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ABSTRACT. This paper is devoted to the development of new inequalities of the Hermite-
Hadamard, trapezoidal, and midpoint types through the use of generalized k-fractional
integrals. The methodology relies on established mathematical tools, including the Jensen-
Mercer inequality, the power mean inequality, and Holder inequality. Fundamental iden-
tities involving generalized k-fractional integrals and convex functions form the basis of
the main results. The paper also explores connections between these results and earlier
research on classical Riemann-Liouville fractional integrals, fractional conformable inte-
grals, and generalized k-fractional integrals. Several examples, supported by graphical
representations, are presented to illustrate and confirm the validity and applicability of the
derived inequalities.

1. INTRODUCTION AND DEFINITIONS

Fractional calculus, which extends the classical definitions of differentiation and integra-
tion to arbitrary (non-integer) orders, has witnessed significant growth in recent years due to
its broad applicability in modeling real-world phenomena with memory and hereditary prop-
erties. Unlike traditional integer-order derivatives, fractional-order operators are inherently
nonlocal, as they incorporate the entire history of a function’s behavior. This distinctive
feature makes them particularly suitable for modeling complex dynamical systems in diverse
areas such as physics [10], control theory, viscoelasticity, signal processing, fluid mechanics
and biological systems [2,3,27].

Within the growing field, fractional integral inequalities play a central role in the the-
oretical study of solutions to fractional differential equations. Among them, the Hermite-
Hadamard inequality, which provides bounds for the integral mean of convex functions, has
received considerable attention. It is a fundamental tool in both mathematical analysis and
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numerical integration. For a convex function f : [a,b] — R the classical Hermite-Hadamard
inequality is expressed as:

f<a+b> Sbia/abf(t)dtgf(a)*'f(b)'

2 2

This inequality has inspired numerous extensions and generalizations, particularly in the
setting of fractional integrals and generalized convexity. A particularly powerful framework
for such generalizations is provided by generalized k-fractional integral operators. These
operators not only extend the well-known Riemann-Liouville, Hadamard, and Katugampola
fractional integrals, but also offer a more flexible structure for modelling and analysing
integral inequalities (see [7,8, 12, 17—19,22, 29-31, 34,36, 38]). The additional parameters
and kernel functions embedded in the k-generalized operators yield a richer class of integral
expressions, thereby enabling more refined bounds and deeper analytical results.

Recent research has investigated the interplay between convexity and fractional integrals.
For instance, Sarikaya et al. [33] applied Riemann-Liouville fractional integrals to derive
Hermite-Hadamard-type inequalities for convex functions. Building on this foundation, Set
et al. [37] and others (see, e.g., [5,6,9,11,23,24,32]) introduced further refinements and new
inequalities involving generalized convexity and diverse classes of fractional integrals.

The present paper advances this line of inquiry by establishing new Hermite-Hadamard,
trapezoidal, and midpoint-type inequalities using generalized k-fractional integrals in con-
junction with classical convex functions. The convexity assumption is essential here, as
it provides the structural foundation for formulating and proving these inequalities. Our
approach is supported by several classical analytical tools, including;:

e the Jensen-Mercer inequality, which governs averages and convex combinations of
functions,

e Holder’s inequality, which is fundamental for estimating integral bounds under
weighted norms, and

e the power-mean inequality, which relates different mean values in the context of
convex functions.

Through this combination of fractional calculus, convex analysis, and integral inequality
techniques, we derive several novel results. These not only generalize known inequalities,
but also unify them within a broader operator framework.

Furthermore, we provide illustrative examples and graphical visualizations to validate the
theoretical results. These examples demonstrate the behavior of the derived inequalities un-
der various convex functions and parameter choices, thereby highlighting their applicability
in practical mathematical modeling.

The contributions of this paper are twofold.

Theoretical: We establish new Hermite-Hadamard, trapezoidal, and midpoint-type
inequalities via the generalized k-fractional integrals, which encapsulating several existing
results as special cases.

Practical: We present explicit examples and graphical plots to showcase the effectiveness
and applicability of the proposed results.
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Definition 1.1. A function g : [a,b] C R — R, is said to be convex if

gtz + (1 —t)y) < tg(x) + (1 —1t)g(y)

for all z,y € [a,b] and t € [0, 1]. We say that f is concave if (—g) is convex.

