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MILNE-TYPE INEQUALITIES FOR DIFFERENT CLASSES OF
MAPPING BASED ON PROPORTIONAL CAPUTO-HYBRID
OPERATOR

iZZETTIN DEMIR!

ABSTRACT. In this study, we prove many integral inequalities associated with the Milne-
type integral inequalities for proportional Caputo-hybrid operator with the use of the
identity given by Demir [12]. Firstly, we establish some Milne-type inequalities for bounded
mappings with proportional Caputo-hybrid operator. Moreover, we give several Milne-type
inequalities by using the properties of Lipschitz condition and bounded variation with
the help of proportional Caputo-hybrid operator. We observe that the acquired outcomes
improve and generalize certain of the previous findings in the field of integral inequalities.

1. INTRODUCTION

Convexity is a significant and interesting theory with many applications in classical anal-
ysis. In addition, the use of integral inequality and its applications has grown significantly,
influencing not only the many current mathematical topics like measure theory, approxima-
tion theory and information theory but also a wide range of scientific and technical fields.
Moreover, by using the integral inequalities, the error bounds of the numerical integration
formulae for the differentiable mappings may be found. Many scholars have been inter-
ested in combining the theory of convexity and the theory of inequality due to their close
association, which helps to construct and generalize integral inequalities.

Simpson’s inequality, which is as follows, is among the most significant and frequently
needed inequalities:
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where f : [a,b] — R is four times continuously differantiable mapping on (a, b) and H @ H =

sup ‘ @ (x)‘ < 00. This inequality establishes an upper limit on the error that occurs when
z€(a,b)
estimating a definite integral using Simpson’s rule. Because of its widespread geometric

significance and applications, a number of authors have focused on Simpson-type inequalities
for different classes of mappings in recent years. For example, in [I1], Dragomir et al.
demonstrated some recent advancements in Simpson’s inequality, where the remaining part
is expressed in terms of derivatives lower than the fourth order. In [2], Alomari introduced
Simpson’s type inequalities for s-convex functions. Sarikaya et al. gave some Simpson’s
type inequalities via twice differentiable functions in [27]. For the other results, one can
refer to [9], [17], [19], [20].

The Milne inequality provides estimates of the error boundaries for the Milne formula
under circumstances similar to those obtained from the Simpson inequality:

5@ -1 (550) +2r0) - = jf(x)dx < m 7],

where f : [a,b] — R is a four times differentiable mapping on (a,b) and H f(4)H =

sup |0 (a)
z€(a,b)
searchers recently. Alomari and Liu [3] established error estimations for the Milne’s rule for

< 0. So, the Milne inequality has received a lot of attention from re-

mappings of bounded variation and for absolutely continuous mappings. Roméan-Flores et
al. [21] proved some Milne type inequalities for interval-valued functions. Budak et al. [10]
investigated Milne-type inequalities for bounded functions, Lipschitz functions and func-
tions of bounded variation. Ali et al. [I] gave the fractional version of Milne’s formula-type
inequalities for differentiable convex functions and Riemann—Liouville fractional integrals.
Many recent articles have been published on this subject, as in [7], [3], [18].

Meanwhile, a subfield of mathematics known as fractional calculus studies integrals and
derivatives with non-integer order. Therefore, it is important for the generalization of
classical calculus, complex system modeling, fractional differential equation solving, fractal
geometry analysis, and many other applications in science and engineering. Moreover, it
offers a framework for interpreting and assessing fractional dynamics systems, enabling a
more thorough mathematical explanation of complicated circumstances. Thus, due to the
new fractional integral and derivative such as Caputo-Fabrizio [11], Atangana-Baleanu [5]
and tempered [22], this calculus has gained more importance and has found applications in
various fields of science and engineering.

