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SUMS OF FOUR PELL NUMBERS AS POWERS OF 3

JACOB JUILLERAT1

Abstract. Using lower bounds for the absolute value of linear forms in logarithms, a
version of the Baker-Davenport reduction method, and properties of continued fractions of
irrational numbers, we find all solutions to the Diophantine equation Pn1 +Pn2 +Pn3 +Pn4 =
3a.

1. Introduction

The Pell sequence {Pn}n≥0 is the binary recurrence sequence given by P0 = 0, P1 = 1
and Pn = 2Pn−1 + Pn−2 for n ≥ 2. In 1991, A. Pethő [20] found all the perfect powers (with
exponent greater than 1) in the Pell sequence. That is, Pethő found all positive solutions
(n, q, x) with q ≥ 2 to the Diophantine equation

Pn = xq.

The study of Diophantine equations involving binary recurrence sequences has since
expanded. In 2014 J.J. Bravo and F. Luca [6] found all positive solutions to Pn + Pm =
2a, and in 2016 [5] found all positive solutions to Fn + Fm = 2a where {Fn}n≥0 is the
Fibonacci sequence. In 2015 E.F. Bravo and J.J. Bravo [2] found all positive solutions to
Fn + Fm + Fk = 2a and then in 2017 [3] found all positive solutions to Pn + Pm + Pk = 2a.
In 2021 Tiebekabe and Diouf [23] extended the Fibonacci case to the sum of four terms,
and then the sum of five terms in 2022 [25]. In 2021, A. Çağman [7] moved away from 2a

and found all positive solutions to Pn + Pm + Pk = 3a. Tiebekabe and Diouf [24] one year
later shifted to the Lucas sequence given by L0 = 2, L1 = 1, and Ln+2 = Ln+1 + Ln for
n ≥ 0 and found all solutions to Ln + Lm = 3a.

Alongside the sum of terms of various Lucas sequences has been a study of the difference of
two terms. In 2017 Z. Şiar and R. Keskin [21] studied the Diophantine equation Fn−Fm = 2a,
which has since been extended by F. Erduvan and R. Keskin [13] to look at powers of 5 and
by G. Anouar and M. Soufiane in 2023 [1] to look at powers of 7 and powers of 13. In 2021
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S. Kebli, O. Kihel, J. Larone, and F. Luca [15] showed that there are only finitely many
solutions to Fn ± Fm = ya with n ≥ m ≥ 0, y ≥ 2 and a ≥ 2. In 2021 A. Çağman and K.
Polat [10] extended the difference of Fibonacci numbers to a difference of Pell numbers and
found all positive solutions to Pn − Pm = 3a.

Another large area of focus has been on repdigits (short for repeated digits) and their
correspondance to binary recurrence sequences. For example, repdigits that are sums of
three Fibonacci numbers were found in [16] by F. Luca, and was later extended to four
Fibonacci or Lucas numbers in [19] by B.V. Normenyo, F. Luca, and A. Togbé. Repdigits
that can be expressed as the sum of three Half-companion Pell numbers were found in [9]
by A. Çağman who in 2023 [8] went on to find all repdigits expressible as a product of
a Fibonacci number and a Pell number. Lucas numbers that are concatenations of two
repdigits were investigated in [27] by B.P. Tripathy and B.K. Patel and by Y. Qu and
J. Zeng in [29]. Padovan numbers which are palindromic concatenations of two distinct
repdigits were found in [11] by T.P. Chalebgwa and M. Ddamulira.

Various problems have been investigated involving Fibonacci and Lucas sequences. Fac-
torials which are sums of at most three Fibonacci numbers were found in [17] by F. Luca
and S. Siksek. The sum of two Fibonacci numbers that are close to a power of 2 were
studied by E. Hasanalizade in 2022 [14]. This was extended to the sum of three Fibonacci
numbers in 2023 by B.P. Tripathy and B.K. Patel [28]. B.P. Tripathy and B.K. Patel
also found the common terms between a generalized Pell sequence and Narayana’s cows
sequences, a ternary recurrent sequence given by Nm+3 = Nm+2 +Nm with initial conditions
N0 = N1 = N2 = 1 in [26].

In this paper, we continue looking at sums of Pell numbers which can be expressed as a
power of three and prove the following.

