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ON SOME BOUNDS FOR THE GENERALIZED GAMMA, DIGAMMA
AND POLYGAMMA FUNCTIONS

HESHAM MOUSTAFA', AHMED TALAT?, AND OMELSAAD AHFAF!

ABSTRACT. We are interested in finding some strictly completely monotonic (CM) func-
tions involving the generalized gamma, digamma and polygamma functions, where the
generalized gamma function is I',(y) = W‘M for y > 0 and p € N and the
generalized digamma function is its logarithmic derivative. As a consequence, we establish
some new upper and lower bounds for the generalized gamma, digamma and polygamma

functions, which refine recent results.

1. INTRODUCTION

Special functions have many applications in pure mathematics and in applied areas such as
electrical current, acoustics, heat conduction, fluid dynamics and solutions of wave equations.
The gamma and the psi functions have great importance in the study of special functions.
Euler [9] defined the gamma function as I'(y) = lim,,—,oc ', (), where the generalized gamma
function

_ p +
W= ) gy VSR #EN

which satisfies

y N
r +1:<>F , €RT, €N. 1.1
py+1) o w(y) y 1 (1.1)

The digamma function is given by [I]

1 1

My _ =
¢(y)_I‘(y)__7+§<1+l_l+y>’ y € (0,00)
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S
where the Euler-Mascheroni constant v := lim (Z %— log s) ~ 0.5772156649. The
u=1

S—»00

generalized digamma and polygamma functions are given by [1]:

M 1 —pv _ v e
¢u(y)zzs+y+lnu / 7_1 e Ydv + Inp, y € (0,00), pweN (1.2)
s=0

and

H u—i—l ul " 0o [omHYV _ v I

sz:: s+y“+1:(_1) /0 el A dv, ye€(0,00), pu€eN
(1.3)

and they satisfy the following functional equation:

e (1 +y) — @) = () ul (4 y+ )T -y ), weNU{0) (14)
¢£u) (y) is strictly CM on (0,00) for u = 1,3,5,--- . A function H defined on J C R is called
CM if it has derivatives H® (y) for every u € N U {0} such that
(=1)*H™(y) > 0 yeJ; ue NU{0}.

These functions occur in many areas such as elasticity, numerical analysis and probability
theory. For more details about this topic, see [3,6—]. The necessary and sufficient condition
that the function H(y) should be completely monotonic for 0 < y < oo is that

e = [ T e du(y),

where v(y) is non-decreasing and the integral converges for 0 < y < oo (see [11], Theorem
12b).

Batir [2] presented some bounds for I'(y) in terms of ¢ (y):

1/6 4 ¢’ I'(y) 1/6 _ ¢(y)
exp{—(y_}l)— 5 }<(myy)<exp[ T—T}, >0 (1.5)
Sevli and Batir [10] presented some bounds for I'(y) in terms of ¢/(y):
V()Y et V()
exp( 17 ) < (ﬁyy_%> <exp< 19 ), y > 0. (1.6)

Recently, Mahmoud, Almuashi and Moustafa [5] presented some asymptotic expansions
for 'y (y), ¥u(y) and w&u) (y) functions:

InT,(y) ~ <2y2_ 1) In <,uy> —(1I+p)n(l+y+p) +In (,u! ettr \/ﬁ)

I+y+p
~[00 4y + 1) —9), (17)
1 1 ny / /
@ﬁu(y)NQ(I_HH_M)—2y+ln<1+y+u>—{19(1—1'94-#)—19(2/)} y —r o0 (1.8)
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and
—1)* (—1)“ (—1)“ u! u!
oo ) ()
+19(“+1)(y) 914y +p), uweN, y— oo (1.9)
w! u)! u)!
where ¥(y) = @ - ﬁ - 120y4 and 9 (y) = (=1)* [12y1'+“ - 7(220254)ru - 7(2%24J)ru} and they

also deduced the following inequalities, for p € N, y € (0,00) and v =2,3,---:

P l__¢ﬂ<lﬁfy)] - ( Tu(y) < ] Xp[__%%ﬁyz},(Llo)

————ex T e
L+y+p 2 wﬁvaww> l+y+p 2
(Ltytp) 200
1 ( 143y ’
u( 3 ) Ly Y (y)
A2 e () - T 1.11
< ( S ) — v < (111)
and
u u) (3y+1 u
(D (2) (D )

. < (1" D ()~ (w=2)! (v~ A4y +p)' ) <

(1.12)
Our purpose is to find some inequalities for I',(y), 1, (y) and a/),(]‘) (y) functions, which
refine the results (1.10), (1.11) and (1.12).