This is one of the important definitions of fractional analysis [23]:

Definition 1.1. Let « > 0 and « ¢ {1,2,...}, n = [a] + 1, f € AC™][a,], the space of
functions having n — th derivatives absolutely continuous. The left-sided and right-sided
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Caputo fractional derivatives of order a are defined as follows:

“Dp @) = ey [ O > a

a

and
. b
C no _ _ . \n—a—1 g(n)
Dy = t t)dt, = <b.
P @) = oy [ T W,

x
If o =n € {1,2,3,...} and usual derivative f(™)(z) of order n exists, then Caputo fractional
derivative CDg‘+ f(z) coincides with f(™(z) whereas CDI‘)"_ f(z) with exactness to a constant
multiplier (—1)". For n = 1 and a = 0, we have “D%, f(z) = “D f(z) = f(z).

The Caputo derivative is defined as the application of a fractional integral to a standard
derivative of the function whereas the Riemann-Liouville fractional derivative is obtained by
differentiating the fractional integral of a function with respect to its independent variable
of order n. The Caputo fractional derivative necessitates more suitable initial conditions in
contrast to the conventional Riemann-Liouville fractional derivative considering fractional
differential equations [13]. Therefore, the Caputo derivative is preferable when analyzing
other fractional derivatives since it produces more physically significant answers for the
particular issues. On the other hand, the operator of proportional derivative denoted as
PD,f(z) is given by the equation [4] :

PDof(x) = Ki(a,t)f(t) + Ko(a, 1) (1),

where K and K are the functions with respect to a € [0, 1] and ¢ € R subject to certain
conditions and also, the function f is differentiable with respect to ¢ € R. In robotics and
control systems, this mathematical operator is often utilized. The significance of research on
the Caputo derivative and the proportionate derivative has significantly increased in recent
years [15], [16], [20].

Baleanu et al. provided the following definition in [6], combining the ideas of proportional
derivative and Caputo derivative in a novel way to produce a hybrid fractional operator
that can be expressed as a linear combination of Riemann-Liouville fractional integral and
Caputo fractional derivative.

Definition 1.2. Let f: I C RT — R be a differentiable function on I° and f, f’ are locally
Li(I). Then, the proportional Caputo-hybrid operator may be defined as follows:

Cpe, f(t) = r(11—a) [ 10, m)7(7) + Koo, 1) ()] (¢ = 7)<
0

where a € [0,1] and K7 and K| are functions which satisfy the following conditions:

lim Ko(a,7) = 0; lim Ko(a,7) =1; Ko(a,7) #0, a€(0,1];
a—0T a—1
lim Ky(o,7) = 0; lim Ky(a,7)=1; Ki(a,7)#0, a€][0,1).

a—0 a—1—
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Next, Sarikaya [24] proposed a new definition by applying distinct K and Ky functions
based on Definition 1.2. Also, Sarikaya [21] derived the Hermite-Hadamard inequality
utilizing his own new definition as presented below:

Definition 1.3. Let f: I C RT — R be a differentiable function on I° and f, f’ € Li(I).
The left-sided and right-sided proportional Caputo-hybrid operator of order a are defined
respectively as follows:

b
PEDE 0 = e [ (0= 1)) + Kolob =) ()] (b= ) ~dr

I'(

and

b
II)D_CDg fla) = F(ll—a)/ [Ki(a,7—a)f(1) + Ko(a, 7 — a) f'(7)] (1 — a)~%dr,

where a € [0,1] and Ko(a,7) = (1 — a)?>717% and Ki(a,7) = o?7%.

Theorem 1.1. Let f : I C R™ — R be a differentiable function on I°, the interior of the
interval I, where a,b € I° with a < b and let f, f’ be the convex functions on I. Then, the
following inequalities hold:

ab-a)f (7 ) + 50 - - (437)
< e [FEDEI0) + D)
< @0-a [MHO) - apoe [[OHSO],

Additionally, Sarikaya provided the following Simpson’s type inequality in [25] by em-
ploying his interpretation of the proportional Caputo operator:

Theorem 1.2. Let f : I C RT™ — R be differantiable function on I°, the interior of the
interval I, where a,b € I° with a < b, and f', f"" € Lla,b]. Then, the following identity holds:

S(a,b; o)

= O a1 ap (U5 40

(- oe)(le— a)*~® {f’(a) +Af (a ; b) + f’(b)}
'l -a)