Definition 1.2. ([20],[39]) For 0 < y,z < oo and y,z € R, the Gamma function, Beta
function, and incomplete Beta function are given by

Nw)= [ ol By.2) = [ #7007 Bl = [ ar
0 0 ;
The k-Gamma function and k-Beta function are defined as
Ii(y) = / vl Rat, By, z) = E/ /=11 — ) Ry,
0 0

They satisfy the relations

. 1
F(y)zggﬁk(y), Cr(y +k) = yl(y), Bk(y,Z)Zfi

(y Z) _ Tr(m)le(z)

k' k Ti(y+2)
Definition 1.3. [20] Let f € £i]a,b] with a < b, where a,b € R. The Riemann-Liouville
fractional integrals %a’B . f and %5_ f of order 8 > 0 are defined by

%@b@%%ﬂﬁ@@ym

and ,
S A0) = 15 [ -0 0y <o,
Y

respectively, where I'(5) is the Gamma function. These are referred to as the left-sided and
right-sided fractional integrals.

Conformable derivatives, often called local fractional derivatives, allow differentiation of
arbitrary order, unlike traditional nonlocal fractional derivatives. These operators, along
with modified conformable derivatives [1], are important for generating generalized non-
local fractional derivatives with singular kernels [1,20,21]. In particular, the generalized
k-fractional conformable integral [21] extends classical fractional operators and enables
broader analytical developments. Feng et al. [14] subsequently advanced this theory, charac-
terizing generalized k-fractional conformable integrals, evaluating their effectiveness relative
to established fractional tools.

Definition 1.4. [21] Let 8 > 0, a € (0,1] and f € Ly[a,b]. The fractional conformable
integrals # Sq.f and B S f are defined by

~a 1 v(y—ar—(t—a)*\f)
Ao, (y)_F(B)/(z< - ) o dt, y>a, (1.1)

and
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Definition 1.5. [11] Let 8 > 0, a € (0,1] and f € £1]a,b]. The generalized left and right
k-fractional conformable integrals (k-FCI) of order § are respectively defined as

—a)® — (t —a)™ B/k—1
1S fy) = ! /ay<(y )a<t )> (ﬂt)dt, y>a, (1.3)

kT (B) t—a)l—«
and
g L A () el U ) S A 4 ()
Sh— f( ) ka(ﬁ) /y ( a ) (b _ t)l—adt’ y < b, (14)
where k > 0.

If we assign k = 1, then the generalized k-fractional conformable integrals in (1.3) and
(1.4) reduce to the fractional conformable integrals in (1.1) and (1.2), respectively.

Theorem 1.1. If the function f is convex over [a,b], then we have the following inequality

/(55 =t o= 1910

This inequality is known as the Hermite-Hadamard inequality in the literature.

Theorem 1.2. [13] If f : [a,b] = R is a convez function, then
f <a+b an‘l> < f(a an x;) (1.5)
1=1

for all z; € [a,b],r; € [0,1],4 = 1,....,n and Y71 = 1. Thzs inequality is known as the
Jensen—Mercer inequality in the lz'temture.

For further results related to the Jensen-Mercer inequality, see [25,28].
Let % + i =1 with p,q > 1. Then Holder’s inequality for integrals states that

[ isstia< ([irora) ([ wora)

The aim of this study is to establish new inequalities for generalized k-fractional con-
formable integrals. In particular, Hermite-Hadamard, trapezoidal, and midpoint-type in-
equalities will be derived using the Jensen-Mercer inequality. These results not only offer
new insights into generalized k-fractional conformable integrals, but also contribute novel
mathematical tools for applications in fractional calculus.

2. MAIN RESULTS

In this section, we recall some known results and subsequently utilize them to derive new
and interesting findings.

Theorem 2.1. [25] If f : [a,b] — R is convez, then
B/k
£(450) < RO gy + s s@) < TS e

26— a) ¥
for B> 0,k >0 and o € (0,1].
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Lemma 2.1. [28] Let f : [a,b] — R be differentiable on (a,b) with f € Li[a,b]. Then
B/k

2 2b — a) ¥

_ (b—c;)aﬁ/k /01 {(1—;“)5 N <1_(L_t)a>i} Fllta+(1—0b)dt (2.2)

for B> 0,k >0 and a € (0,1].

Remark 2.1. By choosing k = 1 in (2.2), we obtain the equality for fractional conformable
integrals proved by Set et al. in [35].

Lemma 2.2. Let f : [a,b] — R be differentiable on (a,b) with f' € Li[a,b]. Then

a ab/ —a)ab/
e L

(B1 — By — B3 + By),

(2.3)

where

||
\\
/\

1—t)a o B
( ) Ftb+ (1 — t)a)dt,

B
1_t)) f'(ta + (1 — t)b)dt,

aﬁl/k (=) o+ a-aar

(0}

Ealiey

| |
\,

8
k

B4_/1/2 a;/k (1_<1_t)> F(ta+ (1 — t)b)dt.