The next corollary [3] will be needed in the next section:

Corollary 1.1. Suppose that L is a function defined on v > vy, vg € R with Uli_)ngo L(v) =0.
Then forn > 0, L(v) > 0, if L(v+n)—L(v) < 0 forv > vy and L(v) <0, if L(v+n)—L(v) > 0
for v > vg.

2. AUXILIARY RESULTS

Theorem 2.1. Assume that y > 0 and p € N. Then the function

iy = ) o (B2 - ()

6 I+y+p

is strictly CM on (0, 00).

Proof. Using (1.3) and the identity - 77 = o) 1), JoZ v te ¥ dv for y > 0, (see [1]), yields

(14 2y)/2 o
%@F=M«_;w/)+%«12%)+ﬂ+y+u1—"—/ eaww w(v)dv,

w(v) = 6{ —1+e¥ + et — e(’”z)”} — 6v [e%v — e(gﬂ‘)”} +v? [e% — e(%ﬂ‘)”}
and by using the series representation of the exponential function at v = 0, we obtain

O+MW11+@5+Bmv+(m4+me4&M%W] iijum ot
(

0,
6 36 1080 1 (24 u)! <

w) =—
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where
fulw) = [+ p)™ = @b ) 1) =62+ u)[(2/3)" — (5/3+ )|
3 u
+(2+u)(1+w) lQ‘“ - <2 + M) ]
o ufu+D(ut2) (p+ 1)
— 150 30u(55 136+ 17u) + u(93 + 139u)
u—4 1\ %8
St (5) @
s=1
-3 [ (442) = 6(u+2) (*4) (2/3)"+ | (1 4 o
< -3 [ (442) = 6(u+2) (*47) (2/3)"+ | (1 4 o
1+u—s
u=t (24 u) (2) (w—s+d)(u—s—1) UL
- _6 1+u u—s+1
S Sy () [ S )
< 0.
From the Bernstein-Widder Theorem [11], we have —uj,(y) is strictly CM on (0, 00). It
follows that w,(y) is strictly decreasing on (0,00) and by using (1.8) and (1.9), we obtain
yli_}ngQ uy,(y) = 0 and then wu,(y) > 0. Then w,(y) is strictly CM on (0, c0). O

Let us mention some important consequences of Theorem 2.1:

Corollary 2.1. Assume that y > 0 and p € N. Then we have

Pl (L
N(62) > In (%) by (1 ggy) (2.1)
and
(—?L%Hu) (21/2+ 1) - (1(ny_i);i)u (u ;ul)! T (~1)LHeg <1+33y> . weN.

Lemma 2.1. For p € N, we have

v () i 1 1
EN 2 S () - _ = - Yy > 025 (2.3
, Yuy) =3 <4y4_1 y+i+u> y (2.3)

(y)+;<(y11)2—3 ! 2) Wy > 0.25 (2.4)
4
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and

m( 14+2y

M( 2 ) 1 1 7 2 1 1

w2z ) 2oLy _Z - Yy > 0.25.
6 <ﬁ (1+y+MV) a 3(@—1P (Z+y+uP> !

(2.5)

Proof. Consider the function v,(y) = %1% (y + %) —In (#}%) +, (y)—}—% < L y+;+i)

T
Y—37
and by using (1.4) and Mathematica software, we have

~Dy(y—0.25) (1+p)
3y3 (1+y)2 (A +pty)® C+uty) 2 (1+2y)?

3420+ 2y)4 (=1 + 4y)3(3 4+ 4y)* (3 + 4 + 4y)* (T + 4 + 4y)?’

1ﬂu+w—wuw=(

where D,,(y) is a polynomial of 23-th degree of y with positive coefficients of y and then

vy (1 +y) —v;(y) < 0 for y > 0.25 and by using (1.9), we get yli_)nolo v,(y) = 0. By using

Corollary 1.1, we get that vy;(y) > 0 for y € (0.25,00) and this proves (2.5). It follows

that v, (y) is strictly increasing on y > 0.25 with ylLIgo v,(y) = 0, then vy (y) < 0 for

y € (0.25,00) and hence we obtain (2.4). Consequently, v,(y) is strictly decreasing on

y > 0.25 with 1Lm vu(y) = 0, then v,(y) is positive for y € (0.25,00) and then we get
y—00

(2.3). O

3. SOME CM FUNCTIONS

Theorem 3.1. Assume that y > 0 and € N. Then the function

_ Qﬁu(y)
2

+InTu(y)+(p+1)In(1+y+p) —yln (W> —In <,u! et \/,E>

1+y+p
L 1
6\y—9 S+y+up

is strictly CM on (0,00) if and only if 6 > %. Also, —Ns,,(y) is strictly CM on (0, 00) if and
only if 6 < 0.