S [gjfpg fb)+ PCpof (a)]
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where
1
S(a,b;a) = W/P(t)[f’(m+ (1—=t)b)+ f(tb+ (1 —t)a)] dt
0
—Q 1
+(1 — a)(z— a)* /Q(t)[f”(ta + (1 —t)b) + f"(tb+ (1 — t)a)] dt,
0
" { Lt 0<t<i
P(t) =
B¢, $<t<,
e Lt 0<t<}
t) _ 6 ’ 2
Q( {5_t2—2a’ %Stﬁl

Besides, Demir [12] offered a novel integral identity related to the Milne-type integral
inequalities using twice-differentiable convex mappings for the proportional Caputo-hybrid
operator . This identity is essential for demonstrating our other main results:

Lemma 1.1. Let f: I C RT — R be a twice differentiable function on I°, the interior of
the interval I, where a,b € I° satisfying a < b and let f, ', f" € L1[a,b]. Then, the following
identity is satisfied:

a?(b — a)*tig—al /1 (; — ;) [f’ (2 ; bart ;b> —f (;a + Q;tbﬂ dt
0

+(1 —a)(b— a)2—0‘20‘—3/1 (tz;a - g) [f” (2 ; bay ;b) —f (;a - 2;%)] dt

0

- g (2000 -7 (“57) + 20

+(1 —a)(b— a)l7v2072 <2f’(a) _p (a + b> n 2f’(b))

3 2

I'l—«)
S 20(b—a)—otl

PC a PC a
P DRFO) + £, Difa)].

In the present research, with the help of the identity provided by Demir [12], we prove
several integral inequalities connected to the Milne-type integral inequalities for proportional
Caputo-hybrid operator. In the beginning, we give a set of Milne-type inequalities for
bounded mappings using proportionate Caputo-hybrid operator. Additionally, we use the
properties of the Lipschitz condition and bounded variation with proportional Caputo-hybrid
operator to establish a number of Milne-type inequalities. We note that the obtained results
enhance and expand certain of the earlier findings in the field of integral inequalities.
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2. MAIN RESULTS

First, by using a proportional Caputo-hybrid operator, we intend to derive several Milne-
type inequalities for bounded mappings.

Theorem 2.1. Suppose that the conditions of Lemma 1.1 hold. If there exist m,n, M, N € R
such that m < f'(t) < M andn < f"’(t) < N for allt € [a,b], then we have

O (osw) - 1 (“F0) +25)

_|_(l —a)(b ;a)1a2a2 (2f’(a) —f (a _2‘_ b) + 2f’(b)>

e e [N R )|

5a%(b — a) 2ol
- 12

(M —m)

+(1 —a)(b—a)?2273 (; — M) (N —n).

Proof. Lemma 1.1 helps us arrive at

O gt 1 (“0) 4 210) (2.1)
B i (270 - 1 (*57) +2r0)
'l —ow)

—W (a+b)+Db f( ) (a+b)‘Daf( ):|

1

— a2 apipa { [(=3) 7 (5o d0) =25
1
+0/<—>[W+M (e 5]
; @ — n
oot (55 (e )
+0/1<t2;2a _;) [n;N Y (;a+22_tb)]dt}.
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Upon calculating the absolute value of (2.1), we obtain

a?(b—a)12® (2100~ 1 (57) 4 250)

3 2
— —a l—aopa—2 a
A pa) - (S50) +2r'w)
o [y PO+ (G2

9_ M
f’< 2ta+;b>—m—; ’dt

1
< e[ (35)
JGa) s (o 50 o
0
+(1 - a)(b—a)* @223 {0/1 <§ — t2;2a> f’ (2 Ly tb) - n+N’dt

2 2 2
P2 22\ 4N st 2t
R _f(2a+zb)\dt}.
0
Because m < f/(t) < M and n < f"(t) < N for all ¢ € [a, b], we have

29—t t\ m+M| M-m |m+M ¢t 2—t M—m
! “bh) - < — (= =) <
f( 2 a+2b> 2 ‘— 9 2 f(2a+ 2 b)’— 2

and

ta+r 2=
50T

2.t t\ n+N|_ N-n
1!

