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Abstract. In this paper we consider the Tauberian conditions of slow decrease and
slow oscillation with respect to P, where P is an indefinite Lebesgue integral of a locally
integrable positive weight function. We prove that these are sufficient conditions to obtain
ordinary limit at infinity of a real- or complex-valued measurable function from the existence
of its statistical limit at infinity. Furthermore it is proved that ordinary limit of an integral
function follows from the existence of statistical limit of its weighted mean at infinity.

1. Introduction and Preliminaries

Let R+ := [0,∞) and f : R+ → C be a measurable (in Lebesgue’s sense) function.
Following Móricz (see, [8]) we say f (t) has statistical limit at ∞ if there exists a number l
such that for each ε > 0,

lim
a→∞

1
a
|{t ∈ [0, a) : |f (t)− l| > ε}| = 0, (1.1)

where by |{.}| , we denote the Lebesgue measure of the set {.}. If this is the case we write
st- lim

t→∞
f (t) = l or f (t) st→ l. If the ordinary limit f (t)→ l as t→∞ (in short, we always

write f (t)→ l) exists then f (t) st→ l also exists. But the converse implication

f (t) st→ l⇒ f (t)→ l (1.2)

is not true in general. For example, if we consider the measurable function defined by

f (t) =
{
k, t ∈

(
k2, k2 + 1

)
0, otherwise , k = 1, 2, 3, ...,

Then st- lim
t→∞

f (t) = 0 but the limit lim
t→∞

f (t) does not exist (cf. [11]).

Key words and phrases. Tauberian theorems, Statistical convergence, Weighted mean method of integrals,
Slowly decreasing and oscillating functions.

2010 Mathematics Subject Classification. Primary: 40E05. Secondary:40C10, 40G15.
Received: 26/05/2022 Accepted: 14/06/2022.
Cited this article as: C. Belen, Tauberian theorems for the statistically

(
N, p

)
summable integrals, Turkish

Journal of Inequalities, 6(1) (2022), 38-47.

38



TAUBERIAN THEOREMS FOR THE STATISTICALLY
(
N, p
)

SUMMABLE INTEGRALS 39

Let p : R+ → R+ be a function which is locally integrable (in Lebesgue’s sense) on R+,

in symbols: p ∈ L1
loc

(
R+) . Suppose throughout that

p(x) > 0 for almost all x ∈ R+, (1.3)

P (t) :=
∫ t

0
p(x)dx→∞ as t→∞, P (0) = 0, (1.4)

and that
p (t)
P (t) → 0, as t→∞. (1.5)

Given a real- or complex-valued function f ∈ L1
loc

(
R+) , we set

s (t) =
∫ t

0
f (x) dx (1.6)

and
σ (t) = 1

P (t)

∫ t

0
s (x) dP (x) ,

where the second integral exists in Riemann-Stieltjes sense. If the finite limit

σ (t)→ l

exists then we say that the function s is summable to l with respect to weight function p,
or in short

(
N, p

)
summable to l and we write s (t)→ l

(
N, p

)
.

Analogously to the discrete case, it is easy to check that if the condition (1.5) is satisfied
and

s (t)→ l (1.7)
then we also have

s (t)→ l
(
N, p

)
(1.8)

(see, [12]). Moreover we say that the function s is statistically
(
N, p

)
summable to l if

σ (t) st→ l. In this case we write
s (t) st→ l

(
N, p

)
. (1.9)

On the other hand the existence of (1.7) implies that of (1.9), but the converse implication

s (t) st→ l
(
N, p

)
⇒ s (t)→ l (1.10)

is not true in general.
Note that the assumption (1.3) implies that the function P (t) defined by (1.4) is strictly

increasing on R+. Since p is integrable over any bounded interval [0, t], 0 < t < ∞, its
indefinite Lebesgue integral P (t) is absolutely continuous and so continuous on [0, t] . Hence
its inverse function P−1 (t) exists, it is continuous and strictly increasing on R+.