Nd,u (y)

Proof. By using equations (1.2), (1.3) and the identity

h co __ ,—hv —dv
m(>_/ie+edu hyd € (0, 00) (3.1)
d 0 v

(see [1]), we have

, B V,(y) Y
N5, (y) = uly) + ‘i%“"‘ln (y-+1-F;L>

Ly 1 [ el
_UGQy_Q _X§+y+uy>_ﬂ; Mﬁfl)www’
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where
2
_  (p2)w v (v @+wv vl V[ v (2+pw
pv) = e +1—-€e"—e v{e e} 2[6 e ]

2
_ v lez e — (6(1+“)” — 6(2"'“)”) 66”].

2
(n+2)v _ eV — v _ ot _ o] _ Y[ _ p24u)y
o(v) < e +1—-¢e"—e¢ v{e e} 2[6 e ]

— v |:e4 — 654U — 6(%+M)v + e(%+“)v:|

6
and hence
o) < _11(12;35)116 N i (;91(1;))!@2% <0,
where
Su(u) = —1—(1+/,L)“+2+(2+,u)“+2+(u+2){1—(2+,u)“+1
_(u—l—l)éu+2) 47— (Z>u+3— <i+u>u+ (i+u>u—3(2+u)“
- ?jl(“ﬁ?)—(wm (i) + LD o 5 (D)= (3) ) wr
11 (2+5“) (14 p)u—3
a 24
< SZIW()[@—i—u—s)((i)uS—<i>us>—3(u—s)1(l+u)
u 4 u—s—1 5 U—s5—
—ZW@[H%S > ()4 R
< 0.

It follows that —Nj ,(y) is strictly CM on (0, o) for 6 > 1. Thus Ns ,,(y) is strictly decreasing
on y > 0 and by using (1.7) and (1.8), we get ylLI{:O Ns . (y) = 0 and hence N, (y) > 0. Then,

for § > 7, the function Nj,(y) is strictly CM on (0,00). On the other hand, if Ns,(y) is
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strictly CM on (0, c0), then by using again (1.7) and (1.8), we get

1%2(9) +InTyu(y) —yln (%) —1In (,u! Nm 61+u>

oy ( ptg+o )
+ lim 3
v=00 6(1 4 ) \(y = 0)(3 +y+p)

y? y?
li — N, = 1l
J gy Ve = i g

+(p+ 1) In(y + 1+ p)

3 _1
6  6(14+p)  6(1+p

0o e—(I+y+p)v

and then § > %. Now for 6 < 0, we get N(g’u(y) =l S

Xx(v)dv, where
24u

oo [u—1 —5— s s v
w3 S (MU (5))]

u=2 Ls=1

and consequently, for 6 < 0, the function NV (§7 H(y) is strictly CM on (0,00). We thus get

N ,.(y) is strictly increasing on RT and also li_>m Ns,(y) = 0 and hence N, (y) < 0. Then,
Yy oo

for § <0, the function —Ns ,(y) is strictly CM on (0,00). On the contrary, if —Ns,(y) is

strictly CM, then we get for y € (0,00), p € N:

1 1
— —
20l Huy) - (y+3 +n) 7706 Huly) = (y+ 3 +n)
where
_ Yu(y) yp | Jl4n
Hu(y) = T InT,(y) —yln <1+y+,u) + (@ +p)n(l+y+np)—In (M~ e \/lj)

Using the functional equations (1.1) and (1.4), we get § < lim ﬁ = 0, where
y—0 Y)

yYuly+1 YH
Auly) = 6(u(2)—l/(y‘f‘l)ln(W)+(1+M)ylﬂ(y+1+ﬂ)
(14 p) 1 4y
Inl,(1 TR () e R
+yInT,(1+y) 0ty + ) yn(u e \/ﬁ) S

