T → KC be an interval valued function such that F (x) = [f(x), g(x)]
for all x ∈ T. Then L = [l1, l2]∈KC is a limit of F at x0 ∈ T if and only if li is the limit of
fi at x0, i ∈ {1, 2} .Besides if L is limit of F at x0, then

lim
x→x0

F (x) =
[

lim
x→x0

f(x), lim
x→x0

g(x)
]
.

Definition 2.2. Let F : T ⊆ R → KC be an interval valued function. F is said to be
continuous at x0 ∈ T if lim

x→x0
F (x) = F (x0).

Theorem 2.2. Let F : T ⊆ R → KC be an interval valued function such that F (x) =
[f(x), g(x)] for all x ∈ T. Then F is continuous at x0 ∈ T if and only if f and g are
continuous at x0. Besides, F is continuous at x0,then

lim
x→x0

F (x) = [f(x0), g(x0)] .

Definition 2.3. Let F : T → KC be an interval valued function. We say that F is
H-differentiable at x0 ∈ T if there exists an element F ′H (x0) ∈ KC such that the limits

lim
h→0+

F (x0 + h)− FH (x0)
h

and
lim
h→0+

F (x0)− FH (x0 − h)
h

exist and are equal to F ′H (x0) .In this case F ′H (x0) is called the H−derivative of F at x0.

Definition 2.4. The gH-derivative of an interval-valued function F : T → KC at x0 ∈ T
is defined as

F
′
gH (x0) = lim

h→0

F (x0 + h)	 FgH (x0 − h)
h

(2.1)

If F ′gH (x0) ∈ KC satisfying is differentiable, then (2.1) exist, then we say that F is
generalized Hukuhara differentiable (gH-differentiable, for short) at x0.
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Theorem 2.3. Let F : T → KC be an interval valued function such that F (x) = [f(x), g(x)]
for all x ∈ T. Then F is gH-differentiable at x0 ∈ T if and only if one of the following
cases holds

(i) f and g are differentiable at x0 and

F
′
gH (x0) =

[
min

{
f
′ (x0) , g′ (x0)

}
,max

{
f
′ (x0) , g′ (x0)

}]
;

(ii) f ′− (x0) , g′− (x0) , f ′+ (x0) and g′+ (x0) exist and satisfy f ′− (x0) = g
′
+ (x0) and g′− (x0) =

f
′
+ (x0) .Moreover

F
′
gH (x0) =

[
min

{
f
′
− (x0) , g′− (x0)

}
,max

{
f
′
− (x0) , g′− (x0)

}]
=

[
min

{
f
′
+ (x0) , g′+ (x0)

}
,max

{
f
′
+ (x0) , g′+ (x0)

}]
.

Theorem 2.4. Let F : [a, b] → KC be a continuous interval valued function with F (x) =
[f(x), g(x)] for all x ∈ [a, b] . If F is piecewise continuously gH differentiable on [a, b] and it
has (if there exists) a finite number of switching points on (a, b) , then f and g are absolutely
continuous on [a, b] .

Lemma 2.1. [26] Let A and B be two intervals in KC . Then we have
(a) H(A,B) = ‖A	B‖
(b)

∥∥A2∥∥ = max
{∣∣a2∣∣ , ∣∣a2∣∣} = max

{
|a|2 , |a|2

}
= ‖A‖2

Theorem 2.5. (Maroni’ s Generalization) Let p be positive and continuous on [α, τ ]
with

∫ τ
α p

1−µ (t) dt <∞, where µ > 1. Further, let x (t) be absolutely continuous on [α, τ ] ,and
x (α) = 0. Then, the following inequality holds∫ τ

a

∣∣∣x (t)x′(t)
∣∣∣ dt ≤ 1

2

(∫ τ

a
p(t)1−µdt

) 2
µ
(∫ τ

a
p(t)

∣∣∣x′ (t)∣∣∣υ dt) 2
υ

,

where 1
µ + 1

υ = 1.

Theorem 2.6. Assume that
(i) l,m,µ and υ are non-negative real numbers such that 1

µ + 1
υ = 1, and lµ ≥ 1,

(ii) q is non-negative continuous function on [0, h] ,
(iii) x1, x2 are absolutely continuous function on [0, h] , with x1 (0) = x2 (0) = x1 (h) =

x2 (h) = 0.Then, the following inequality holds∫ h

0
q(t)