Theorem 1.1. Let {Pn}n≥0 be the Pell sequence defined by P0 = 0, P1 = 1 and Pn =
2Pn−1 + Pn−2 for n ≥ 2, and let n1, n2, n3, n4, and a be nonnegative integers such that
n1 ≥ n2 ≥ n3 ≥ n4. Then the Diophantine equation

Pn1 + Pn2 + Pn3 + Pn4 = 3a (1.1)

has exactly 10 solutions, which are as follows

(n1, n2, n3, n4, a) ∈ {(1, 0, 0, 0, 0), (1, 1, 1, 0, 1), (2, 1, 0, 0, 1), (3, 2, 1, 1, 2),
(3, 2, 2, 0, 2), (4, 3, 3, 3, 3), (4, 4, 2, 1, 3),
(6, 3, 3, 1, 4), (7, 6, 2, 2, 5), (12, 11, 6, 4, 9)}.

Section 2 discusses some properties of the Pell sequence, some necessary results on upper
bounds for the absolute value of linear forms in logarithms, and properties of convergents
of a continued fraction of irrational numbers. Section 3 starts the proof of Theorem 1.1 by
finding an upper bound on values of n1 that can satisfy (1.1). Section 4 reduces this upper
bound to the point that we can run a brute force check to find all the solutions to (1.1).
Throughout the paper, computations were made in Maple 2019 and verified in Mathematica
13.0.
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2. Preliminary Results

Let {Pn}n≥0 be the Pell sequence defined by P0 = 0, P1 = 1, and Pn = 2Pn−1 + Pn−2 for
n ≥ 2. The proof of Theorem 1.1 is broken into two sections. Section 3 begins with a brute
force check to find the small values of n1 that can satisfy (1.1). Next, we find a relationship
between a and n1 using the well-known inequalities

αn−2 ≤ Pn ≤ αn−1 (2.1)

which hold for n ≥ 1. To simplify the arguments to come, notice that the roots of the
characteristic polynomial of the Pell sequence, α = 1 +

√
2 and β = 1 −

√
2, satisfy

2 < α = 1 +
√

2 < 3 and |β|m <

√
2

3 for all m > 1. (2.2)

To get a rather large upper bound on the values of n1 that can satisfy (1.1), we employ
Binet’s formula for Pell numbers

Pn = αn − βn

2
√

2
for all n ≥ 0, (2.3)

to manipulate (1.1) by first rewriting Pn1 using Binet’s formula; then rewriting Pn1 and
Pn2 ; then Pn1 , Pn2 , and Pn3 ; and finally rewriting each Pni using Binet’s formula. For
each manipulation of (1.1) we use a version of the Baker-Davenport reduction method that
requires the following definition.

Definition 2.1. For a non-zero algebraic number of degree d whose minimal polynomial in
Z is f(x) = ad

∏d
i=1(x − ξi), we define the logarithmic height of ξ to be

h(ξ) = 1
d

(
log |ad| +

d∑
i=1

log(max{|ξ1|, 1})
)

where log(·) denotes the natural logarithm.

The following properties found in [22] will assist in the calculations of logarithmic heights.

Proposition 2.1. Let ξ1, ξ2, . . . , ξt be elements of an algebraic closure of Q and m ∈ Z.
Then

(a) h(ξ1 · · · ξt) ≤
t∑

i=1
h(ξi)

(b) h(ξ1 + · · · + ξt) ≤ log t +
t∑

i=1
h(ξi)

(c) h(ξm) = |m|h(ξ).

Each time we rewrite (1.1) using Binet’s formula, we use the following theorem due to
Matveev [18] to eliminate the dependence on a.

Theorem 2.1. Let γ1, γ2, . . . , γs be nonzero elements of a real algebraic number field F of
degree D, and let b1, b2, . . . , bs be rational integers. Set

B := max{|b1|, . . . , |bs|}
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and

Λ := γb1
1 γb2

2 · · · γbs
s − 1.

Let A1, . . . , As be real numbers such that

Ai ≥ max{Dh(γi), | log γi|, 0.16}

for all 1 ≤ i ≤ s where h(γi) is the logarithmic height of γi. Then if Λ is nonzero, then

log |Λ| > −3 · 30s+4 · (s + 1)5.5 · D2 · (1 + log D) · (1 + log sB) · A1 · · · As.

Furthermore, if F = R, then

log |Λ| > −1.4 · 30s+3 · s4.5 · D2 · (1 + log D) · (1 + log B) · A1 · · · As.

