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ON SOME COEFFICIENT INEQUALITIES INVOLVING LEGENDRE
POLYNOMIALS IN THE CLASS OF BI-UNIVALENT FUNCTIONS

ELUMALAI MUTHAIYAN1 AND ABBAS KAREEM WANAS2

Abstract. In the study of geometric function theory, Legendre polynomials and other
uncommon polynomials have recently gained increased importance. Using these polyno-
mials, subordination, and the Al-Oboudi differential operator, we create a new class of
bi-univalent functions and obtain coefficient estimates and Fekete-Szegö inequalities for
this new class.

1. Introduction

Let A represent the category of functions with the form

u(z) = z +
∞∑

k=2
akz

k, (1.1)

which, in the open unit disc, analytically U = {z : |z| < 1}, and let S = {u ∈ A :
u is univalent in U}.

The Koebo one quarter theorem states that any function has a range that includes the
disc’s radius [8]. There is a satisfying inverse for each of these functions.

u−1(u(z)) = z (z ∈ U)
and

u(u−1(w)) = w

(
|w| < r0(u), r0(u) ≥ 1

4

)
where

u−1(w) = w − a2w2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + . . . . (1.2)
If both u and u−1 are univalent in then a function is said to be bi-univalent in U. We state
for such a function that it belongs to the class Σ.
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u is said to be subordinate to v in the case of the analytical functions u and v indicated
by

u(z) ≺ v(z), (1.3)
if analytical function w exists such that

w(0) = 0, |w(z)| < 1, and u(z) = v(w(z)).

The Al-Oboudi differential operator, also known as the Al-Oboudi operator, was developed
by Al-Oboudi [1] for a function u(z) ∈ A

D0
µu(z) = u(z) (1.4)

D1
µu(z) = (1 − µ)u(z) + µzu′(z) = Dµu(z), µ ≥ 0 (1.5)

Dm
µ u(z) = Dµ(Dm−1

µ u(z)). (1.6)
If u is determined by (1.1), then from (1.4) and (1.5) show that

Dm
µ u(z) = z +

∞∑
n=2

[1 + (n − 1)µ]manz
n, m ∈ N0 = {0, 1, 2, . . . } (1.7)

with Dm
µ u(0) = 0. When µ = 1, we get Salagean’s differential operator [23].

Legendre polynomials, which Adrien-Marie Legendre discovered in 1782, have numerous
uses in physical research. The precise answers to the Legendre differential equation are the
Legendre polynomials Pn(x), commonly referred to as Legendre functions of the first class.

(1 − x2)y′′ − 2xy′ + n(n + 1)y = 0, n ∈ N0, |x| < 1.

Let C and N stand for a set of complex numbers and positive integers, respectively, in this
section and the one that follows. The Legendre polynomials are defined using the Rodrigues
formula.

Pn(x) = 1
2nn!

dn

dxn
(x2 − 1)n (n ∈ N0). (1.8)

Any arbitrary real or complex value may be used for x. The Legendre polynomials Pn(x)
are produced using the following function

(1 − 2xt + t2)
−1
2 =

∞∑
n=0

Pn(x)tn,

where the particular branch of (1 − 2xt + t2)
−1
2 is taken to be 1 as t −→ 0. The first few

Legendre polynomials are

P0(x) = 1, P1(x) = x, P2(x) = 1
2(3x2 − 1), P3(x) = 1

2(5x3 − 3x). (1.9)

General information about the Legendre polynomials and their applications is provided
in [16–20]. The objective

ϕ(z) = 1 − z√
1 − 2z cos α + z2 ,

is in β for every real α (see [13], Page 102, [21]), where β is the Caratheodory class defined
by

β = {p(z) ∈ U : p(0) = 1, R(p(z)) > 0, z ∈ U},
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p(z)a + c1z + c2z
2 + . . . . By using (1.8), it is easy to check that

ϕ(z) = 1 +
∞∑

n=1
[Pn(cos α) − Pn−1(cos α)]zn =

∞∑
n=1

Bnz
n (1.10)

where
Bn = Pn(cos α) − Pn−1(cos α).