(0}

Proof. Using integration by parts, we obtain

B, = /01/2 (1_(14)&% f(tb+ (1 —t)a)dt

a

_ (1)5/k [(1 _a _t)a)ﬂ/kf(tb+ (1—t)a) 12

o b—a 0

ap 1/2(1 a—gia t)aflf(tb +(1 - t)a)dt]
k Jo b—a

_ (;)ﬁ/k e (- w2t (%57)

_% 1/2(1 (- t)o‘)%_l(l _ t)a_lf(tb—F (1-— t)a)dt] :
0

Similarly, we get

By - (;)W (aib) -2ty (“‘2”))
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_% 01/2(1 —(1- t)a)%—1(1 — 0 flta+ (1 — Db)dt |

- (3)" o= a2Er (57) -1 (57)
|

Y1 =) F (b + (1 — t)a)dt

B = (;)B/k - aEr () - (5)
|

LA B e (4 (1 a)dt
k Ji/2

Now, substituting the calculated integrals, we obtain

1\ 1 +b
N O = a{%(“ )

_Bag/ ( (1—1t)~
k 0
1—t

)
a)" e 1f(ta+(1—t)b)dt]
)-

_ bfa <a>ﬁ/’“l <a+b

Multiplying both sides of (2.4) by M , gives the desired equality (2.3). O

?x'\% ~—

1 2L (tb 4+ (1 — t)a)dt

Q

O‘ﬁ/kr‘k ﬂ + k) [,3(\(1
aB

LSS (0) %z*_ﬂa)ﬂ . (24)

Remark 2.2. By choosing £ = 1 in Lemma 2.2, we obtain the equality for fractional con-
formable integrals proved by Hezenci and Budak in [15].

Theorem 2.2. If f: [a,b] = R is convex function, then

B ablk
1(oer=157) 5 0 100 - SR 050 9250
<s@-+ 50 - £ (157 (25)

for ally, z € [a,b] withy < z, for § >0,k >0 and o € (0,1].

Proof. Since f is convex on [a, b], the Jensen-Mercer inequality gives

f(a+b >§f(a)+f(b)f(ffl)+f(yl)

2
for all z1,y1 € [a,b].
Now, set 1 =ty + (1 —t)z and y1 = (1 — t)y + tz with ¢ € [0, 1]. Substituting into (2.6)
yields

xy 42-311 (2.6)

Y+

f( _|_b_2> Sf(a)—l—f(b)—f(ty+(1_t)z)+f((1_t)y+t2)_

2

(2.7)



APPLICATIONS OF INEQUALITIES INVOLVING k-FRACTIONAL CONFORMABLE INTEGRALS 53

Multiplying both sides of (2.7) by (I;ta )gflto‘_l and integrating over [0, 1], we obtain
8

f<a+b—ygz>/()1<1;ta>i_lt“ tdt < {f(a) + f(b }/ (1_ta>k o1t
oo oy (0T e

Using the evaluation technique from Theorem 2.1, this simplifies to
8

(o3 () )

B
@103 (5) (3) -y 1S5 492 10)

w\m

; bk
— f<a+b_y; )s{f<a>+f<b>}—2(jff)fkﬁ’“)[i<‘z+f<> 3¢ f)]. (28)

which is the first inequality of (2.5).
To prove the second inequality, observe that convexity of f implies

y+z ty+(1—t)z+ (1 —-t)y+tz

f =f
2 2

Uy + A=tz + f((A -y +t2)

— 2 )

Multiplying both sides of (2.9) by (%)%_1750‘*1 and integrating over [0, 1] gives

B8
1 1 a\ —1
f<y+2z>/ < —t >k o1y
0 «Q

_ e 21
;/Ol{f(ter(l—t)2)+f((1—t)y+tz)}(1 t) —

t € [0,1]. (2.9)

<

this reduces to

y+z aﬁ/krk(ﬁ + k) Ba B v
f( 5 ) < - (0S5 (6) + S2_f(a)] - (2.10)
Rearranging (2.10), we get
e VICR) [

sl A R f(a)]

Adding f(a) + f(b) to both sides yields

IA
Kh
/

<
|+

w
~_

APIRTL (B + K o +z
@)+ 50) - TR o p) 4f 02 )] < @) + 50 - £ (15, @y
2(z—y)*
which is exactly the second inequality in (2.5).
Combining (2.8) and (2.11) completes the proof. O