In Section 4, we reduce this large upper bound on n1 by rewriting the inequalities found
in Section 3 when manipulating (1.1) using Binet’s formula. For each new inequality, we
use one of two methods. We either use the following result on convergnets of the continued
fraction of an irrational number due to Bravo and Luca [4], a variation of a result of Dujella
and Pethő [12], to find a reduced upper bound on n1.

Lemma 2.1. Let A, B, and µ be some real numbers with A > 0 and B > 1, and let γ be an
irrational number and M be a positive integer. Take p/q as a convergent of the continued
fraction of γ such that q > 6M . Set ϵ := ||µq||−M ||γq|| > 0 where || · || denotes the distance
from the nearest integer. Then there is no solution to the inequality

0 < |uγ − v + µ| < AB−w

in positive integers u, v, and w with

u ≤ M and w ≥
log AB

ϵ

log B
.

When ϵ < 0 in Lemma 2.1, we use the following result due to Legendre.

Lemma 2.2. Let τ be a real number with x, y integers such that∣∣∣∣τ − x

y

∣∣∣∣ <
1

2y2 ,

then x

y
= pn

qn
is a convergent of τ .

Knowing that x/y is a convergent of τ , we use the lower bound∣∣∣∣τ − pn

qn

∣∣∣∣ >
1

(amax + 2)q2
n

, (2.4)

to find a reduced upper bound on n1, where pn/qn = [a0; a1, a2, . . . , an] and amax = max{ai}
for 0 ≤ i ≤ n.
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3. First Bound on n1

Proof of Theorem 1.1. Observe that if n4 = 0, equation (1.1) becomes

Pn1 + Pn2 + Pn3 = 3a,

which is found to have solutions

(n1, n2, n3, a) ∈ {(1, 0, 0, 0), (1, 1, 1, 1), (2, 1, 0, 1), (3, 2, 2, 2)}

in [7]. Assume that n1 ≥ n2 ≥ n3 ≥ n4 ≥ 1. Using Maple, a brute force search on all
n1 ≤ 197 found that (1.1) has solutions precisely those stated in Theorem 1.1.

Assume that n1 > 197. We now find a relationship between n1 and a. From (2.1) and
(2.2), equation (1.1) gives

3a = Pn1 + Pn2 + Pn3 + Pn4

≤ αn1−1 + αn2−1 + αn3−1 + αn4−1

< 3n1−1 (1 + 3n2−n1 + 3n3−n1 + 3n4−n1
)

< 3n1−1 · 4.

Solving for a, we get a < n1 + log3 4 − 1 < n1 + 0.27. Since a, n1 ∈ Z, we have

a ≤ n1.

A first bound on n1 − n2:
Using Binet’s formula, (2.3), on Pn1 , we rewrite (1.1) as

αn1

2
√

2
− 3a = βn1

2
√

2
− (Pn2 + Pn3 + Pn4).

Taking the absolute value of both sides and using (2.2) and (2.1), we obtain∣∣∣∣ αn1

2
√

2
− 3a

∣∣∣∣ ≤ |β|n1

2
√

2
+ Pn2 + Pn3 + Pn4 <

1
6 + αn2 + αn3 + αn4 .

Dividing both sides by αn1/2
√

2 and noting that n1 ≥ n2 ≥ n3 ≥ n4 ≥ 1, we have

|∆1| :=
∣∣∣1 − 3aα−n12

√
2
∣∣∣ <

2
√

2
αn1

(1
6 + αn2 + αn3 + αn4

)

= 2
√

2
αn1−n2

(1
6α−n2 + 1 + αn3−n2 + αn4−n2

)

≤ 2
√

2
αn1−n2

· 19
6 <

9
αn1−n2

(3.1)

Our aim is to now apply Theorem 2.1 with ∆1 defined above. Note that ∆1 ̸= 0, for if
it was zero, then 3a2

√
2 = αn1 . Squaring both sides results in α2n1 = 32a · 8 ∈ Z. Looking

at the binomial expansion of αk = (1 +
√

2)k, we see that αk ̸∈ Z for any positive integer k,
providing a contradiction. Hence, we have that ∆1 ̸= 0. Applying Theorem 2.1, set s := 3,
(γ1, γ2, γ3) := (3, α, 2

√
2), and (b1, b2, b3) := (a, −n1, 1). Then |∆1| =

∣∣∣1 − γb1
1 γb2

2 γb3
3

∣∣∣. Since
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each γi ∈ Q(
√

2), we can take D := 2. Since a ≤ n1, take B := max{|bi|} = n1. From the
definition of h(γi),

Dh(3) = 2 log 3,

Dh(α) = 2 · 1
2 (log 1 + log α + log max (|β|, 1)) = log α,

Dh(2
√

2) = 2 · 1
2
(
log 1 + log 2

√
2 + log | − 2

√
2|
)

= 2 log 2
√

2.