[
|x1 (t)|l

∣∣x′2(t)
∣∣m + |x2 (t)|l

∣∣x′1(t)
∣∣m] dt

≤ 1
2

(∫ h

0
[t (h− t)]

lµ−1
2 qµ(t)dt

) 1
µ

×
[∫ h

0

{ 1
µ

(∣∣x′1(t)
∣∣lµ +

∣∣x′2(t)
∣∣lµ)+ 1

υ

(∣∣x′1(t)
∣∣µυ +

∣∣x′2(t)
∣∣µυ)} dt] .
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Corollary 2.1. If we choose q(t) = 1 and m = 1 in theorem 2.6,we have the following
inequality ∫ h

0
q(t)

[
|x1 (t)|l

∣∣x′2(t)
∣∣+ |x2 (t)|l

∣∣x′1(t)
∣∣] dt

≤ 1
2

(∫ h

0
[t (h− t)]

lµ−1
2 dt

) 1
µ

×
[∫ h

0

{ 1
µ

(∣∣x′1(t)
∣∣lµ +

∣∣x′2(t)
∣∣lµ)+ 1

υ

(∣∣x′1(t)
∣∣µυ +

∣∣x′2(t)
∣∣µυ)} dt] .

Theorem 2.7. (Hua’ s Genaralization) Let x be absolutely continuous on [0, h] , and
x(0) = 0. Further, let l be a positive integer. Then the following inequality holds∫ h

0

∣∣∣xl(t)x′(t)∣∣∣ dt ≤ hl

l + 1

∫ h

0

∣∣x′(t)∣∣l+1
dt.

Theorem 2.8. Let p be positive and continuous on [α, β] with
∫ τ
α

dt
p(t) < ∞, and let q be

positive, bounded and non-increasing on [α, β]. Further, let x1, x2 be absolutely continuous
on [α, β] ,and x1 (α) = x2 (α) = 0. Then, we have the following inequality∫ β

α

[∣∣x′1 (t)x2 (t)
∣∣+ ∣∣x1 (t)x′2 (t)

∣∣ dt]
≤ 1

2

(∫ β

α
p
−µ
υ (t)dt

) 2
µ

(∫ β

α
p(t)

∣∣x′1(t)
∣∣υ dt) 2

υ

+
(∫ β

α
p(t)

∣∣x′2(t)
∣∣υ dt) 2

υ

 .
Proof. For i = 1, 2 let yi(t) =

∫ t
α |x′i(t)| dt so that yi(t) = |x′i(t)| , and |xi (t)| ≤ yi(t).∫ β

α

[∣∣x′1 (t)x2 (t)
∣∣+ ∣∣x1 (t)x′2 (t)

∣∣ dt]
≤

∫ β

α

[
y′1 (t) y2 (t) + y1 (t) y′2 (t) dt

]
= y1(β)y2(β).

Since ab ≤ 1
2
(
a2 + b2) ,∫ β

α

[∣∣x′1 (t)x2 (t)
∣∣+ ∣∣x1 (t)x′2 (t)

∣∣ dt]
≤ 1

2
(
y2

1(β) + y2
2(β)

)

= 1
2

(∫ β

α
p

1
υ (t)p

−1
υ (t)

∣∣x′1(t)
∣∣ dt)2

+ 1
2

(∫ β

α
p

1
υ (t)p

−1
υ (t)

∣∣x′2(t)
∣∣ dt)2

.
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By using the Hölder inequality for indices µ and υ, it follows that∫ β

α

[∣∣x′1 (t)x2 (t)
∣∣+ ∣∣x1 (t)x′2 (t)

∣∣ dt]

≤ 1
2

(∫ β

α
p
−µ
υ (t)dt

) 2
µ

(∫ β

α
p(t)

∣∣x′1(t)
∣∣υ dt) 2

υ

+
(∫ β

α
p(t)

∣∣x′2(t)
∣∣υ dt) 2

υ

 .
This completes the proof. �

Now we present the main results.

3. Opial type inequalities for interval-valued functions

Theorem 3.1. Let F : [α, β] → KC be a continuous interval valued function such that
F (t) = [f(t), g(t)] for all t ∈ [α, β] , F is gH-differentiable at t0 ∈ (α, β) and F (α) = 0.
Let p be positive and continuous on [α, β] with

∫ β
α p

1−µ (t) dt <∞, where µ > 1. Then, the
following inequality holds

∫ β

α

∥∥∥F (t)F ′gH(t)
∥∥∥ dt ≤ 2K

(∫ β

a
p(t)

∥∥∥F ′gH(t)
∥∥∥υ dt) 2

υ

where K =
(∫ β
α p

−µ
υ (t)dt

) 2
µ and 1

µ + 1
υ = 1.