Remark 2.3. By choosing k£ = 1 in Theorem 2.2, we recover the Hermite-Hadamard-Mercer
inequality for fractional conformable integrals established by Butt et al. in [10].
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Ezample 2.1. Consider the convex function f : [1,6] — R defined by f(z) = 2%. For y =3
and z = 5, equation (2.5) gives

flavo-135) =7 -4) = £3) =9
and
f@)+ £0) 1 (157 ) =37 (4) =

These values correspond to the left-hand and right-hand sides of (2.5), respectively.
From (1.3) and (1.4), we compute

a L 5@ = =3\ ¢
i\’y+f( )= 195, f(5) = ka(ﬁ)/g () mdt

(07

(f)ﬁ/k 1 ka 5 (1 - (t_23)a)ﬁ/k1 (t —3)*"Y[(t — 3) + 3]2dt
(2:)5//% 1 krk 5 (1 B (t;g)a)ﬁ/k 1 [(t — 3)04+1 +6(t—3) +9(t — 3)a—l]dt
<f)ﬁ/k k‘Fk tﬂ/k V4(1—t)a 4+ 12(1 — £)a + 9]dt
(a)ﬂ/k . [ (iHZ) +128 (iu(i) +9Z]_
Similarly,
o 0010 (2) " g (0 2) - (30 2) o]

Thus, the middle term of (2.5) becomes
PRy (5 + k)

J(@) + f(0) = 0 [195,£(2) + 921 )]
2(z—y)*
:37—% [43 (iHi) 4B <’21+i) +17Z] _
Hence, inequality (2.5) reduces to
9337—% {4% (§1+Z> — 4B (i1+i) +17g} <21 (2.12)

The validity of inequality (2.12) is illustrated in Figure 1.

3. TRAPEZOIDAL-TYPE INEQUALITIES WITH JENSEN-MERCER INEQUALITY

In this section, we develop new inequalities for generalized k-fractional conformable
integrals by establishing a key identity based on Lemma 2.1. This identity is then combined
with Hoélder’s and power-mean inequalities, and the Jensen—Mercer inequality is applied to
derive trapezoidal-type inequalities.
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I Left term
[ IMidterm
[ Right term

FIGURE 1. The graph of the inequalities of (2.12) is evaluated by MATLAB
software for a € (0,1], 8 € (0,5] and k = 0.5.

Lemma 3.1. Let f : [a,b] — R be differentiable on (a,b) with f' € Li[a,b]. Then
flatb-—y)+flatb-=2)
2

O‘/B/krk ﬁ"i'k o a
- ( = ) [gg(a+b_z)+f(a+b—y) +§sa+b_y)_f(a+b—z)}
z—yY)k

Gyttt p [(1—@ ta)‘i _ (Hl_t)” Flatb—(tr4+ (-t (31)

fory,z € [a,b] withy < z, >0,k >0 and a € (0,1].

Proof. Replacing a with a + b — z and b with a + b — y in Lemma 2.1 immediately yields
the desired result. O

Lemma 3.2. For >0,k >0 and « € (0,1], the following equalities hold:

71=/0§(1ta)ﬂ/kdt:/11(1(1t)a)5/kdt=13(1 5+1;(1)“>,

a \a'k 2
2
1
Ty = /2(1 — (1 —t)*)8/kqt
0
1

= : (1—t*)P/kdt = Cly [B (;£+1> - B (;,iﬂ; (;)aﬂ

n= | t(l—t“)ﬁ/’“dt:/ll(l—t)(l—(1—t)a)/3/’“dt:;B <2,£+1; <1>a),

[NIES

55
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1 1
s = / (1 — (1 — )™kt = /02 (1= t)(1 =)kt = 7 — 75,
2

1 1
76 = /1 (1—1)(1 — t2)3/kgt = /02 t(1— (1= t)")P*dt = 5 — 7.
2

Proof. By substituting t* = Z, we obtain

1 " «
71:7/2 Za V(1 - 2)%dZ = B( 5+1()>.
a Jo o’k
The remaining equalities can be derived in a similar manner. d

Theorem 3.1. Let f : [a,b] — R be differentiable on (a,b) and suppose that |f'| is convex
on [a,b]. Then, fory,z € [a,b] withy < z, >0, k>0, and o € (0,1], we have

‘f(a—kb—y)—kf(a—i—b—z)

2

R W [go&% orfla+b—y)+ 03 ?aerfy)*f(a—i_b_Z)} =
oD @i+ 1ro) - PO on (2 041 (5)7) -2 (.04 1))

(3.2)

Proof. From Lemma 3.1, we can write
‘f(a—i—b—y)—i—f(a—l—b—z)
2
. O/B/krk(ﬁ + k) [ﬂcna