A function s : R+ → R is said to be slowly decreasing with respect to P (in the sense of
Karamata [6]) if

lim
λ→1+

lim inf
x→∞

min
x<t≤Xλ

{s (t)− s (x)} ≥ 0, (1.11)

where
Xλ := P−1 (λP (x)) , x > 0 (1.12)
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The condition (1.11) is satisfied if and only if for each ε > 0 there exist x0 = x0 (ε) > 0 and
λ = λ (ε) > 1, as close to 1 as we wish, such that

s (t)− s (x) ≥ −ε whenever x0 ≤ x < t ≤ Xλ. (1.13)

We also say that a function s : R+ → C is slowly oscillating with respect to P if

lim
λ→1+

lim sup
x→∞

max
x<t≤Xλ

|s (t)− s (x)| = 0, (1.14)

where Xλ is defined by (1.12). Condition (1.14) holds if and only if for each ε > 0 there
exist x0 = x0 (ε) > 0 and λ = λ (ε) > 1, as close to 1 as we wish, such that

|s (t)− s (x)| ≤ ε whenever x0 ≤ x < t ≤ Xλ. (1.15)

Note that if p(x) = 1 for all x > 0 then Xλ = λx and in this case the conditions (1.11) and
(1.14) are reduced to the discrete forms of slowly decreasing and slowly oscillating functions
with respect to (C, 1) summability due to Schmidt [6] and Hardy [5], respectively.

The aim of this paper is to verify the converse implications (1.2) and (1.10) under some
conditions known as Tauberian conditions. The corresponding results are called Tauberian
theorems. Such kinds of results for the ordinary and statistical weighted mean summable
integrals have been obtained by various authors (see, e.g., [1–4,9,15,17]). In particular, the
following two classical Tauberian theorems were given in [2].

Theorem 1.1. Let p ∈ L1
loc

(
R+) for which (1.3) and (1.4) are satisfied. If f ∈ L1

loc

(
R+)

be a real-valued function such that its integral function s (t) is slowly decreasing with respect
to P, then the implication (1.8)⇒(1.7) holds true.

Theorem 1.2. Let p ∈ L1
loc

(
R+) for which (1.3) and (1.4) are satisfied. If f ∈ L1

loc

(
R+)

be a complex-valued function such that its integral function s (t) is slowly oscillating with
respect to P, then the implication (1.8)⇒(1.7) holds true.

In this paper we extend these results with the weaker assumption (1.9) (Theorem 2.3 and
Theorem 2.4, below).

2. Main Results

First we state and prove some auxiliary results which will be useful in proofs of our main
results.

Our first two lemmas below generalizes [10, Lemma 2-3] and [13, Lemma 1-2]. These
results known as a Vijayaraghavan type lemma (see, [18, Lemma 6]) and they can be
considered as a nondiscrete analogoues of [7, Lemma 2] and [14, Lemma 4.1], respectively,
under less restrictive conditions.

Lemma 2.1. Let s : R+ → R be a function such that the condition (1.13) is satisfied only
for ε = 1, where x0 > 0 and λ > 1. Then there exists a positive constant B such that

s (t)− s (x) ≥ −B log P (t)
P (x) whenever x0 ≤ x ≤ P−1

( 1
λ
P (t)

)
. (2.1)
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Proof. Assume that x0 ≤ x ≤ P−1
(

1
λP (t)

)
. Define

t0 = t = P−1 (P (t)) and tp = P−1
( 1
λ
P (tp−1)

)
, p = 1, 2, ..., q + 1 (2.2)

where q is determined by the condition

tq+1 ≤ x < tq. (2.3)

By (1.13) and (2.3) we have

s (t)− s (x) =
q∑
p=1

(s (tp−1)− s (tp)) + s (tq)− s (x) ≥ −q − 1. (2.4)

By the assumption x < tq = P−1
(

1
λqP (t)

)
, we have

P (x) < 1
λq
P (t) or equivalently q <

1
log λ log P (t)

P (x) . (2.5)

On the other hand, the assumption x ≤ P−1
(

1
λP (t)

)
implies that

log λ < log P (t)
P (x) . (2.6)

Combining (2.4)-(2.6) we obtain that (2.1) with B = 2/ log λ. �

Lemma 2.2. Let s : R+ → C be a function such that the condition (1.15) is satisfied only
for ε = 1, where x0 > 0 and λ > 1. Then with B = 2/ log λ we have

|s (t)− s (x)| ≤ B log P (t)
P (x) whenever x0 ≤ x ≤ P−1

( 1
λ
P (t)

)
. (2.7)

Proof. Let x0 ≤ x ≤ P−1
(

1
λP (t)

)
and define t0, t1, ..., tq+1 by (2.2) and (2.3). Using (1.15)

and (2.4) we have

|s (t)− s (x)| ≤
q∑
p=1
|s (tp−1)− s (tp)|+ |s (tq)− s (x)| ≥ q + 1. (2.8)

Hence by (2.5) and (2.8), we get

|s (t)− s (x)| ≤ 1 + 1
log λ log P (t)

P (x) .