Proof. From the hypotheses we have that F ′gH(t) = [f ′(t), g′(t)] or F ′gH(t) = [g′(t), f ′(t)] for

almost every t ∈ [α, β] . Then from Lemma 2.1, we have
∥∥∥F ′gH(t)

∥∥∥2
= max

{
|f ′(t)|2 , |g′(t)|2

}
for almost every t ∈ [α, β] . Moreover,

F (t)F ′gH(t) =
[
min

{
f(t)f ′(t), g(t)g′(t), f ′(t)g(t), f(t)g′(t)

}
(3.1)

max
{
f(t)f ′(t), g(t)g′(t), f ′(t)g(t), f(t)g′(t)

}]
for almost every tε [α, β] . Thus from (3.1), it follows that∥∥∥F (t)F ′gH(t)

∥∥∥ = max
{∣∣min

{
f(t)f ′(t), g(t)g′(t), f ′(t)g(t), f(t)g′(t)

}∣∣ ,∣∣max
{
f(t)f ′(t), g(t)g′(t), f ′(t)g(t), f(t)g′(t)

}∣∣}
and thus, ∥∥∥F (t)F ′gH(t)

∥∥∥ ≤ ∣∣f(t)f ′(t)
∣∣+ ∣∣g(t)g′(t)

∣∣+ ∣∣f ′(t)g(t)∣∣+ ∣∣f(t)g′(t)
∣∣

for almost every t ∈ [α, β] . Consequently,∫ β

α

∥∥∥F (t)F ′gH(t)
∥∥∥ dt

≤
∫ β

α

∣∣f(t)f ′(t)
∣∣ dt+

∫ β

α

∣∣g(t)g′(t)∣∣ dt+
∫ β

α

∣∣f ′(t)g(t)∣∣+ ∣∣f(t)g′(t)
∣∣ dt
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By using Maroni inequality and Theorem 2.8,∫ β

α

∥∥∥F (t)F ′gH(t)
∥∥∥ dt

≤ 1
2

(∫ β

a
p(t)1−µdt

) 2
µ
(∫ β

a
p(t)

∣∣∣f ′ (t)∣∣∣υ dt) 2
υ

+1
2

(∫ β

a
p(t)1−µdt

) 2
µ
(∫ β

a
p(t)

∣∣∣g′ (t)∣∣∣υ dt) 2
υ

+1
2

(∫ β

α
p1−µ(t)dt

) 2
µ

(∫ β

α
p(t)

∣∣f ′(t)∣∣υ dt) 2
υ

+
(∫ β

α
p(t)

∣∣g′(t)∣∣υ dt) 2
υ

 .
Then it follows that∫ β

α

∥∥∥F (t)F ′gH(t)
∥∥∥ dt

= 1
2K

2
(∫ β

a
p(t)

∣∣∣f ′ (t)∣∣∣υ dt) 2
υ

+ 2
(∫ β

a
p(t)

∣∣∣g′ (t)∣∣∣υ dt) 2
υ


≤ K

(∫ β

a
p(t)

∥∥∥F ′gH(t)
∥∥∥υ dt) 2

υ

+
(∫ β

a
p(t)

∥∥∥F ′gH(t)
∥∥∥υ dt) 2

υ


= 2K

(∫ β

a
p(t)

∥∥∥F ′gH(t)
∥∥∥υ dt) 2

υ

.

This completes the proof of the inequality. �

Corollary 3.1. If we choose p(t) = 1 in Theorem 3.1, we have the following inequality∫ β

α

∥∥∥F (t)F ′gH(t)
∥∥∥ dt ≤ 2 (β − α)

2
µ

(∫ β

a

∥∥∥F ′gH(t)
∥∥∥υ dt) 2

υ

.

Remark 3.1. If we take µ = υ = 2 in Corollary 3.1, then we have the following inequality∫ β

α

∥∥∥F (t)F ′gH(t)
∥∥∥ dt ≤ 2 (β − α)

∫ β

a

∥∥∥F ′gH(t)
∥∥∥2
dt

which is proved by Costa et al. in [13].

Theorem 3.2. Let F : [0, h] → KC be a continuous interval valued function such that
F (t) = [f(t), g(t)] for all t ∈ [α, β] , F is gH-differentiable at t0 ∈ (0, h) ,and F (0) = 0.
Further, let l be a positive integer with µ and υ are non-negative real numbers such that
1
µ + 1

υ = 1, and lµ ≥ 1. Then, the following inequality holds∫ h

0

∥∥∥F l(t)F ′gH(t)
∥∥∥ dt ≤ K1

∫ h

0

∥∥∥F ′gH(t)
∥∥∥l+1

dt

+K2

(
1
µ

∫ h

0

∥∥∥F ′gH(t)
∥∥∥lµ dt+ 1

υ

∫ h

0

∥∥∥F ′gH(t)
∥∥∥µυ dt)
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where K1 = 2hl
l+1 and K2 =

(∫ h
0 [t (h− t)]

lµ−1
2 dt

) 1
µ

.