20 — )% Slatb—s+fla+b—y) + fgaa+b—y)—f(a+b—2)}’
-y

< (z—g;)aﬁ/k /01 (1;150‘)

Since |f'| is convex on [a, b], applying the Jensen—Mercer inequality together with Lemma

B
k

B
~ (1—(1—”) | 1f(a+b— (tz+ (1 —t)y))|dt.

a

3.2, we obtain
’f(a+b—y)+f(a+b—z)
2

B Laﬁ) {go(aﬁ gfla+b—y)+ f Slatp—y)—fla+b— 2)}

2(z—y)*
2 —y)ablk AN (1— Nt
R

< (I (@) + [ ) = tlf (2)] = A = ) f (y)]]dt

(2 — y)aﬁ/k / / / ’
= [+ [ B} = [ ()02 = [ (y)l65]- (3.3)
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Here,
- )5 - (=4
0 « «
— (;)B/k [ 05{(1 — (1 — (1 =) *at
+ 71{(1 — 1=tk (1 - ta)ﬁ/’f}dt]
S (N Pra- e o g (;) fri = 7.
Thus,
= (1) s (L2 (1)) -2 (L2 4)]. o
Similarly,
e |5 - =)
and

_(1—(1—t)a

a

o= Lo
(O Tl @) ()

Substituting the equalities (3.4), (3.5), and (3.6) into (3.3) yields the desired inequality
(3.2). O

Remark 3.1. By setting & = 1 in Theorem 3.1, we obtain the following inequalities for
fractional conformable integrals:

fla+b—y)+ fla+b—2)

2
aof
_w [ﬂ%?a+b—z)+f(a +b=9) +7 Sy fla+b - Z)} ‘
< CD i+ ) - PO C oy (1 gy v de) - (L s41)],

which was proved by Hyder et al. in [19].

Remark 3.2. By taking £k =1 and a = 1 in Theorem3.1, we obtain the inequality

et e b s) O 8 fat b= 9) + 8 Flat b= 2)]
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: o) L= 17w)
<2 b= g (i@l + £ - HE

which was established by Ogulmus and Sarikaya in [30].

Remark 3.3. By choosing k =1, y = a, and z = b in Theorem 3.1, we arrive at the inequality
|f(a) + /() oPT(B+1)

2 — )P 738, £(b) +7 S5 f(0)]

<o) < 25 (a1 (5) ) - (j,m 1]

which was demonstrated by Set et al. in [35].

Ezample 3.1. Consider the function f : [1,6] — R defined by f(z) = 2%, Clearly, |f'| is
convex. For y = 3 and z = 5, we calculate the k-fractional conformable integrals in (3.2) as
follows:

P Cyp (@t b—y) = S, f(4)
_ (a>ﬂ/k kP:(m {413 (i 14 2) 4+ 8B (g 1+ i) +4Z}
and

NSy fla+b—2) =, S0 _f(2)

- () s 2 (e ) -om (R ) +1e3)

Thus, the left-hand side of (3.2) becomes
fla+b—y)+ fla+b—2)

2
_O‘ﬁ/krk—@;k) [goaﬁb i fa at+b—y)+ 23 ?a+by)f(a+b—z)]|
2(z —y) *
:‘10_5[43(5,1+i>—43(£,1+;)+102 ‘

On the other hand, the right-hand side of (3.2) is computed as

C iy 1) - SO o (L84 (1)) (L2 10)]
-l (5 ﬁ+1 (2)) —B(;,iJrl)].
Therefore, the inequality obtained is

o2 (204 2) am (2 L) oot

o)) 2( i) e

The validity of inequality (3.7) is illustrated in Figure 2.
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I Left term
2 I Right term

FIGURE 2. The graph of the inequalitt of (3.7) is evaluated by MATLAB
software for a € (0,1], 8 € (0,5] and k = 0.5.

Theorem 3.2. Let f : [a,b] — R be differentiable on (a,b) and assume that |f'|* is convex
on [a,b] for > 1. Then,

fla+b—y)+ fla+b—2)

2

aPlkr k L
_Q(Zf(j)i;ﬁ) [gs?a—i—b—z)-i-f(a +b—y) +f SCaspy)-fla+b— z)} < ( . Y)
(/01 (1—tF -1 — -7 Adt) ’ [\f’(a)l" Lo - LA ; !f’(y)\“] * 38)

where%—{—%:l.