Now if we consider (2.6), we obtain (2.9) with B = 2/ log λ. �

Lemma 2.3. Let f ∈ L1
loc

(
R+) be a real-valued function such that the assumptions of

Lemma 2.1 are satisfied for its integral function s (t) . Then there exists a positive constant
B1 such that

1
P (t)

∫ t

x0
(s (t)− s (x)) dP (x) ≥ −B1 whenever t > P−1 (λP (x0)) . (2.9)
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Proof. By the assumption and (2.1), we have∫ t

x0
(s (t)− s (x)) dP (x) =

∫ P−1( 1
λ
P (t))

x0
(s (t)− s (x)) dP (x)

+
∫ t

P−1( 1
λ
P (t))

(s (t)− s (x)) dP (x)

≥ −B
∫ P−1( 1

λ
P (t))

x0
log P (t)

P (x)dP (x)−
∫ t

P−1( 1
λ
P (t))

dP (x) (2.10)

≥ −B logP (t)
∫ P−1( 1

λ
P (t))

x0
dP (x) +B

∫ P−1( 1
λ
P (t))

x0
logP (x) dP (x)

+
(

1− 1
λ

)
P (t)

≥ −B
λ

(logP (t))P (t) +B

∫ P−1( 1
λ
P (t))

x0
logP (x) dP (x)

By the condition (1.5) the function logP (x) has bounded derivative, hence it is absolutely
continuous on any bounded interval in R+. Hence we can apply the integration by parts
formula to the integral in the right hand side of (2.10). So we have∫ P−1( 1

λ
P (t))

x0
logP (x) dP (x) = [(logP (x))P (x)]P

−1( 1
λ
P (t))

x0 −
∫ P−1( 1

λ
P (t))

x0
dP (x)

= log
(
P (t)
λ

)
P (t)
λ
− (logP (x0))P (x0)− 1

λ
P (t)

+P (x0) (2.11)

= 1
λ

(logP (t))P (t)− log λ
λ

P (t)− (logP (x0))P (x0)

− 1
λ
P (t) + P (x0) .

On the other hand we have P (x0)
P (t) < 1

λ whenever t > P−1 (λP (x0)) . Now it follows from
(2.10) that∫ t

x0
(s (t)− s (x)) dP (x) ≥ −B

λ
(logP (t))P (t) + B

λ
(logP (t))P (t)

−B log λ
λ

P (t)−B (logP (x0))P (x0) (2.12)

−B
λ
P (t) +BP (x0)

≥ −BP (t)
( log λ

λ
+ (logP (x0)) P (x0)

P (t) + 1
λ

)
≥ −B1P (t)

where
B1 = B

λ
(log λ+ logP (x0) + 1) . (2.13)

This completes the proof. �
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Lemma 2.4. Let f ∈ L1
loc

(
R+) be a complex-valued function such that the assumptions of

Lemma 2.2 are satisfied for its integral function s (t) . Then there exists a positive constant
B1 such that

1
P (t)

∫ t

x0
|s (t)− s (x)| dP (x) ≤ B1 whenever t > P−1 (λP (x0)) . (2.14)

Proof. The proof goes along similar lines to the proof of Lemma 2.3. Assume (1.15) with
ε = 1, and (2.7). Then the estimation (2.11) turns into form∫ t

x0
|s (t)− s (x)| dP (x) ≤ B

∫ P−1( 1
λ
P (t))

x0
log P (t)

P (x)dP (x) +
∫ t

P−1( 1
λ
P (t))

dP (x) . (2.15)

Then (2.12) together with (2.15) yields that∫ t

x0
|s (t)− s (x)| dP (x) ≤ B1P (t)

where B1 is the same constant defined by (2.13). �

The first main result below states that ordinary limit at infinity follows from statistical
limit at infinity for the measurable real-valued functions that are slowly decreasing with
repect to P.

Theorem 2.1. Let s : R+ → R be a measurable function. If s (t) st→ l and s (t) is slowly
decreasing with respect to P then s (t)→ l.