Proof. By using similar method used in proof of Theorem 3.1, we have
∥∥∥F ′gH(t)

∥∥∥l =

max
{
|f ′(t)|l , |g′(t)|l

}
for almost every t ∈ [0, h] . Then we have,∥∥∥F l(t)F ′gH(t)
∥∥∥ ≤ ∣∣∣f l(t)f ′(t)∣∣∣+ ∣∣∣gl(t)g′(t)∣∣∣+ ∣∣∣f ′(t)gl(t)∣∣∣+ ∣∣∣f l(t)g′(t)∣∣∣

for almost every t ∈ [0, h] . Thus,∫ h

0

∥∥∥F l(t)F ′gH(t)
∥∥∥ dt

≤
∫ h

0

∣∣∣f l(t)f ′(t)∣∣∣ dt+
∫ h

0

∣∣∣gl(t)g′(t)∣∣∣ dt+
∫ h

0

(∣∣∣f ′(t)gl(t)∣∣∣+ ∣∣∣f l(t)g′(t)∣∣∣) dt
By using Hua’ generalization and Corollary 2.1, we get∫ h

0

∥∥∥F l(t)F ′gH(t)
∥∥∥ dt

≤ hl

l + 1

∫ h

0

∣∣f ′(t)∣∣l+1
dt+ hl

l + 1

∫ h

0

∣∣g′(t)∣∣l+1
dt+ 1

2

(∫ h

0
[t (h− t)]

lµ−1
2 dt

) 1
µ

×
[∫ h

0

{ 1
µ

(∣∣x′1(t)
∣∣lµ +

∣∣x′2(t)
∣∣lµ)+ 1

υ

(∣∣x′1(t)
∣∣µυ +

∣∣x′2(t)
∣∣µυ)} dt] .

Hence, we have∫ h

0

∥∥∥F l(t)F ′gH(t)
∥∥∥ dt

≤ K1

∫ h

0

∥∥∥F ′gH(t)
∥∥∥l+1

+K2

(∫ h

0

1
µ

∥∥∥F ′gH(t)
∥∥∥lµ dt+

∫ h

0

1
υ

∥∥∥F ′gH(t)
∥∥∥µυ dt) .

This completes the proof of the inequality. �

Corollary 3.2. If we choose l = 1 and µ = υ = 2 in Theorem 3.2, then∫ h

0

∥∥∥F l(t)F ′gH(t)
∥∥∥ dt ≤ h

∫ h

0

∥∥∥F ′gH(t)
∥∥∥2
dt+ 1

2

(∫ h

0
[t (h− t)]

1
2 dt

) 1
2

×
(∫ h

0

∥∥∥F ′gH(t)
∥∥∥2
dt+

∫ h

0

∥∥∥F ′gH(t)
∥∥∥4
dt

)
.

Example 3.1. Let F :[0, 1]→ KC be the interval-valued function given by
F (t) = [−1, 1]

(
t− t2

)
for all t ∈ [0, 1] . Since h(t) = t− t2 is continuously gH-differentiable

on (0, 1) . Further,F has only one switching point at t = 1
2 , F (0) = F (1) = [0, 0] , and

F ′gH(t) =


[2t− 1,−2t+ 1] , if t ∈

(
0, 1

2

)
,

[−2t+ 1, 2t− 1] , if t ∈
(

1
2 , 0
)
,
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equivalently
F ′gH(t) = [−1, 1] |1− 2t| .

Thus, ∥∥∥F ′gH(t)
∥∥∥υ = |2t− 1|υ

and
1∫
0

∥∥∥F ′gH(t)
∥∥∥υ dt =

1
2∫
0

(2t− 1)υ dt+
1∫
1
2

(1− 2t)υ dt

= (−1)υ+2

υ + 1 .

Also,
∥∥∥F (t)F ′gH(t)

∥∥∥ =
∣∣2x3 − 3x2 + x

∣∣ such that

1∫
0

∥∥∥F (t)F ′gH(t)
∥∥∥ dt = 1

32 .

Then from 3.1, it follows that
1∫
0

∥∥∥F (t)F ′gH(t)
∥∥∥ dt ≤ 2

 1∫
0

∥∥∥F ′gH(t)
∥∥∥υ dt


2
υ

≤ 2
(υ + 1)

2
υ

.

4. Conclusions

In this paper, by utilizing some Opial type inequalities for real valued functions, we proved
some Opial inequalities for interval valued functions. In the future works, authors can try
to generalize our results for fractional integrals of interval valued functions.
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