Take

A1 := 2.2 > Dh(3), A2 := 0.9 > Dh(α), and A3 := 2.1 > Dh(2
√

2).

Noting that Q(
√

2) is real, Theorem 2.1 along with (3.1) gives
9

αn1−n2
> |∆1| > exp(−C1(1 + log n1))

where C1 := 4.04 · 1012 > 1.4 · 306 · 34.5 · 4 · (1 + log 2) · 2.2 · 0.9 · 2.1. Applying a logarithm
and solving for (n1 − n2) log α using 1 + log n1 < 2 log n1 for n1 ≥ 3, we acquire

(n1 − n2) log α < log 9 + 2C1 log n1 < 8.1 · 1012 log n1 (3.2)

A first bound on n1 − n3:
Rewrite (1.1) using Binet’s formula on Pn1 and Pn2 to get

αn1 + αn2

2
√

2
− 3a = βn1 + βn2

2
√

2
− (Pn3 + Pn4).

Taking the absolute value of both sides and using (2.2) and (2.1), we obtain∣∣∣∣ αn1

2
√

2
(
1 + αn2−n1

)
− 3a

∣∣∣∣ ≤ |β|n1 + |β|n2

2
√

2
+ Pn3 + Pn4 <

1
3 + αn3 + αn4 .

Dividing both sides by αn1(1 + αn2−n1)/2
√

2 we have

|∆2| :=
∣∣∣1 − 3aα−n12

√
2
(
1 + αn2−n1

)−1
∣∣∣

<
2
√

2
αn1 (1 + αn2−n1)

(1
3 + αn3 + αn4

)

= 2
√

2
αn1−n3 (1 + αn2−n1)

(1
3α−n3 + 1 + αn4−n3

)

≤ 2
√

2
αn1−n3 (1 + αn2−n1) · 7

3 <
7

αn1−n3
(3.3)

where the last inequality follows from the fact that 0 < αn2−n1 < 1.
Note that ∆2 ̸= 0, for if it was zero, then 3a2

√
2 = αn1 + αn2 . Conjugating in Q(

√
2), we

also have −3a2
√

2 = βn1 + βn2 . Subtracting the two we obtain

2 · 3a = αn1 − βn1

2
√

2
+ αn2 − βn2

2
√

2
= Pn1 + Pn2 .
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Thus, equation (1.1) becomes Pn3 + Pn4 = −3a, a contradiction. Hence, ∆2 ̸= 0 and
we can apply Theorem 2.1 with s := 3, (γ1, γ2, γ3) :=

(
3, α, 2

√
2 (1 + αn2−n1)−1

)
, and

(b1, b2, b3) := (a, −n1, 1). We also have D := 2 and B := n1. Using Proposition 2.1, we find
that

h(γ3) = h

(
2
√

2
1 + αn2−n1

)
≤ h(2

√
2) + h

(
1 + αn2−n1

)
≤ log 2

√
2 + log 2 + log 1 + h

(
αn2−n1

)
= log 4

√
2 + (n1 − n2) log α

2 .

Using n2 − n1 < 0, we see that both γ3 < 2
√

2 and γ−1
3 < 2

√
2. Hence | log γ3| < log 4

√
2.

Taking
A1 := 2.2, A2 := 0.9, and A3 := 3.47 + (n1 − n2) log α,

we see that A3 ≥ max{Dh(γ3), | log γ3|, 0.16}. Applying Theorem 2.1 along with (3.3), we
have

7
αn1−n3

> |∆2| > exp(−C2(1 + log n2)(3.47 + (n1 − n2) log α)

where C2 := 1.93 · 1012 > 1.4 · 306 · 34.5 · 4 · (1 + log 2) · 2.2 · 0.9. Solving for (n1 − n3) log α

using (3.2) and considering that 1 + log n1 < 2 log n1 for n1 > 3, one can see that