Theorem 3.2. Let p € N, y >0 and p > 0. Then the function

yp
Tpuly) =—(y—1/2)In <1+y+ﬂ> +(1+p)n(y+p+1)+mly(y) —In (u! eltr \/ﬁ>
_Yulety)
12
is strictly CM on (0,00) if and only if p > % The function =T, ,(y) is also strictly CM on
(0,00) if and only if p = 0.
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Proof. Using equations (1.2), (1.3) and the identity (3.1) lead us to
') = -1 -1 y+1+p\ Yulp+y)
Tp7u(y)—1/2(y (I+y+p) )+ln< m ) B

o 67(1+y+ﬂ)v9 d
_/0 e 1) (v)dv,

+ Yu(y)

where
Qo) =1 — ATy — v 4 @ 4 2 {1 —eFHv v e(2+“)“} v {ev - e(2+”)”}e_””
2 12
Let p > %, then we obtain

3
Q(U) < 1 — 6(1+N)U _ eU + 6(2"1‘#)11 + B |:1 _ e(]."‘llz)’l} + e’l} _ e(2+u)v:| _ 'Ui [e% . e(%+u)v:|
- 2 12

and hence
—(1+pn® & hu(u)
Qo) < = +UZ:;1 (3‘;@!” +3 < 0,
where
h,u(u) — 2+ M)3+u —1-(1+ M)3+u + (3+2u) |:1 —(1+ M)2+u - (24 ,u)2+u
Q+w)+uw)B+w [, (3, \"
- 12 20 <2 +M> }
= A C R I+ w)2+u)B+u) 4 s s
- s; (3t)_T(t2)+ 12 ()27 1+ p)
(3—Eu) (1 + M)u72

4

u—3 (I+u)(2+u)(3+u) . uss )
) _;::112 (2v=%) B4+u—s)2+u—s) (=) [Q(U_S)(U_S_l)"FG;( l )](14—#)

< 0.
It follows that —T} ,(y) is strictly CM on (0,00) for p > 3 and hence T}, ,(y) is strictly
decreasing on (0,00) and by using (1.7) and (1.9), we get 1Lm T,,(y) = 0 and then
Y—r00
T,.(y) > 0. Then T}, ,(y) is strictly CM on (0,00) for p > 3. On the contrary, if T}, ,(y) is
strictly CM, then we get for p € N, y > 0:
3 3

(Iiﬁ:ﬁp,u(y) = (11,@ Quly) + Ru(y)| >0, (3.2)
where
1-2 r,
Qu(y) = (1+u)1n(1+y+u)+< 5 y>1n<1+’;y+u> +1n (\/ﬁ/ﬂiﬂ)
(1+p)

CR2y(1+y+p)
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and

1] 1
Ru(y) = 13 [T%(P +y) — M

From (1.7), we have yliﬂnolo %Qu(y) = 0 and by using (1.9), we have

. y? . y? p(L+p)(1+p+p+2y)

lim ———R,(y) lim

y=oo (1+p) v 12(1+p) |y(p+y) A+ p+y)(L+p+p+y)
TR (I+p)(1+20+pu+2y) | 2p-1
y=o0 12(1 4 p) [ 2(p + 9)2(1+ p + p +y)? 12 -

From (3.2), we conclude that 0 + % > 0 and then p > 3. Now for p = 0, we get

, oo [ qu (ud u—s)b+u—s " L\ w2 ety
Thuls) = | {Zﬂv (Zl R TSI )] e

and therefore Tj ,(y) is strictly CM on (0, 00). We thus get Tp ,,(y) is strictly increasing on
(0, 00) with li_)m To,u(y) = 0 and then Ty ,(y) < 0. It follows that —Tp ,(y) is strictly CM on
Y—>00

(0,00). On the other hand, we suppose that —T), ,(y) is strictly CM on (0, c0) with p > 0,
then T}, ,(y) < 0 on (0, 00), which contradicts with lin% T, (z) = oo for p > 0, and hence
Yy—

p=0. [l

Theorem 3.3. Let p € N, y > 0 and the function

1 1 1

24 |(y—B)?2 (y+p+d2]

where Ty ,,(y) is given in Theorem 3.2 for p = 0. Then Ug ,(y) is strictly CM on (0,00) if
and only if B > % and —Uq, ,(y) is strictly CM on (0,00) if and only if 5 < 0.