In particular by using (1.9), we get

B1 = cos α − 1, B2 = 1
2(cos α − 1)(1 + 3 cos α) (1.11)

If we consider
1

(ϕ(z))2 = 1 − 2z cos α + z2

(1 − z)2 = 1 + 2(1 − cos α) z

(1 − z)2 .

The function ϕ transfers the unit disc onto the right plane R(w) > 0, minus the slit along
the positive real axis from 1

| cos α
2 | to ∞. The function ϕ(U) is univalent, symmetric with

respect to the real axis, and starlike with respect to ϕ(0) = 1.
In this study, we provide new subclasses of the functions of the function class Σ using the

Al-Oboudi differential operator associated with the legendre polynomial and find estimates
on the coefficients |a2| and |a3| . The past research on bi-univalent functions [2, 7, 9, 10,12,
14, 25–30], the current study of bi-univalent functions connected to different polynomials,
and other [3–6,11,15,22,24,31] recent publications on the Fekete all served as inspiration for
these researches. Additionally, a number of classes are considered, and linkages to previously
published data are made.

Definition 1.1. If the following criteria are met, the function u is considered to belong to
the class The function u is said to be in the class QΣ,µ(ξ, m; x):

(1 − ξ)
Dm

µ u(z)
z

+ ξ(Dm
µ u(z))′ ≺ ϕ(z) (1.12)

and

(1 − ξ)
Dm

µ u(w)
w

+ ξ(Dm
µ u(w))′ ≺ ϕ(w) (1.13)

where v = u−1 is determined by (1.2) and function Dm
µ is the Al-Oboudi differential operator.

The methods Deniz initially employed in [7] are utilised in the section that follows to
obtain estimates for the coefficients |a2| and |a3| for functions in the previously mentioned
subclasses of the function class Σ, QΣ,µ(ξ, m; x).

To get our primary findings, we need the following lemma.

Lemma 1.1. If h ∈ β, then |ck| ≤ 2 for each k, where β is the family of all functions h,

analytic in U, for which
R{h(z)} > 0 (z ∈ U),

where
h(z) = 1 + c1z + c2z

2 + . . . (z ∈ U).
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2. The class QΣ,µ(ξ, m; x) and the Fekete-Szegö inequality

For functions in the class QΣ,µ(ξ, m; x), we start by locating estimates for the coefficients
|a2| and |a3|. Define p(z) and q(z) functions by

p(z) := 1 + u(z)
1 − u(z) = 1 + p1z + p2z

2 + . . .

and
q(z) := 1 + v(z)

1 − v(z) = 1 + q1z + q2z
2 + . . .

or, equivalently

u(z) := p(z) − 1
p(z) + 1 = 1

2

[
p1z +

(
p2 − p2

1
2

)
z2 + . . .

]
and

v(z) := q(z) − 1
q(z) + 1 = 1

2

[
q1z +

(
q2 − q2

1
2

)
z2 + . . .

]
.

If p(0) = 1 = q(0), then p(z) and q(z) are analytic in U. Given that u, v : U → U, the
functions p(z) and q(z) have positive real parts. Then |pi| ≤ 2 and |qi| ≤ 2.

Theorem 2.1. Let u given by 1.1 be in the class QΣ,µ(ξ, m; x). Then

|a2| ≤
√

2| cos α − 1|
√

| cos α − 1|√
|{2(1 + 2µ)m(1 + 2ξ)(cos α − 1)2 − (1 + µ)2m(1 + ξ)2(cos α − 1)(1 − 3 cos α)}|

(2.1)
and

|a3| ≤ (cos α − 1)2

(1 + µ)2m(1 + ξ)2 + | cos α − 1|
(1 + 2µ)m(1 + 2ξ) . (2.2)

Proof. It follows from (1.12) and (1.13) that

(1 − ξ)
Dm

µ u(z)
z

+ ξ(Dm
µ u(z))′ = ϕ(u(z)) (2.3)

(1 − ξ)
Dm

µ u(w)
w

+ ξ(Dm
µ u(w))′ = ϕ(u(w)) (2.4)

where p(z) and q(w) in and have the following forms:

ϕ(u(z)) = 1 + 1
2B1p1z +

(
1
2B1

(
p2 − p2

1
2

)
+ 1

4B2p2
1

)
z2 + . . . (2.5)

and

ϕ(u(w)) = 1 + 1
2B1q1w +

(
1
2B1

(
q2 − q2

1
2

)
+ 1

4B2q2
1

)
w2 + . . . (2.6)

or equivalently

(1 − ξ)
Dm

µ u(z)
z

+ ξ(Dm
µ u(z))′ = 1 + 1

2B1p1z +
(

1
2B1

(
p2 − p2

1
2

)
+ 1

4B2p2
1

)
z2 + . . . (2.7)

(1−ξ)
Dm

µ u(w)
w

+ξ(Dm
µ u(w))′ = 1+ 1

2B1q1w+
(

1
2B1

(
q2 − q2

1
2

)
+ 1

4B2q2
1

)
w2 + . . . . (2.8)
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Now, equating the corresponding coefficients in (2.7) and (2.8), we get

(1 + ξ)(1 + µ)ma2 = 1
2B1p1 (2.9)

(1 + 2ξ)(1 + 2µ)ma3 = 1
2B1

(
p2 − p2

1
2

)
+ 1

4B2p2
1, (2.10)

−(1 + ξ)(1 + µ)ma2 = 1
2B1q1 (2.11)

(1 + 2ξ)(1 + 2µ)m(2a2
2 − a3) = 1

2B1

(
q2 − q2

1
2

)
+ 1

4B2q2
1. (2.12)

From (2.9) and (2.11),

a2 = B1p1
2(1 + ξ)(1 + µ)m

= −B1q1
2(1 + ξ)(1 + µ)m

(2.13)

which implies
p1 = −q1 (2.14)

and
8(1 + ξ)2(1 + 2µ)2ma2

2 = B2
1(p2

1 + q2
1) (2.15)

adding (2.10) and (2.12),

2(1 + 2ξ)(1 + 2µ)ma2
2 = 1

2B1(p2 + q2) − 1
4(p2

1 + q2
1)(B1 − B2). (2.16)

By using (2.13) and (2.14), we have

4[B2
1(1 + 2ξ)(1 + 2µ)m − (B1 − B2)(1 + ξ)2(1 + µ)2m]a2

2 = B3
1(p2 + q2). (2.17)

Thus, by using (1.11)

|a2| ≤
√

2| cos α − 1|
√

| cos α − 1|√
|{2(1 + 2µ)m(1 + 2ξ)(cos α − 1)2 − (1 + µ)2n(1 + ξ)2(cos α − 1)(1 − 3 cos α)}|

.

Also, by subtracting (2.12) from (2.10), we get

(1 + 2ξ)(1 + 2µ)m(a3 − a2
2) = 1

4B1(p2 − q2). (2.18)

Then, by using (2.13) and (2.14) in (2.18), we have

a3 = B2
1(p2

1 + q2
1)

8(1 + ξ)2(1 + µ)2m
+ B1(p2 − q2)

4(1 + 2ξ)(1 + 2µ)m
,

and by the help of (1.11), we conclude that

|a3| ≤ (cos α − 1)2

(1 + µ)2m(1 + ξ)2 + | cos α − 1|
(1 + 2µ)m(1 + 2ξ) .

□

For the special choices of parameters µ, ξ, and m in Theorem 2.1, we obtain the following:
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Corollary 2.1. Let u ∈ QΣ,1(ξ, m; x) = QΣ(ξ, m; x). Then,

|a2| ≤
√

2| cos α − 1|
√

| cos α − 1|√
|{2(3)m(1 + 2ξ)(cos α − 1)2 − (2)2m(1 + ξ)2(cos α − 1)(1 − 3 cos α)}|

(2.19)

and
|a3| ≤ (cos α − 1)2

(2)2m(1 + ξ)2 + | cos α − 1|
(3)m(1 + 2ξ) (2.20)