(n1 − n3) log α < 3.2 · 1025 log2 n1. (3.4)

A first bound on n1 − n4:
Once again, rewrite (1.1) using Binet’s formula on Pn1 , Pn2 , and Pn3 to obtain, after

similar manipulations,

|∆3| :=
∣∣∣1 − 3aα−n12

√
2
(
1 + αn2−n1 + αn3−n1

)−1
∣∣∣ <

3
√

2
αn1−n4

<
5

αn1−n4
(3.5)

Note that ∆3 ̸= 0, for if it was zero, then 3a2
√

2 = αn1 + αn2 + αn3 . Conjugating in Q(
√

2),
we also have −3a2

√
2 = βn1 + βn2 + βn3 . Subtracting the two we obtain

2 · 3a = αn1 − βn1

2
√

2
+ αn2 − βn2

2
√

2
+ αn3 − βn3

2
√

2
= Pn1 + Pn2 + Pn3 .

Thus, equation (1.1) becomes Pn4 = −3a, a contradiction. Hence, ∆3 ≠ 0 and we can
apply Theorem 2.1 with s := 3, (γ1, γ2, γ3) :=

(
3, α, 2

√
2 (1 + αn2−n1 + αn3−n1)−1

)
, and

(b1, b2, b3) := (a, −n1, 1). We also have D := 2 and B := n1. Using Proposition 2.1, we find
that

h(γ3) = h

(
2
√

2
1 + αn2−n1 + αn3−n1

)
≤ h(2

√
2) + h

(
1 + αn2−n1 + αn3−n1

)
≤ log 2

√
2 + log 3 + log 1 + h

(
αn2−n1

)
+ h

(
αn3−n1

)
= log 6

√
2 + ((n1 − n2) + (n1 − n3)) log α

2 .



8 JACOB JUILLERAT

Notice that both γ3 < 2
√

2 and γ−1
3 < 2

√
2, thus | log γ3| < log 6

√
2. Taking

A1 := 2.2, A2 := 0.9, and A3 := 4.28 + ((n1 − n2) + (n1 − n3)) log α,

we see that A3 ≥ max{Dh(γ3), | log γ3|, 0.16}. Applying Theorem 2.1 along with (3.5), we
have

5
αn1−n3

> |∆3| > exp(−C2(1 + log n1)(4.28 + ((n1 − n2) + (n1 − n3)) log α)

where C2 is as defined previously with C2 < 1.93 · 1012. Solving for (n1 − n4) log α using
(3.2) and (3.4), we have for n1 ≥ 3,

(n1 − n4) log α < log 5 + 2C2 log n1(4.28 + ((n1 − n2) + (n1 − n3)) log α)
< log 5 + 2C2 log n1(4.28 + 8.2 · 1012 log n1 + 3.2 · 1025 log2 n1)
< 3.86 · 1012 log n1(6.4 · 1025 log2 n1)
< 2.5 · 1038 log3 n1. (3.6)

A first bound on n1:
In a similar manner, we rewrite (1.1) using Binet’s formula on each Pni to obtain

|∆4| :=
∣∣∣1 − 3aα−n12

√
2
(
1 + αn2−n1 + αn3−n1 + αn4−n1

)−1
∣∣∣ <

4
√

2
3αn1

<
2

αn1
(3.7)

Note that ∆4 ̸= 0, for if it was zero, then we would have

2
√

2 · 3a = αn1 + αn2 + αn3 + αn4 .

Taking the conjugate in Q(
√

2) and subtracting the result from the above, we would obtain

2 · 3a = Pn1 + Pn2 + Pn3 + Pn4 ,

contradicting (1.1). Hence, ∆4 ̸= 0 and we can apply Theorem 2.1 with s := 3, (γ1, γ2, γ3) :=(
3, α, 2

√
2 (1 + αn2−n1 + αn3−n1 + αn4−n1)−1

)
, and (b1, b2, b3) := (a, −n1, 1). We also have

D := 2 and B := n1. Using Proposition 2.1, we find that

h(γ3) ≤ log 8
√

2 + ((n1 − n2) + (n1 − n3) + (n1 − n4)) log α

2 .