Upu(y) = Tou(y) +

Proof. Taking the derivative of the function Ug ,(y) with respect to y and using equations
(1.2), (1.3) and the identity (3.1) yields
00 o—(ytput+l)v

/ —
Uhut) = || ey @
3
S T € E77) L RN 207 A N € B 1) NI /7)ol A VRN 2o
olv) = 1—e e’ +e —1—2[1 e +e"—e } . [e e
24

3

Let 6 > %, then we obtain

3
ov) < 1- e(tmv _ gv y (+mv 3[1 —eHmv 4 v e(2+u)v} _ i[ev _ e(2tp
- 2 1

3
_04[ s (S +6<1;+mv],
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and hence
o~ _Su(u)
S o v3+u<07
;(3—1—15)!
where
_UE: uw)(2+u)(3+u) ) (u—3—s)(u—2—-s)(u+5—-s)
243+u—3)(2—|—u—5) s 5
u—1-—s
+B+u—s)2+u—s) > ( ) (1+p)*<0
=2

Consequently, —Uy ,(y) is strictly CM on (0, 00) for 8 > % Thus Ug ,,(y) is strictly decreasing
on (0,00) and also yl;n;o Us,u(y) = 0 and then Ug ,(y) > 0. Then Ug ,(y) is strictly CM on

(0, 00) for g > % On the other hand, if Ug ,(y) is CM, then we get for y >0, p € N:

y? y® y° 1 1
———Up u(y) = ———To,u(y) + — > 0. 3.3
T W = oW g \ = ap ety 3
By using the equations (1.7) and (1.9)and the fact that hm (1+u) To,u(y) = —15, we have
3 1
. Y 1 M +z + B B—s
lim ——U = > 0.
M Gy VW) = g (<+M T 120 4p)
Then from (3.3), we conclude that 8 > % Now for f < 0, we get

U’ 0o 6*(y+u+1)v p
B,u(y) _/O U(e” — 1) V(U) v,

where

oo [u—1
(u—s5—1)64+u—s)(1+p)s __,\|o3
> y 57° .
V(”)-%LX%(Q( B+u—s)(2+u—s) + 24 u!
Consequently, for 8 < 0, the function Uj ,(y) is strictly CM on (0,00). Thus Ug,(y)
is strictly increasing on (0, 00) with yangO Us,u(y) = 0, since yanC}O To,u(y) = 0 and hence
Usu(y) < 0. Then, for 3 < 0, the function —Ug,(y) is strictly CM on (0,00) . On the
contrary, if —Ug,,(y) is strictly CM, then we get Ug ,(y) < 0 for y > 0 and p € N and it
follows that

1
b<— hr% .
y— _ 1
\/ 24 To,u() + iy
Using (1.1) and (1.4), we get f < — hg%] B&L(y) = 0, where
yp
B,(y) = —24[ —y*(y+1/2)In (1 ) +y2(u+ D (y+p+1)+y*InT,(1+y)
Yyt
2 2
2 1+ Yy (1 +p)(L+ p +2y) 25y
2 (et ) — L 1) — .
v In (ut e Vi) el +1) 12(y + 1+ p)2 (5y + 5y + 4)2

O
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From (1.2), we deduce the following lemma:

Lemma 3.1. Assume that y > 0 and pu € N. Then we have

lim y' ™ (" (y) = (-1)""™"ul, uweNuU{0} (3.4)
y—0
and
. u 1+u _
;lg(l)y % Jb+y)=0, be(0,00), uecN. (3.5)

4. SOME BOUNDS FOR THE GENERALIZED I, 1), AND @bl(f‘) FUNCTIONS

Let us mention some important consequences of the Theorems 3.1, 3.2 and 3.3.

Corollary 4.1. Fory € (0,00), u € N and a € R,

vl Cduly) NS < 3> - Lu(y)
1/ijNleexp[ 5 1/6( (y — a) ytut <<uyyy_%eM+1 !>
(y+p+1)v et

<\/7y+y:+lexp[_¢u2(y)_l/6(y1_y+;+i)}’ (4.1)

where the constant a = i is the best.

Proof. If the left-hand side (L.H.S) of (4.1) holds, then we get

y2

(14 p)
which yields a > % as shown in the proof of Theorem 3.1 and by using the decreasing
property of the function y—lg on (0,00) for s € N, we conclude that the constant a = % is
the best in (4.1). Next, the right- hand side (R.H.S) of (4.1) follows from Ny ,(y) < 0 in

Theorem 3.1. O

Nop(y) >0,  ye(0,00), peN,

Remark 4.1. Letting p — oo in (4.1) yields (1.5).