Corollary 2.2. Let u ∈ QΣ,µ(ξ, 0; x) = QΣ,µ(ξ; x). Then,

|a2| ≤
√

2| cos α − 1|
√

| cos α − 1|√
|{2(1 + 2ξ)(cos α − 1)2 − (1 + ξ)2(cos α − 1)(1 − 3 cos α)}|

(2.21)

and
|a3| ≤ (cos α − 1)2

(1 + ξ)2 + | cos α − 1|
(1 + 2ξ) . (2.22)

Corollary 2.3. Let u ∈ QΣ,µ(1, 0; x) = QΣ,µ(x). Then,

|a2| ≤
√

2| cos α − 1|
√

| cos α − 1|√
|{6(cos α − 1)2 − 4(cos α − 1)(1 − 3 cos α)}|

(2.23)

and
|a3| ≤ (cos α − 1)2

4 + | cos α − 1|
3 . (2.24)

Theorem 2.2. Let u given by (1.1) belongs to the class QΣ,µ(ξ, m; x). Then,

|a3 − ςa2
2| ≤


| cos α − 1|

(1 + 2ξ)(1 + 2µ)m
, 0 ≤ |t(ς; x)| < 1

4(1+2ξ)(1+2µ)m

4| cos α − 1||t(ς; x)|, |t(ς; x)| ≥ 1
4(1+2ξ)(1+2µ)m

(2.25)

where

t(ς; x) = (1 − ς)(cos α − 1)2

2[2(cos α − 1)2(1 + 2ξ)(1 + 2µ)m + (cos α − 1)(1 − 3 cos α)(1 + ξ)2(1 + µ)2m].

Proof. From equations (2.17) and (2.18), we get

a3 − ςa2
2 = (1 − ς)B3

1(p2 + q2)
4[B2

1(1 + 2ξ)(1 + 2µ)m + (B1 − B2)(1 + ξ)2(1 + µ)2m]
+ B1(p2 − q2)

4(1 + 2ξ)(1 + 2µ)m

= (cos α − 1)
[(

t(ς; x) + 1
4(1 + 2ξ)(1 + 2µ)m

)
p2 +

(
t(ς; x) − 1

4(1 + 2ξ)(1 + 2µ)m

)
q2

]
where

t(ς; x) = (1 − ς)(cos α − 1)2

2[2(cos α − 1)2(1 + 2ξ)(1 + 2µ)m + (cos α − 1)(1 − 3 cos α)(1 + ξ)2(1 + µ)2m].
□

Corollary 2.4. Let u ∈ QΣ,1(ξ, m; x) = QΣ(ξ, m; x) and ς ∈ R. Then,

|a3 − ςa2
2| ≤


| cos α − 1|

(1 + 2ξ)(3)m
, 0 ≤ |t(ς; x)| < 1

4(1+2ξ)(3)m

4| cos α − 1||t(ς; x)|, |t(ς; x)| ≥ 1
4(1+2ξ)(3)m

(2.26)
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where

t(ς; x) = (1 − ς)(cos α − 1)2

2[2(cos α − 1)2(1 + 2ξ)(3)m + (cos α − 1)(1 − 3 cos α)(1 + ξ)2(2)2m].

Corollary 2.5. Let u ∈ QΣ,µ(ξ, 0; x) = QΣ,µ(ξ; x) and ς ∈ R. Then,

|a3 − ςa2
2| ≤


| cos α − 1|
(1 + 2ξ) , 0 ≤ |t(ς; x)| < 1

4(1+2ξ)

4| cos α − 1||t(ς; x)|, |t(ς; x)| ≥ 1
4(1+2ξ)

(2.27)

where
t(ς; x) = (1 − ς)(cos α − 1)2

2[2(cos α − 1)2(1 + 2ξ) + (cos α − 1)(1 − 3 cos α)(1 + ξ)2].

Corollary 2.6. Let u ∈ QΣ,µ(1, 0; x) = QΣ,µ(x) and ς ∈ R. Then,

|a3 − ςa2
2| ≤


| cos α − 1|

3 , 0 ≤ |t(ς; x)| < 1
12

4| cos α − 1||t(ς; x)|, |t(ς; x)| ≥ 1
12

(2.28)

where
t(ς; x) = (1 − ς)(cos α − 1)2

2[6(cos α − 1)2 + 4(cos α − 1)(1 − 3 cos α)].
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