Proof. According to Lemma 3.1, we get
fla+tb—y)+ fla+b—=2)

2
aPIRTL(B + k
_z(k()akﬁ) S Gpsy i Flatb =)+ Sy Sla+b—2)]
z—y

fla+b—(tz+ (1 —t)y))dt

o [ (e

By Holder’s inequality, it follows that
‘f(a+b—y)+f(a+b—Z)

2
BIRTL(B + k N N 2 — y)ablk
_—(Lﬁ) [f% b flatb—y) 7S,y flatb— z)} < (2)
2(2 - y) &

1
A X

dt (/01 fllatb—(tz+(1— t)y))\“dt) "

8
3

Ealiey
=

[155)

()
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Since |f'|* is convex on [a, b], we obtain
fla+b—y)+ fla+b—2)

2
ﬂi) (804204 s 405
<! (/‘ e (1—ﬂ%fxﬁ)i
" </ {1 @ + 17 @ —tf ) = (- t)lf’(y)“}dt)i
B (/ O L e Nk Adt); [|f’(a)“—|— ) - ‘f’<Z>|”;\f’(y)\“ v
This completes the proof. _

Remark 3.4. By setting £k = 1 in Theorem 3.2, we obtain the following inequality for
fractional conformable integrals

flatb—y)+ flat+b—2)

2
M{B\s(“b g+ f@+b=9) +7 Spy)- f(a+b—z)} <
(/ I i KO N IECIEN O LCIERHOaY

which was proved by Hyder et al. in [19, Theorem 6].

Remark 3.5. By taking k =1 and a = 1 in Theorem 3.2, we obtain the following inequality
fla+b—y)+ fla+b—2)

2
%iﬁjl))[smb o flatb=—y)+S0 f(aerz)H
([ -] dt) <[ir@p s 1wy - HEEHTWE
which was given in [19, Remark 4].

Remark 3.6. By choosing k =1, y = a, and z = b in Theorem 3.2, we obtain the following

inequality
fla)+ f(b)  o’T(B+1) [5ra
T 2= a 732, £ (b) +° S5 f(a >}|
—a 1 A % /a / %
< )</0 (1 —)f — (1= -y dt) (Ll PO

which corresponds to the Riemann-Liouville fractional integrals.
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4. MIDPOINT-TYPE INEQUALITIES WITH JENSEN-MERCER INEQUALITY

In this section, we establish an equality based on Lemma 2.2 and, by applying the
Jensen—Mercer inequality, derive several midpoint-type inequalities.

Lemma 4.1. Let f : [a,b] — R be differentiable on (a,b) and suppose that ' € Li|a,b].
Then

y+z aﬁ/kl—‘k(ﬁ + k) e e’ o
f(a+b— 5 > - { S p_nyifatb—y) +, %(a+b_y)_f(a+b—z)}
z—y)allk
- oy Z;) (71 =72 =73+ 74)- (4.1)
Here,

Elie

( 1—t)a> flla+b— (ty+ (1 —1t)z))dt,

Ealiey

(67

=
o= [ (Y paks e - e
=,

aﬁl/k: (1 —Uu- t>a> ' flla+b—(ty+ (1 —t)z))dt,

74:/;2 a;/k - (1_(1_t)a>k flla+b—(tz+ (1 = t)y))dt.

(67

Proof. By replacing a with a +b — z and b with a + b — y in Lemma 2.2, we obtain the
desired result. g

Theorem 4.1. Let f : [a,b] — R be differentiable on (a,b) and assume that |f’| is convex
on [a,b]. Then, fory,z € [a,b] withy < z, 3 >0, k>0, and a € (0,1], we have

’f(a—l—b—y—;z)
—W [ﬁ%b el +b—g) 1%y flatb—2)]| < (- )
o I 2 ) (3 0 ).

Proof. From Lemma 4.1, we have

y+z PIRTL(B + K o o
‘f(aer— 5 >— ( Lﬁ) [£%a+b_z)+f<a+b—y)+f%(a+b_y)_f(a+b—z)ﬂ
2(z —y)*
_ B/k
< M{Ul + U + Us + Us}. (4.3)

- 2
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Applying the Jensen-Mercer inequality and Lemma 3.2, we obtain

v= [ 1-a-0nyF b— (ty + (1 —t)2))|dt
= [T () e - s a-na)

«

1/2 1_(1_t)a g / / / /
I (50) 1@+ 17 o) - 07 - - ol @)

(67

IN

Ealjsy

= () W@+ G~ 17l 1 @)

Similarly,

Uy = is 1_(1_t)a% ! b— (¢ 1—t)y))|dt
= () Fa+b—(tz+ (1—t)y))|

< () 10F @I+ 17D = 17 Gl = £ W),
1 1 (1 —(1—1t)

a

1@ +170) (5-7) = 1@ (5-m) - 1FwI (5 -7)] .