Remark 4.2. For every y € (0,00) and p € N, the upper bound of (4.1) refines the upper
bound of (1.10).

Corollary 4.2. Fora € R, y € (0,00) and p € N,

1 1 1 U (y) Y
6<(y+u+i)2_(y—a)2>+ B <ln(y+u+1>_¢“(y)
1 1 1 V) (y)
<6<@+u+®2_¢>+ 2 .

where the constant a = i being the best.
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Proof. 1f the L.H.S of (4.2) is correct, then we get ﬁ N, ,(z) <0 and by using (1.8) and
(1.9), we deduce that

3 3

. Y / . Y
lim ——— N, = 1
Yoo (I +p) anly) Yo (T4 p)

1/26,0) + 9s) ~In (2 )

1 1 _
+6((y+ﬂ+i)2 - (y— a) 2)]

1 p+ati j-a

<0
3 3(1+p)  3(1+p
1

which gives a > i and by the same way as in the proof of Corollary 4.1, the constant a = ;
is the best for (4.2). Finally, the R.H.S of (4.2) comes from N ,(y) > 0 in Theorem 3.1. [

Remark 4.3. For every y € (0,00) and p € N, the upper bound of (4.2) refines the upper
bound of (1.11).

Corollary 4.3. Fory € (0,00), a € R, p € N and u=2,3,--- , we have
(—1)u+1 ( ) U' 1 1 ( 71)
9 w,u, (y) 6 (y o a)1+u (y 4 L 4 %)l—i—u ( ) % (y)

w () —1-u
—(u—2)! (yl—u g+t 1)1—u) < (—1)1+2¢u (y) %‘ (y—l—u _ (y+,u+ §) 1 > 7

where the constant a = % is the best.

Proof. Firstly, if the L.H.S of (4.3) is valid, then we get (yllj::) (—1)* élﬁ (y) > 0 for u =
2,3,---, and by using (1.9), we conclude that

: y“t? upr(u 1 tu (=1 w(U)(y) w, ) (u—
i oy COMNEW) = Jim s e )
(u—2)! (u—2)!

yet o g+t

5 y2+u ! u!
+;$W@+M)Qy—®H“_@+u+iﬂW>
I+w)! (A4u)! (pt+a+3) (Q+uw)(a—7)
6 6(1+ 1)  6(L+p)

> 0,

which yields a > % and similarly as before, the constant a = % being the best in (4.3). Next,
the R.H.S of (4.3) is deduced from (—1)* éqﬁ (y) <0 foru=2,3,--, in Theorem 3.1. O

Remark 4.4. For every y € (0,00), p € Nand u=2,3,---, the upper bound of (4.3) refines
the upper bound of (1.12).
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Corollary 4.4. Fory € (0,00), a;b € Rt U{0} and p € N,

Y, (a+ y)} Lu(y)

12 ( Wy T ) )
(1) 2TV =1

where the constants a = % and b =0 are the best.

Wbm}

< exp [ 19

exp [ (4.4)

Proof. If the L.H.S of (4.4) is valid, then we obtain ﬁ Tau(y) > 0 and consequently, we
have a > % as noted in the proof of Theorem 3.2 and by using the decreasing property of
the function 1, (y) on (0, 00) yields the constant a = 3 is the best in (4.4 ). Next, the R.H.S
of (4.4) for b = 0 follows from Ty ,(y) < 0 in Theorem 3.2. Now, if the R.H.S of (4.4) is true

for y € (0,00) and b € R, then we have

T+p )1 (b
IimI',(1+y) < L'uz exp {M} lim y%,

which yields I',(1) < 0 and this contradicts with I',,(1) = ﬁ for 1 € N. Hence the constant
b = 0 being the best in (4.4). O

Remark 4.5. Letting p — oo in (4.4) yields (1.6).

Remark 4.6. By using (2.1), we deduce that, for every y € (0,00) and p € N, the lower
bound of (4.4) refines the lower bound of (1.10).

Remark 4.7. By using (2.3), we deduce that, for every y € (0.25,00) and p € N, the lower
bound of (4.4) refines the lower bound of (4.1).