Notice that both γ3 < 2
√

2 and γ−1
3 < 2

√
2, thus | log γ3| < log 8

√
2. Taking

A1 := 2.2, A2 := 0.9, and A3 := 5 + ((n1 − n2) + (n1 − n3) + (n1 − n4)) log α,

we see that A3 ≥ max{Dh(γ3), | log γ3|, 0.16}. Applying Theorem 2.1 along with (3.7), we
have

2
αn1

> |∆4| > exp(−C2(1 + log n1)(5 + ((n1 − n2) + (n1 − n3) + (n1 − n4)) log α)

where C2 is as defined previously with C2 < 1.93 · 1012. Solving for n1 log α using (3.2),
(3.4), and (3.6), we have for n1 ≥ 3,

n1 log α < 2.9 · 1051 log4 n1.
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Using Maple and verifying the computations in Mathematica, one checks that the above
inequality holds for

n1 < 1.20518... · 1060 < 1.21 · 1060. (3.8)

4. Reducing the Bound on n1

We now work on reducing the bounds found in Section 3 to be more manageable. To do
so, we will rewrite equations (3.1), (3.3), (3.5), and (3.7) in such a way to utilize Lemmas 2.1
and 2.2.

Reducing the bound on n1 − n2:
Notice that since |β|n1 <

√
2/3 < 1 and n1 ≥ n2 ≥ n3 ≥ n4 ≥ 1, we have

αn1

2
√

2
= βn1

2
√

2
+ Pn1 ≤ Pn1 + 1 ≤ Pn1 + Pn2 + Pn3 + Pn4 = 3a.

Thus, we see that 3aα−n12
√

2 > 1, so

z1 := a log 3 − n1 log α + log 2
√

2 > 0.

Using (3.1), we have

0 < z1 < ez1 − 1 <
9

αn1−n2
.

Dividing by log α, we obtain

0 <
z1

log α
= a

log 3
log α

− n1 + log 2
√

2
log α

<
9

αn1−n2 log α
<

11
αn1−n2

. (4.1)

We now apply Lemma 2.1 to (4.1) with the parameters

γ := log 3
log α

, µ := log 2
√

2
log α

, A := 11, B := α, w := n1 − n2, and v := n1.

Set M := 1.21 · 1060 so that by (3.8) we have a < n1 < M . Notice that γ is irrational, for
if it was rational then there would be integers p and q ̸= 0 such that gcd(p, q) = 1 with
γ = p/q. Rearranging, we would have 3q = αp contradicting the fact that αp ̸∈ Z for any
positive integer k. Hence, γ is irrational and we can apply Lemma 2.1 to (4.1). If we take
the denominator of the 114th convergent of γ, denoted q114, then we get q114 > 6M and
ϵ := ||µq|| − M ||γq|| > 0. Lemma 2.1 states that there is no solution to (4.1) with a ≤ M

and n1 − n2 ≥ log(AB/ϵ)/ log B. Since a < M , we must therefore have

n1 − n2 <
log AB/ϵ

log B
< 164.

Reducing the bound on n1 − n3:
We now aim to rewrite |∆2| as ez2 − 1 for some positive z2. Using Binet’s formula on Pn1

and Pn2 in a similar manner to that above when considering z1, we see that 3aαn12
√

2(1 +
αn2−n1)−1 is > 1. Hence

z2 := a log 3 − n1 log α + log
(
2
√

2(1 + αn2−n1)−1
)

> 0
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and z2 < ez2 − 1. Dividing (3.3) by log α, we obtain

0 < a
log 3
log α

− n1 +
log

(
2
√

2(1 + αn2−n1)−1
)

log α
<

7
αn1−n3 log α

<
8

αn1−n3
. (4.2)

Denote the parameters

γ := log 3
log α

, µ :=
log

(
2
√

2(1 + αn2−n1)−1
)

log α
, and A := 8.

Notice that µ depends on n1 − n2 ∈ [0, 163]. Set M := 1.21 · 1060 so that a < n1 < M .
Applying Lemma 2.1, if we take the the denominator of the 114th convergent of γ then we
get q114 > 6M ; however, ϵ < 0 for several values of n1 − n2 ∈ [0, 163]. If instead we take
the denominator of the 116th convergent of γ, then ϵ > 0 for all n1 − n2 ∈ [0, 163] except
n1 − n2 = 2. Applying Lemma 2.1 for all n1 − n2 ∈ [0, 163] except n1 − n2 = 2, we see that
n1 − n3 < 171.

When n1 − n2 = 2, we have µ = 1, so (4.2) becomes

0 < aγ − (n1 − 1) <
8

αn1−n3
.