B
", Lé/k—(l_(l_t) ) ]\f’(a+b—(tz+(1—t)y>)|dt

< (1 [ur@r+1ron (5 -n) 17w (2 -m) -1 (2 -m)]

Substituting Uy, Us, Us, Uy into (4.3), and simplifying, yields

B
) ] 1 (atb— (ty + (1 —)2))|dt

z ab/kT k
‘f (a0-257) - 2 f(j)_% (£ 0t b =) Sy Satb=2)
< EoD (5@ + 17 G = £ Ol — 17 @l + (£ @]+ 17 )2 = | Dl

*If(y)!m (7@ +170) (5-7) = 1£@I (5 -m) - £ (5 - )

H7 @1+ 170D (5 =) 176 (5 -n) - 1£@I (5 -m) |

= L2 7@l + 17D = 2n +2m) = (5 W]+ DG + (4 +70) = (7+7)

= CoD 4@l + 1700 2+ 2m) — (PG + DG 72— 7))

/(W) + /(= )q

— = 9)(G ~n+m) I @]+ 17 0] - <Gy

ot~ L VO o (12.0) (12 (3]
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This completes the proof. ]

Remark 4.1. By setting £k = 1 in Theorem 4.1, we obtain the following inequality for
fractional conformable integrals

f <a—|—b— y—;—z)
) 80 S0 =) 4 oy S0t 2)]| < ()
i@+ 1) - HOLEEEN 2 s (L) —om (Ls4ni(3))]].

which was demonstrated by Hyder et al. in [19, Theorem 7].

Remark 4.2. By taking k = 1, y = a, and z = b in Theorem 4.1, we obtain the following
inequality

’f <a + b) B oPT(B+1) [ﬂgng (b) +° %g‘_f(a)]|

2 2(b — a)*B
(b - a) / / 1 1 1\¢

@+ 170 < [2(2p+1) -28 (Lo (5) )]

which was proved by Hezenci and Budak in [15].

2
Ezample 4.1. Consider the function f : [1,6] — R defined by f(z) = 2%, Clearly, |f'| is
convex on [1,6]. Let y = 3 and z = 5. Then the left-hand side of (4.2) becomes

<

f <a yp_ Y J2r z) B ai/(kfk(ﬁ):rﬂk) {fg?ﬁb_mf(a +b—y) +£ Satp—y)_fla+b— z)}‘
z2—y)k
bt d) (2 1)t

The right-hand side of (4.2) is computed as

o [ D () - (G5 (5) )]

cmm=nzfbe L fs(L2 ) e (L2 (1))]]

Therefore, the inequality takes the form

i (f2e2)-m(fre2) ol
<ilz+s[p(Ge+) (55 +u(3))]] (1.4)

The validity of the inequality (4.4) is illustrated in Figure 3.
Theorem 4.2. Let f : [a,b] — R be differentiable on (a,b) and assume that |f'|" is convex
on [a,b] for u > 1, with % + % =1. Then

y+z PR (B + K o
2 >_ 2 . )% ) [Z%(aerszf(a—}—b—y) + CJWa+bfy)ﬂf(“+b_Z)}

f<a+b—
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I et term
8 I Right term

FIGURE 3. The graph of the inequality of (4.4) is evaluated by MATLAB
software for a € (0,1], 8 € (0,5] and k = 0.5.

< (Z;f) l(i [13 (i)}f—i-l) ~B (i’f“; (DO‘)Di

! </11“ -(1-0- t>°‘>ﬁ/k1*dt> ] [(If’(a)l” ey R 3!f’(y)\“) z

1 4
2

+(uwm“+u%w”—afgw””fwwﬁ”], (15

4
fory,z € [a,b] withy < z, >0, k>0, and a € (0,1].

Proof. From Lemma 4.1, we have

y+2\ PFTL(B+E) [saa
P(a+b— 5 )— KOTR) Tog0 o flatb—g)+] S0y flatb—2)]
2(z —y)*
_ B/k
< (Z?O‘(Vlﬂfﬁvgﬂa)- (4.6)

Applying the Jensen-Mercer inequality and Holder’s inequality, we obtain

/1/2< 1—t) >B|f’(a+b(ty+(1t)z))|dt

1

( 1/2 1‘” )Aﬂ)i X (/OI/Q\f’(Hb—(ty+(1—t)z))wdt>“
) GlEGT)-2GF+()))

1/2
x ( ; {If'@* +1f )" —tlf ()" - (1—t)|f/(2)|“}dt>

x-\m
>l=

1
S -
(6

==
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-G GGG ()
(L@ELOF sl el

B
k

=

T |-

Similarly, we have

U2 11— (1— )\ F
= ()rﬂmw—m+u—mmw

() (e

RG]
|f'(a |“+|f’ [ If’(Z)!“+3|f’(y)\“>“
o

X

Jil

m\»a,_.