Corollary 4.5. Fory € (0,00), a;b € RY U{0} and p € N,

" %

2y(yu++11+ wo “(?; 2 <m (y +y1u+ u) ~nly) < 2y(yu++11+ p o #(31/; Y. )
where the constants a = % and b =0 are the best.
Proof. If the L.H.S of (4.5) is correct, then we obtain

VT = s M) + V)] < 0. (16)
(n+1) *F (n+1)
where
Muly) = uly) ~ 1o (y = u) 2y<éu++lll ) Oi;y?l()z;l:lTu)?g)

and

() +p+2y) Yulaty)
12y2(y + 1 4 p)? 12

Vuly) =
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. . . . 4
By using the asymptotic expansions (1.8) and (1.9), we have ylggo (ﬁiu)M »(y) =0 and

4 4

. . Yy
lim —2 ~- 1
g o) =i e

L () + (1 + 1) (3y% + 3(1+ 2 + 1)y
(a4+y)B31l+a+p+y)? ]

g [aln D) (suly) + 6y + 1201+ a + p)y?)
— lim
y=0 12(1+p) | Py +a)?(L+p+y)P(l+atp+y)?
_ 1—2a
- ==,

where h(p) = 2p + p? + 3a(1 + p + a) and

su(y) = 2(4 + 9a + 4a* + 8p + 9ap + 4p*)y® + 2(1 + a + p) (1 + 3a + a® + 2u + 3ap + p*)y
Ha(l+ p)(1 +a+ p)?

From (4.6), we conclude that % < 0 and then a > % and by using the increasing property

of the function 1y;(x) on (0,00), we deduce that the constant a = 1 is the best in (4.5 ).

Next, the R.H.S of (4.5) for b = 0 follows from Tf ,(y) > 0 in Theorem 3.2. Finally, if the

R.H.S of (4.4) holds for y € (0,00) and b € RT, then we get

1 1
lim —y Wy) () | <5 - lmy v+

<7
y—0 1+y+p 2 12 z—0

and by using (3.4) and (3.5), we have 1 < %, which is impossible. Then the constant b = 0
being the best in (4.5 ). O

Remark 4.8. Taking v = 1 in the inequality (2.2) leads us that for every y > 0 and p € N,
the lower bound of (4.5) refines the lower bound of (1.11).

Remark 4.9. By using (2.4), we deduce that, for every y > 0.25 and p € N, the lower bound
of (4.5) refines the lower bound of (4.2).

Corollary 4.6. Fory e (0,00), a;b € RY U{0}, peNandu=2,3,---,

e ety | @11 1 } 1)
+ — < (-1
12 2 yt (I+y+p)v (D™ W)
(u—2)! (u—2)! (1" (14w (u—1)! [ 1 1
— < “i(b — -, (4.7
yut +(1+y+u)“‘1 IR yt (L+y+p) .7
where constants a = % and b =0 are the best.
Proof. If the L.H.S of (4.7) is valid, then we get
3t w 3t
)Wy = LR L >0, =23, 4.8
G VTR = g ) + Luw)] u (48)
where
- —u —u u—1)! —u —u
Fuly) =~ D) — (- 215" = (g4 14 ) = & . By - w1+ 07)

u! u!
Ti2y 120y 1 )
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and u! u! (=D* 4
Lu) = g~ B Tii T 1 I (y + a).
Using the asymptotic expansion (1.9), we have yango (yli%:)F x(y) =0 and
3+u u
Jim (ier . 12;1!+u e ﬂ S (—112) wlguu)(y)] _(u ;42)!

. . . —1)ugy3te 1+ 1+ 2+u)!
and using (1.3), we obtain ylbnc}o (12(173;) [ L u) (y) — L u) (a+ y)} = % and hence,
we obtain - |
u i
lim LL#(?/) _ 244! (2a 1).
y—oo (14 p) 24
From (4.8), we conclude that % > 0 and then a > % and by using the completely

monotonic property of —¢/(y) on (0,00), we deduce that (—1)'** 1/},82+u) (y) > 0 on (0, 00)

for u € NU {0} and then (—1)" ¢,§“+1)(y) is decreasing on (0, 00), which proves that a = 1

is the best in (4.7). Secondly, the R.H.S of (4.7) for b = 0 follows from (—1)*T3" (y) < 0 in
Theorem 3.2. Finally, if the R.H.S of (4.7) holds for y € (0,00), b € RT and u = 2,3, ,

then we would have

lim y* l(_l)uwﬁu—l)@) _ ((u —2)! . (u—2)! ) 1

y—0 yert o (g1 )t
(’LL— 1)' (_l)u : w, ), (14+u)
5 T g lmytyy, (b+y),
and by using (3.4) and (3.5), for u = 2,3,---, we would have (u — 1)! < @, which is
impossible. Then the constant b = 0 is the best in (4.7). O
Remark 4.10. By using (2.2), we conclude that for u = 2,3,---, y > 0 and p € N, the lower

bound of (4.7) refines the lower bound of (1.12).