Proof. Let ε > 0, x0 > 0 and λ > 1 be arbitrarily given. Also let s (t) st→ l. Then from (1.1),
there exists a1 ≥ x0 such that

|s (a1)− l| ≤ ε.
There are two cases. There exists some a2 ∈

(
P−1

(√
λP (a1)

)
, P−1 (λP (a1))

)
such that

|s (a2)− l| ≤ ε. (2.16)

or there exists no such a2, that is

|s (t)− l| > ε for all t ∈
(
P−1

(√
λP (a1)

)
, P−1 (λP (a1))

)
.

If the last case holds, then by (1.1) we can choose any a2 > P−1 (λP (a1)) such that (2.16)
is satisfied. Otherwise we would have

lim
a→∞

1
a

∣∣∣{t ∈ (P−1 (λP (a1)) , a
)

: |s (t)− l| > ε
}∣∣∣ = 1

and this contradicts with (1.1). Note that a2 > P−1 (λP (a1)) implies that P (a2) >

λP (a1) > P (a1) , and so a2 > a1, since P is strictly increasing function. Now we repeat the
previous step by beginning with a2 instead of a1, and so on. Then we obtain an increasing
sequence (an) of real numbers such that

|s (an)− l| ≤ ε for n = 1, 2, .... (2.17)

We assert that the case

|s (t)− l| > ε for all t ∈
(
P−1

(√
λP (an)

)
, P−1 (λP (an))

)
(2.18)
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can not occur for infinitely many n. Otherwise there exists ε > 0 such that for infinitely
many n we obtain

1
an
|{t ∈ (0, an) : |s (t)− l| > ε}|

≥ 1
an

∣∣∣{t ∈ P−1
(√

λP (an)
)
, P−1 (λP (an)) : |s (t)− l| > ε

}∣∣∣
= P−1 (λP (an))− P−1

(√
λP (an)

)
> 0,

but this contradicts with (1.1). Hence, (2.18) is satisfied only for finitely many values of n.
Let n0 be the largest value of n for which (2.18) holds. Thus we have

an+1 < P−1 (λP (an)) for n > n0. (2.19)

On the other hand by construction we have

an+1 > P−1
(√

λP (an)
)

for n > n0.

So it follows that
lim
n→∞

an =∞.

Since s (t) is slowly decreasing with respect to P, by condition (1.13), we have

s (t)− s (an) ≥ −ε whenever x0 ≤ an < t ≤ P−1 (λP (an)) , n > n0. (2.20)

Let an < t ≤ an+1 for some n > n0. By (2.19) we have

an < t ≤ an+1 < P−1 (λP (an)) < P−1 (λP (t)) . (2.21)

On the other hand it follows from (2.17) and (2.20) that if n > n0 then for each t ∈ (an, an+1]

s (t)− l = (s (t)− s (an)) + (s (an)− l) ≥ −2ε. (2.22)

Moreover, it follows from (2.17) and (2.19)-(2.21) that

s (t)− l = (s (t)− s (an+1)) + (s (an+1)− l) ≤ 2ε. (2.23)

Combining (2.22) and (2.23) we have

|s (t)− l| ≤ 2ε

for every t ∈
⋃∞
n=n0+1 (an, an+1] = (an0+1,∞). This proves that s (t)→ l. �

The next result is counter part of Theorem 2.1 in the complex-valued case.

Theorem 2.2. Let s : R+ → C be a measurable function. If s (t) st→ l and s (t) is slowly
oscillating with respect to P then s (t)→ l.

Proof. We will use the similar method as in the proof of Theorem 2.1. Let ε > 0 and λ > 1.
Then there exists an increasing sequence (an) of positive numbers tending to infinity such
that (2.17) and (2.19) hold. Since s (t) is slowly oscillating with respect to P, by condition
(1.15), we have

|s (t)− s (an)| ≤ ε whenever x0 ≤ an < t ≤ P−1 (λP (an)) , n > n0. (2.24)
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Then it follows from (2.17), (2.19) and (2.23) that

|s (t)− l| ≤ |s (t)− s (an)|+ |s (an)− l| ≤ 2ε

for every t ∈
⋃∞
n=n0+1 (an, an+1] = (an0+1,∞). This proves that lim

t→∞
s (t) = l. �

Theorem 2.3. Let f ∈ L1
loc

(
R+) be a real-valued function such that its integral function

s (t) is slowly decreasing with respect to P. If s (t) st→ l
(
N, p

)
then s (t)→ l.