2 a4+ -b) - <
f<2a+2> 2’—2"2

Thus, we obtain

n+ N f,,(t 2—t)‘<N—n

6“2“’—36‘)“2_“ <2f(a) _f (“;b) +2f(b)>

+(1 —a)(b —?)a)la2a2 <2f’(a) —f (a _2‘_ b) + 2f’(b)>

MFO o PC afi,
@ (s IO+ {5y D0

5a2(b — a)ti2—a=3

(M —m)

+(1 = a)(b—a)?*2273 (g — M) (N —n).
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O

Corollary 2.1. The following particular situation arises from Theorem 2.1 as a goes to 0:

5 (27~ f'(a;b) +21'0) —(bf‘a)? /b f()d - 7f<x>dm

b—a
4

Corollary 2.2. Under the assumptions of Theorem 2.1, if there exist M, N € R™ such that
') < M and |f"(t)] < N for allt € [a,b], then we have

0‘2(’)—3@)“2“ <2f(a) —f (“;b> +2f(b)>

S O oy (CE0) s )

<

(N —n).

_ M-a) [pc a PC .
Qa(bfa)*aJrl [(a2+17)+Dbf(b)+ (aT#»b)*Daf( )H

5a2(b o a)oc+l2—oc—2

<
- 3

M

+(1 — a)(b — a)*2072 @ — M) N

Remark 2.1. According to Theorem 2.1, under particular case when « tends to 1, we obtain

5 (2@ -1 (57) +210) - 5= /b f(a)de

5(b—a)
24
which was demonstrated by Budak et al. in [10].

<

(M_m)a

Remark 2.2. In Corollary 2.2, for the specific circumstance when « approaches to 1, we get

3 (2@ -1 (57) +20) - bia/bf@)dm

5(b—a)
12
which was shown by Alomari and Liu in [3].

<

M,

Now, we obtain several Milne-type inequalities for Lipschitz functions with the help of a
proportional Caputo-hybrid operator.
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Theorem 2.2. Suppose that the conditions of Lemma 1.1 hold. If f' and f" are Ly-Lipschitz
function and La-Lipschitz function on [a, ], respectively, then we get the following inequality:

W <2f(a) —f (“;b) + 2f(b)>

Jr(1 —a)(b —361)1_&2&_2 <2f’(a) _ (a ; b> + 2f’(b))

'l -«
"5 — gy

P DY) + [, D2
< a2(b o a)a+22—a—3L1

+(1=a)(b—a) 2% (é T 23 - 20) " 204 - 2a>> -

where L1, Ly are positive real constants.

Proof. With help of Lemma 1.1 and because of the property of Lipschitz functions on [a, b],
we have

OO o) 1 (“0) 4 210)

3 2

2
+(1 —a)(b —3a)1—a2a—2 <2f,(a) o (a -; b> N 2f’(b))
5 ) AT (e DRTO) £y DES@]
1
< a?(b—a)tl2ol 0/ (; — ;) f (22_% + ;b> —f (;a + 22_tb) ‘ dt
1 _
+(1 —a)(b— a)2a2a30/ (g — t222a> r” <2 ; Loy ;b) —f (;a + 2;%) ‘ dt
1
< a?(b—a)tl2od D/ (2 — t) Li(1—1)(b—a)dt

+(1 _ (l)(b . a)2—a2a—3/ <§ _ t2;2a> Lo (1 — t) (b — a)dt.
0
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Evaluating the integrals in the inequality mentioned above, we get

1 1
2t 1 2 {2 1 1 1
0/(3_2) (1-tydt=7 and 0/(3_ 2 >(1_t)dt:3_2(3—2a)+2(4—2a)'

Therefore, the proof is completed. O

Remark 2.3. Theorem 2.2 states that in the specific condition when a approaches to 1, we

3 (20 -1 (570) +20) - = [ S

(b—a)?
8
which was shown by Budak et al. in [10].

obtain

<

le

Corollary 2.3. As a gets closer to 0, the following particular case happens, based on
Theorem 2.2:

3 (-1 (57) +2r0) - 5= / o)z - /f( )da

a+b a

Following that, we provide a few Milne-type inequalities for proportional Caputo-hybrid
operators by the use of bounded variation mappings.