Remark 4.11. By using (2.5), we conclude that for u = 2, y > 0.25 and pu € N, the lower
bound of (4.7) refines the lower bound of (4.3).

Corollary 4.7. Fory € (0,00), a € R and p € N,

1, 1 1 1 Lu(y)
exp | 50 0) 24((y—a)2 (y+u+§)2} S T Y et
(x+u+1)y+u+%
1, 1,1 1
- -\ 4.

where the constant a = % being the best.

3

Proof. If the L.H.S of (4.9) holds, then we get (,LLyTl) Uau(y) > 0 and this gives a > % as
shown in the proof of Theorem 3.3 and by the same way as in the proof of Corollary 4.1,
the constant a = 1 is the best in (4.9). Finally, the R.H.S of (4.9) follows from Uy ,(y) < 0
in Theorem 3.3. ]
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Remark 4.12. Letting u — oo in (4.9) yields

1 1 eV I'(y)
exp (E¢ (y) — 24(y — é>2> < (\/ﬁ y!zl/é

which refines the upper bound of the inequality (1.6).

) < exp (%w’(y) - 2422) y >0,

Remark 4.13. For every y € (0,00) and p € N, the upper bound of (4.9) refines the upper
bound of (4.4).

Corollary 4.8. Fory € (0,00), a € R and p € N,

1+p Uuly) 1 1 1 1y
- + = T ;] <n(—"1—
y(y+p+1) 12 12\(y+p+35)? (H—a) y+p+l

1 " 1 1
tp V) 1 . ———a T (4.10)
2y(y+p+1) 12 12\ (y+p+3)°

where the constant a = % s the best.

)~ vulw)

Proof. If the L.H.S of (4.10) is correct, then we get Ug ,(y) < 0 and hence

< 0.

o / yl ) 1 1 1
(b+1) Vault) (b +1) [TO’”(y) 12 <(?J —a)®  (y+p+ §)3>

Then A .
4
: Y / I ptats —ats
lim U, =-— = <
z=o0 (pu+ 1) an(Y) 4 4(p+1) Ap+1) —
and consequently, we get a > % and by the same way as before, the constant a = % being

the best in (4.10). Next, the R.H.S of (4.10) follows from Uj ,(y) > 0 in Theorem 3.3. [

Remark 4.14. For every y € (0,00) and p € N, the upper bound of (4.10) refines the upper
bound of (4.5) .

Corollary 4.9. Fory € (0,00), a € R, p e N andu=2,3,---, we have
(_1)u¢(“+1)(y)  (u=1)! N (u=1!  (u+1)! (u+1)!
12 7" 2 +p+1)v 2y 24(y —a)t? 0 24(y 4 p+ 3)eF?
_ -2 (=2 (=) et(y)
< (=1)v (u—1) - (U’ < M
D) - S A &
—1)! —1)! 1! 1!
B B Ui B U (SR VRS R )
2(y + p+ 1) 2qu 24qyut 24(y + p+ S)yut?
where the constant a = % is the best.
Proof. If the L.H.S of (4.11) is valid, then we get for u =2,3,---:
u+3 u+3 | |
Y wrr(u Y wrn(u u~+1)! u-+1)!
(1 UL ) = o e Uit L 0 R Y

(1+p) (b +1) 24(y — )"t 24(y + p+ 5)t?
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Then
i yuts Dep@) gy — —(1+2)! (u+2)!(u+a+%)_(u+2)!(a—é)>O
M Ay TV = =5+ - =
) (n+1) 24(p+1)

and consequently, we get a > % and by the same manner as before, the constant a = % is the
best in (4.11). Finally, the R.H.S of (4.11) follows from (—1)* (572 (y) <O0foru=2,3,--,

in

Theorem 3.3. ]

Remark 4.15. For every y € (0,00), p € N and u = 2,3,---, the upper bound of (4.11)
refines the upper bound of (4.7).
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