Proof. We first prove that if s (t) is slowly decreasing with respect to P , then so is the
function σ (t) . Let ε > 0 be given and let x0 ≤ x < t ≤ P−1 (λP (x)) , where x0 = x0 (ε) > 0
and λ = λ (ε) > 1 that is so close to 1. Then

σ (t)− σ (x) = 1
P (t)

∫ t

0
s (u) dP (u)− 1

P (x)

∫ x

0
s (u) dP (u)

= 1
P (t)

(∫ x

0
+
∫ t

x

)
s (u) dP (u)− 1

P (x)

∫ x

0
s (u) dP (u) (2.25)

= −P (t)− P (x)
P (t)P (x)

∫ x

0
s (u) dP (u) + 1

P (t)

∫ t

x
s (u) dP (u)

= P (t)− P (x)
P (t)P (x)

∫ x

0
[s (x)− s (u)] dP (u)

+ 1
P (t)

∫ t

x
[s (u)− s (x)] dP (u) .

By Lemma 2.3 there exists a positive constant B1 such that
1

P (x)

∫ x

0
(s (x)− s (u)) dP (u) ≥ −B1. (2.26)

On the other hand it follows from x < t ≤ P−1 (λP (x)) that P (x) < P (t) ≤ λP (x) and so
1
λ
≤ P (x)
P (t) . (2.27)

By using inequalities (2.26) and (2.27), and the condition (1.13) of slow decrease, we have

σ (t)− σ (x) ≥ −B1
P (t)− P (x)

P (t) − ε 1
P (t)

∫ t

x
dP (u)

= −
(

1− P (x)
P (t)

)
(B1 + ε)

≥ −
(

1− 1
λ

)
(B1 + ε)

> − (λ− 1) (B1 + ε) .

Now it follows from this inequality that

σ (t)− σ (x) ≥ −ε whenever x0 ≤ x < t ≤ P−1 (λP (x))

provided 1 < λ ≤ 1 + ε
B1+ε . This proves that σ (t) is also slowly decreasing with respect

to P. Since σ (t) st→ l by assumption, we obtain that σ (t)→ l by Theorem 2.1. Finally by
Theorem 1.1 we conclude that s (t)→ l. �
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Theorem 2.4. Let f ∈ L1
loc

(
R+) be a complex-valued function such that its integral function

s (t) is slowly oscillating with respect to P. If s (t)→ l
(
N, p

)
then s (t)→ l.

Proof. The proof is analogous to the proof of Theorem 2.3. We first prove that if s (t) is
slowly oscillating with respect to P , then so is the function σ (t) . Let ε > 0 be given and
let x0 ≤ x < t ≤ P−1 (λP (x)) , where x0 = x0 (ε) > 0 and λ = λ (ε) > 1 that is so close to
1. It follows from (2.25) that

|σ (t)− σ (x)| ≤ P (t)− P (x)
P (t)P (x)

∫ x

0
|s (x)− s (u)| dP (u)

+ 1
P (t)

∫ t

x
|s (u)− s (x)| dP (u) .

By Lemma 2.4 there exists a positive constant B1 such that
1

P (x)

∫ x

0
|s (x)− s (u)| dP (u) ≤ B1. (2.28)

By using inequalities (2.28) and (2.27), and the condition (1.15) of slow oscillation, we have

|σ (t)− σ (x)| ≤ B1
P (t)− P (x)

P (t) + ε
1

P (t)

∫ t

x
s (u) dP (u)

=
(

1− P (x)
P (t)

)
(B1 + ε)

≤
(

1− 1
λ

)
(B1 + ε)

< (λ− 1) (B1 + ε) .

Now it follows from this inequality that

σ (t)− σ (x) ≥ −ε whenever x0 ≤ x < t ≤ P−1 (λP (x))

provided 1 < λ ≤ 1 + ε
B1+ε . This proves that σ (t) is also slowly oscillating with respect to

P. Since σ (t) st→ l by assumption, we obtain from Theorem 2.1 that σ (t) → l. Finally by
Theorem 1.2, we conclude that s (t)→ l. �

Finally note that the special cases of P (x) = x for all x ∈ R+ and

P (x) =
{

0, 0 ≤ x < 1
log x, x ≥ 1 ,

our Theorems 2.1-2.4 have been given by Móricz [10, Theorem 1-4] and Móricz and Németh
[13, Theorem 1-4].
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