/1 [aﬁ/k 1_ Lotr }|f/a+b—(ty+(1—t) ))|dt
aE )ﬂ/k]kdty('f( '+ _ ()I“+3|f’(y)|”)i
: 2 g ,

(
()7

- ;2 [aﬁ/k < Z_t) >

(fn-a-a- >W“WO*(M%Mﬂ+ﬁﬂMﬂ_&ﬁ@wwwﬂ@wdi
wﬁ : : |

Substituting Vi, Vo, V3, and Vj in (4.6), we obtain

IN

If (a+b— (tz+ (1 —t)y))|dt

Ealie
-

y+z. oPFTL(B+k o o
5 )~ X d o ) {fg(a%fz”f(a +b =)+, Shpy) - fla+b— Z)}
=Y

<2 [GRGE )2 GG

L e/ > [f @+ 1O 3l &P+ W) "
+</ (1= (1= (1— )PP g ( )

2 8
2

F@F+ 1O 1@+ 31 @) -
(5 - d )|

This complete the proof. ]

Remark 4.3. By setting k = 1 in Theorem 4.2, we obtain the following inequality

y+z, T(B+1) (300 X
9 ) - 2(2 o y)aﬁ [6%(a+b—z)+f((l + b— y) +B %(a-i-b—y)—f(a —+ b— Z)]

fla+b—
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<CR[E G2 (e (3))])
+ (/11[1 (- (1- t)a)ﬁ]’\dt> i]

CBIF )+ |f’<y>|ﬂ)i] |

PG +3!f’(y)|’“‘>3‘

(1@ + 7o ]

+(Ir@p+ 1o :

which was proved by Hyder et al. in [19, Theorem 8].
Remark 4.4. By taking k =1 and a = 1 in Theorem 4.2, we obtain the following inequality

T 1
) — 2(25_2)33 (Stpays Flatb =)+ S0, flat+b-2)] ‘

(: -9 L ;
: 21+§ {((AB+1)2(A5+1)> +</; [1_tﬂ]Adt>

<[t « o v artary

yt+=z
2

fla+b—

==

4

+(ir@p e )

e |f’<y>r“)i] |

which was given in [19, Remark 8].

Remark 4.5. By choosing k =1, y = a, and z = b in Theorem 4.2, we obtain the following
inequality

fla+bd) aPT(B+1) [
2 2(b — a)*B

<; {B (;,AﬁJr 1) _3 (;,w+ 1; (;)a)DA 4 </1[1 _(-( t)a)ﬁ]’\dt> 1

» [(!f’(a)\ﬂ SO (A If’(b)\“>1

<

P35, F(0) +° S5 f(a)]

4 4

which was demonstrated by Hezenci and Budak in [15].

5. DISCUSSION

This study establishes novel inequalities using generalized k-fractional conformable inte-
grals, extending previous results for Riemann-Liouville and fractional conformable integrals.
The derived Hermite-Hadamard, trapezoidal, and midpoint-type inequalities provide deeper
insights into the behavior of convex functions under these operators. The practical signif-
icance lies in their potential applications in mathematical analysis, applied sciences, and
engineering problems involving fractional calculus. Future work may explore extensions to
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higher-order fractional operators, multi-dimensional domains, or other classes of convex and
non-convex functions, as well as potential applications in differential equations, optimization,
and modeling of real-world phenomena.

6. CONCLUSION

This study investigates inequalities using generalized k-fractional conformable integrals. It
utilizes the Jensen-Mercer inequality to establish new results. The study focuses on Hermite-
Hadamard, trapezoidal, and midpoint-type inequalities. It explores the connections between
these inequalities and convex functions. Equalities with generalized k-fractional conformable
integrals are established to derive the new inequalities. The results build upon prior work
on Riemann-Liouville fractional integrals, fractional conformable integrals and generalized
k-fractional conformable integrals. The study provides a comprehensive analysis of the
inequalities. Examples with graphical representations are used to validate the findings.
The results have potential applications in various fields. The study contributes to the
development of fractional calculus. It provides new insights into the properties of convex
functions. The inequalities established in the study are novel and original. The research is
significant, as it fills a gap in the existing literature. The study’s findings are accurate and
reliable, as demonstrated by the examples.
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