If 8/αn1−n3 ≥ 1/2a, then 16a ≥ αn1−n3 , and by (3.8),

n1 − n3 ≤ log 16a

log α
≤ 16n1

log α
<

log(16 · 1.21 · 1060)
log α

< 161.

Instead, if 8/αn1−n3 < 1/2a, then we apply Lemma 2.2 to see that (n1 − 1)/a = pk/qk =
[a0; a1, a2, . . . , ak] is a convergent of γ. Knowing that a < 1.21 · 1060, we see that q112 <

1.21 · 1060 < q113. Furthermore, by (2.4) we have
1

(amax + 2)a <

∣∣∣∣a log 3
log α

− (n1 − 1)
∣∣∣∣ <

8
αn1−n3

where amax = max{ai : 0 ≤ i ≤ 113} = 200. Solving for n1 − n3 using (3.8) we see that for
n1 − n2 = 2, we have n1 − n3 < 166. Thus, for every n1 − n2 ∈ [0, 163], we have

n1 − n3 < 171.

Reducing the bound on n1 − n4:
We repeat the above process on |∆3| for some positive z3. Using Binet’s formula on Pn1 ,

Pn2 , and Pn3 we see that

z3 := a log 3 − n1 log α + log
(
2
√

2(1 + αn2−n1 + αn3−n1)−1
)

> 0

and z3 < ez3 − 1. After dividing by log α, equation (3.5) gives

0 < a
log 3
log α

− n1 +
log

(
2
√

2(1 + αn2−n1 + αn3−n1)−1
)

log α
<

6
αn1−n4

. (4.3)

Denote the parameters

γ := log 3
log α

, µ :=
log

(
2
√

2(1 + αn2−n1 + αn3−n1)−1
)

log α
, and A := 6.
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Set M := 1.21 · 1060 so that a < n1 < M . Applying Lemma 2.1 to (4.3), we must go
out to the denominator of the 121st convergent of γ to get q121 > 6M with ϵ > 0 for
all n1 − n2 ∈ [0, 163] and n1 − n3 ∈ [0, 170]. To reduce the computational load, notice
that µ is symmetric in n1 − n2 and n1 − n3. Thus, we need only check n1 − n3 ∈ [0, 170]
and n1 − n2 ∈ [0, min{n1 − n3, 163}]. Applying Lemma 2.1 for all n1 − n3 ∈ [0, 170] and
n1 − n2 ∈ [0, min{n1 − n3, 163}], we see that the maximum value of n1 − n4 occurs when
(n1 − n3, n1 − n2) = (101, 88) and, rounded to the nearest hundredth, is 181.22. Thus, take

n1 − n4 < 182.

Reducing the bound on n1:
Let

z4 := a log 3 − n1 log α + log
(
2
√

2(1 + αn2−n1 + αn3−n1 + αn4−n1)−1
)

.

Notice that if z4 = 0, then ∆4 = 1−ez4 = 0 a contradiction. So z4 ̸= 0. By (3.7), we acquire

|ez4 − 1| <
2

αn1
.

If z4 > 0, then 0 < z4 < ez4 − 1 < 4/αn1 . If instead z4 < 0, then for n1 > 1 we have,

0 < |ez4 − 1| <
2

αn1
<

1
2 .

Thus, we have |ez4 − 1| = 1 − e−|z4| < 1/2, so e|z4| < 2. Hence,

0 < |z4| ≤ e|z4| − 1 = e|z4| |ez4 − 1| < 2 · 2
αn1

= 4
αn1

.

In either case, we have

0 < |z4| <
4

αn1
.

Dividing by log α, the inequality becomes

0 <

∣∣∣∣∣∣a log 3
log α

− n1 +
log

(
2
√

2(1 + αn2−n1 + αn3−n1 + αn4−n1)−1
)

log α

∣∣∣∣∣∣ <
5

αn1
. (4.4)

Denote the parameters

γ := log 3
log α

, µ :=
log

(
2
√

2(1 + αn2−n1 + αn3−n1 + αn4−n1)−1
)

log α
,

and A := 5. To reduce the number of instances where ϵ < 0, we go out to the denominator
of the 122nd convergent of γ to get q122 > 6M with ϵ > 0 for all n1 − n2 ∈ [0, 163],
n1 − n3 ∈ [0, 170], and n1 − n4 ∈ [0, 181] except

(n1 − n4, n1 − n3, n1 − n2) ∈ {(1, 1, 0), (4, 3, 3), (5, 4, 1)}.