Theorem 2.3. Let f, f': [a,b] = R be a mapping of bounded variation on [a,b]. Then, we

have
a?(b—a)r27" <2f(a) —f (”b) +2f(b)>

3 2
S DT ) (“20) v 2r )
s et ()PSO + {5y 02000

2— a+1 2 b 2 1+a<1 a b
a\/ b _ 4\—1—a \/
a a

3(b—a)

b b
where \/(f) and \/(f') denote the total variations of f and f’ on [a,b], respectively.
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Proof. Take the mappings K, L, : [a,b] — R defined by
(t—a) 2028 g << o

2b2a) _(h—t), = <t<b

and

_ )22«
(t—a)* 0 = g, a<t<of?

L,(t) =

2—2a
Moo (g et <oy

respectively. From integration by parts it follows that

/b K (t)df (1) = /2(@ -0 -2 g
+/b (Z(b;a)—(b—t))df(t)

_ _(b—a)f<a—2|—b)+2(b3—a)f(a)_/f(t)dt

and

57

(2.2)
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We obtain the following outcome by multiplying (2.2) by 27%a?(b — a)~'*® and (2.3) by
27172(1 — a)(b — @)~ and adding them side by side:

L [ + +I 0 / Lt
_ a2(b—3a)a2_a (Qf(a)_f(a-i-b) +2f(b)>

2

+(1 —a)(b —ga)l—aza—2 (2f’(a) o (a + b) n 2f’(b)>

2

27°T(1 —a) [p o
—m [(a+b)+Db f( ) (a+b) D f( ):|

2

It is commonly known that if g,k : [a,b] — R are in the sense that g is continuous on

b
[a,b] and h is of bounded variation on [a,b], then [ g(t)dh(t) exists and

b
< sup lg(t ]\/ (2.4)
a

As a result, using (2.4), we discover

W (Qf(a) _f (“;b) + 2f(b)>

S T oy (U2 s )

(a+b)+Dbf( ) (a+b>—Daf( )]

27°T(1—a) [p
a+b

(b—a)~atl
[ (= 0-2=) g

2—a2

/b (22— o-0) arr
/ ((t—a>22“—W> (1)

_|_

a+b
2

271-2(1 - a)
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b
9 (b —a 2—2a o
+ / <321_)2a — (-t ) df'(t)
la+b
2
2 o
2 % 2(b—a)
< 1| sw ((t—a)————= (/)
(b—a)t-e t€la, 1E2] 3 \a/
2(b—a) b
T e )| AVATY
te[4El b] axb
1 2—-2 aTer
27 *(1-q) 220 2(b—a)™ /
— i | swp |(t—a)T " = - (f")
(b _ a)l a te[a,%"b] 321 2«
9 (b _ a)2—2a o b
+ sup w_(b t)*? \/(f/)
tG[aTer,b] : %M
e [20-a) S, 2b-a)
‘o —a —a
- (b—a)l_o‘ 3 \“/(f)"i' 3 a\-é(f)
I
1 220 " 2-2a b
2711 —a) |2(b—a)* ™ %, . 2(b—a)* ,
(b—a)l-« 3.21-2a \a/ (f) 3.21-2a a\+/b(f )
=
2—a+1a2 b 2—1+a(1 _ Oé) b ,
= Soma e YT s V)
O
In the particular situation when o« approaches 1 in Theorem 2.3, we obtain

s (2@ -1 (57) +2rw) -

b
Vi,

<

[SSE )

|, on the basis of the supposition
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Corollary 2.4. In the specific case where o goes to 0 in Theorem 2.3, we get
a+b

% <2f’(a) —f (a;b> + 2f’(b)) - @42 /b f(z)dz — jf(x)dw

—a)

a+b a

2

<

b
\/(f).
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