To reduce the computations, we again note that µ is symmetric in n1 − n2, n1 − n3, and
n1 − n4; thus, it suffices to check n1 − n4 ∈ [0, 181], n1 − n3 ∈ [0, min{170, n1 − n4}], and
n1 − n2 ∈ [0, min{163, n1 − n3}]. Applying Lemma 2.1 for all instances except where ϵ < 0,
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we see that the maximum value of n1 occurs when (n1 −n4, n1 −n3, n1 −n2) = (134, 110, 62)
and, rounded to the nearest hundredth, is 196.76. Thus, take

n1 < 197.

We consider each case where ϵ < 0 separately. If (n1 − n4, n1 − n3, n1 − n2) = (1, 1, 0),
then (1.1) reduces to

Pn1 + Pn1 + Pn1−1 + Pn1−1 = 2(Pn1 + Pn1−1) = 3a,

which has no solutions since the left side is even but the right side is odd.
If (n1 −n4, n1 −n3, n1 −n2) = (4, 3, 3), then, using Pk = 2Pk−1 +Pk−2 for k ≥ 2, equation

(1.1) reduces to
Pn1 + Pn1−3 + Pn1−3 + Pn1−4 = Pn1 + Pn1−2 = 3a,

which we already considered in Section 3 when looking at the case that n4 = 0.
If (n1 − n4, n1 − n3, n1 − n2) = (5, 4, 1), then µ = 2 − γ, so (4.4) is equivalent to

0 <

∣∣∣∣(a − 1) log 3
log α

− (n1 − 2)
∣∣∣∣ <

5
αn1

.

If 5/αn1 ≥ 1/2(a − 1), then solving for n1 using a < 1.21 · 1060, we see that n1 < 160.
If instead 5/αn1 < 1/2(a − 1), then we apply Lemma 2.2 to see that (n1 − 2)/(a − 1) =
pk/qk = [a0; a1, a2, . . . , ak] is a convergent of γ. We see that q112 < 1.21 · 1060 − 1 < q113.
Furthermore, by (2.4) we have

1
(amax + 2)a <

5
αn1

where amax = max{ai : 0 ≤ i ≤ 113} = 200. Solving for n1 we see that for (n1 − n4, n1 −
n3, n1 − n2) = (5, 4, 1), we have n1 < 165. In every case, we have

n1 < 197,

which contradicts our assumption that n1 > 197. This completes the proof of Theorem 1.1.
□

5. Conclusion

In conclusion, we rewrote equation (1.1) three times using Binet’s formula for Pell numbers
to get upper bounds on n1 −n2, n1 −n3, and n1 −n4 in terms of n1 by utilizing Theorem 2.1.
Using these upper bounds, as well as Binet’s formula one last time, we obtained a rather
large upper bound for n1. We then reduced the upper bounds for n1 − n2, n1 − n3, n1 − n4,
and finally n1 using properties of convergents of the continued fraction of an irrational
number. Once the upper bound for n1 was reduced to n1 < 197, we ran a brute force check
on all options for n1, n2, n3, and n4 in (1.1) to find all possible solutions to

Pn1 + Pn2 + Pn3 + Pn4 = 3a,

completing the proof of Theorem 1.1.
In the concluding remarks of [25] the authors make the following conjecture.
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Conjecture 5.1. Consider the Diophantine equation

Fn1 + Fn2 + Fn3 + Fn4 = pa, p ≥ 2, a ≥ 2

where n1 ≥ n2 ≥ n3 ≥ n4 are positive integers, p is prime, and Fk represents the Fibonacci
numbers. Then p = 2, 3, 5, or 7.

This conjecture does not hold if we replace the Fk with Pk, the Pell numbers, which can
be seen by the counterexample

P15 + P9 + P7 + P6 = 4432 = P15 + P8 + P8 + P8.

We conclude with a few open questions arising from this counterexample.
1. Is there a prime q such that for all primes p > q, Conjecture 5.1 holds if we replace

the Fk with Pk? A quick check in Mathematica over the first 5000 primes with
n1 ≤ 20 suggests that q = 433 might be sufficient.

2. What other values of p and a with p a prime and a ≥ 1 are such that pa can be
represented as the sum of two different sets of four Pell numbers?
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